1; 2; jidctfst.asm - fast integer IDCT (64-bit SSE2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2009, 2016, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a fast, not so accurate integer implementation of 18; the inverse DCT (Discrete Cosine Transform). The following code is 19; based directly on the IJG's original jidctfst.c; see the jidctfst.c 20; for more details. 21; 22; [TAB8] 23 24%include "jsimdext.inc" 25%include "jdct.inc" 26 27; -------------------------------------------------------------------------- 28 29%define CONST_BITS 8 ; 14 is also OK. 30%define PASS1_BITS 2 31 32%if IFAST_SCALE_BITS != PASS1_BITS 33%error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." 34%endif 35 36%if CONST_BITS == 8 37F_1_082 equ 277 ; FIX(1.082392200) 38F_1_414 equ 362 ; FIX(1.414213562) 39F_1_847 equ 473 ; FIX(1.847759065) 40F_2_613 equ 669 ; FIX(2.613125930) 41F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) 42%else 43; NASM cannot do compile-time arithmetic on floating-point constants. 44%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) 45F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200) 46F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562) 47F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) 48F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930) 49F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) 50%endif 51 52; -------------------------------------------------------------------------- 53 SECTION SEG_CONST 54 55; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 56; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 57 58%define PRE_MULTIPLY_SCALE_BITS 2 59%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 60 61 alignz 32 62 GLOBAL_DATA(jconst_idct_ifast_sse2) 63 64EXTN(jconst_idct_ifast_sse2): 65 66PW_F1414 times 8 dw F_1_414 << CONST_SHIFT 67PW_F1847 times 8 dw F_1_847 << CONST_SHIFT 68PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT 69PW_F1082 times 8 dw F_1_082 << CONST_SHIFT 70PB_CENTERJSAMP times 16 db CENTERJSAMPLE 71 72 alignz 32 73 74; -------------------------------------------------------------------------- 75 SECTION SEG_TEXT 76 BITS 64 77; 78; Perform dequantization and inverse DCT on one block of coefficients. 79; 80; GLOBAL(void) 81; jsimd_idct_ifast_sse2(void *dct_table, JCOEFPTR coef_block, 82; JSAMPARRAY output_buf, JDIMENSION output_col) 83; 84 85; r10 = jpeg_component_info *compptr 86; r11 = JCOEFPTR coef_block 87; r12 = JSAMPARRAY output_buf 88; r13d = JDIMENSION output_col 89 90%define original_rbp rbp + 0 91%define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD 92 ; xmmword wk[WK_NUM] 93%define WK_NUM 2 94 95 align 32 96 GLOBAL_FUNCTION(jsimd_idct_ifast_sse2) 97 98EXTN(jsimd_idct_ifast_sse2): 99 push rbp 100 mov rax, rsp ; rax = original rbp 101 sub rsp, byte 4 102 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 103 mov [rsp], rax 104 mov rbp, rsp ; rbp = aligned rbp 105 lea rsp, [wk(0)] 106 collect_args 4 107 108 ; ---- Pass 1: process columns from input. 109 110 mov rdx, r10 ; quantptr 111 mov rsi, r11 ; inptr 112 113%ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 114 mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] 115 or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] 116 jnz near .columnDCT 117 118 movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] 119 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] 120 por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] 121 por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] 122 por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] 123 por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] 124 por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] 125 por xmm1, xmm0 126 packsswb xmm1, xmm1 127 packsswb xmm1, xmm1 128 movd eax, xmm1 129 test rax, rax 130 jnz short .columnDCT 131 132 ; -- AC terms all zero 133 134 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] 135 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] 136 137 movdqa xmm7, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) 138 punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) 139 punpckhwd xmm7, xmm7 ; xmm7=(04 04 05 05 06 06 07 07) 140 141 pshufd xmm6, xmm0, 0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) 142 pshufd xmm2, xmm0, 0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) 143 pshufd xmm5, xmm0, 0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) 144 pshufd xmm0, xmm0, 0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) 145 pshufd xmm1, xmm7, 0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) 146 pshufd xmm4, xmm7, 0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) 147 pshufd xmm3, xmm7, 0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) 148 pshufd xmm7, xmm7, 0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) 149 150 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 151 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 152 jmp near .column_end 153%endif 154.columnDCT: 155 156 ; -- Even part 157 158 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] 159 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] 160 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 161 pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 162 movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] 163 movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] 164 pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 165 pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 166 167 movdqa xmm4, xmm0 168 movdqa xmm5, xmm1 169 psubw xmm0, xmm2 ; xmm0=tmp11 170 psubw xmm1, xmm3 171 paddw xmm4, xmm2 ; xmm4=tmp10 172 paddw xmm5, xmm3 ; xmm5=tmp13 173 174 psllw xmm1, PRE_MULTIPLY_SCALE_BITS 175 pmulhw xmm1, [rel PW_F1414] 176 psubw xmm1, xmm5 ; xmm1=tmp12 177 178 movdqa xmm6, xmm4 179 movdqa xmm7, xmm0 180 psubw xmm4, xmm5 ; xmm4=tmp3 181 psubw xmm0, xmm1 ; xmm0=tmp2 182 paddw xmm6, xmm5 ; xmm6=tmp0 183 paddw xmm7, xmm1 ; xmm7=tmp1 184 185 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 186 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 187 188 ; -- Odd part 189 190 movdqa xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] 191 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] 192 pmullw xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 193 pmullw xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 194 movdqa xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] 195 movdqa xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] 196 pmullw xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 197 pmullw xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)] 198 199 movdqa xmm4, xmm2 200 movdqa xmm0, xmm5 201 psubw xmm2, xmm1 ; xmm2=z12 202 psubw xmm5, xmm3 ; xmm5=z10 203 paddw xmm4, xmm1 ; xmm4=z11 204 paddw xmm0, xmm3 ; xmm0=z13 205 206 movdqa xmm1, xmm5 ; xmm1=z10(unscaled) 207 psllw xmm2, PRE_MULTIPLY_SCALE_BITS 208 psllw xmm5, PRE_MULTIPLY_SCALE_BITS 209 210 movdqa xmm3, xmm4 211 psubw xmm4, xmm0 212 paddw xmm3, xmm0 ; xmm3=tmp7 213 214 psllw xmm4, PRE_MULTIPLY_SCALE_BITS 215 pmulhw xmm4, [rel PW_F1414] ; xmm4=tmp11 216 217 ; To avoid overflow... 218 ; 219 ; (Original) 220 ; tmp12 = -2.613125930 * z10 + z5; 221 ; 222 ; (This implementation) 223 ; tmp12 = (-1.613125930 - 1) * z10 + z5; 224 ; = -1.613125930 * z10 - z10 + z5; 225 226 movdqa xmm0, xmm5 227 paddw xmm5, xmm2 228 pmulhw xmm5, [rel PW_F1847] ; xmm5=z5 229 pmulhw xmm0, [rel PW_MF1613] 230 pmulhw xmm2, [rel PW_F1082] 231 psubw xmm0, xmm1 232 psubw xmm2, xmm5 ; xmm2=tmp10 233 paddw xmm0, xmm5 ; xmm0=tmp12 234 235 ; -- Final output stage 236 237 psubw xmm0, xmm3 ; xmm0=tmp6 238 movdqa xmm1, xmm6 239 movdqa xmm5, xmm7 240 paddw xmm6, xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) 241 paddw xmm7, xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) 242 psubw xmm1, xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) 243 psubw xmm5, xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) 244 psubw xmm4, xmm0 ; xmm4=tmp5 245 246 movdqa xmm3, xmm6 ; transpose coefficients(phase 1) 247 punpcklwd xmm6, xmm7 ; xmm6=(00 10 01 11 02 12 03 13) 248 punpckhwd xmm3, xmm7 ; xmm3=(04 14 05 15 06 16 07 17) 249 movdqa xmm0, xmm5 ; transpose coefficients(phase 1) 250 punpcklwd xmm5, xmm1 ; xmm5=(60 70 61 71 62 72 63 73) 251 punpckhwd xmm0, xmm1 ; xmm0=(64 74 65 75 66 76 67 77) 252 253 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 254 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 255 256 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) 257 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) 258 259 paddw xmm2, xmm4 ; xmm2=tmp4 260 movdqa xmm5, xmm7 261 movdqa xmm0, xmm1 262 paddw xmm7, xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) 263 paddw xmm1, xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) 264 psubw xmm5, xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) 265 psubw xmm0, xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) 266 267 movdqa xmm4, xmm7 ; transpose coefficients(phase 1) 268 punpcklwd xmm7, xmm0 ; xmm7=(20 30 21 31 22 32 23 33) 269 punpckhwd xmm4, xmm0 ; xmm4=(24 34 25 35 26 36 27 37) 270 movdqa xmm2, xmm1 ; transpose coefficients(phase 1) 271 punpcklwd xmm1, xmm5 ; xmm1=(40 50 41 51 42 52 43 53) 272 punpckhwd xmm2, xmm5 ; xmm2=(44 54 45 55 46 56 47 57) 273 274 movdqa xmm0, xmm3 ; transpose coefficients(phase 2) 275 punpckldq xmm3, xmm4 ; xmm3=(04 14 24 34 05 15 25 35) 276 punpckhdq xmm0, xmm4 ; xmm0=(06 16 26 36 07 17 27 37) 277 movdqa xmm5, xmm6 ; transpose coefficients(phase 2) 278 punpckldq xmm6, xmm7 ; xmm6=(00 10 20 30 01 11 21 31) 279 punpckhdq xmm5, xmm7 ; xmm5=(02 12 22 32 03 13 23 33) 280 281 movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) 282 movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) 283 284 movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) 285 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) 286 287 movdqa xmm3, xmm1 ; transpose coefficients(phase 2) 288 punpckldq xmm1, xmm4 ; xmm1=(40 50 60 70 41 51 61 71) 289 punpckhdq xmm3, xmm4 ; xmm3=(42 52 62 72 43 53 63 73) 290 movdqa xmm0, xmm2 ; transpose coefficients(phase 2) 291 punpckldq xmm2, xmm7 ; xmm2=(44 54 64 74 45 55 65 75) 292 punpckhdq xmm0, xmm7 ; xmm0=(46 56 66 76 47 57 67 77) 293 294 movdqa xmm4, xmm6 ; transpose coefficients(phase 3) 295 punpcklqdq xmm6, xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) 296 punpckhqdq xmm4, xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) 297 movdqa xmm7, xmm5 ; transpose coefficients(phase 3) 298 punpcklqdq xmm5, xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) 299 punpckhqdq xmm7, xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) 300 301 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) 302 movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) 303 304 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 305 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 306 307 movdqa xmm4, xmm1 ; transpose coefficients(phase 3) 308 punpcklqdq xmm1, xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) 309 punpckhqdq xmm4, xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) 310 movdqa xmm7, xmm3 ; transpose coefficients(phase 3) 311 punpcklqdq xmm3, xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) 312 punpckhqdq xmm7, xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) 313.column_end: 314 315 ; -- Prefetch the next coefficient block 316 317 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] 318 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] 319 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] 320 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] 321 322 ; ---- Pass 2: process rows from work array, store into output array. 323 324 mov rax, [original_rbp] 325 mov rdi, r12 ; (JSAMPROW *) 326 mov eax, r13d 327 328 ; -- Even part 329 330 ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 331 332 movdqa xmm2, xmm6 333 movdqa xmm0, xmm5 334 psubw xmm6, xmm1 ; xmm6=tmp11 335 psubw xmm5, xmm3 336 paddw xmm2, xmm1 ; xmm2=tmp10 337 paddw xmm0, xmm3 ; xmm0=tmp13 338 339 psllw xmm5, PRE_MULTIPLY_SCALE_BITS 340 pmulhw xmm5, [rel PW_F1414] 341 psubw xmm5, xmm0 ; xmm5=tmp12 342 343 movdqa xmm1, xmm2 344 movdqa xmm3, xmm6 345 psubw xmm2, xmm0 ; xmm2=tmp3 346 psubw xmm6, xmm5 ; xmm6=tmp2 347 paddw xmm1, xmm0 ; xmm1=tmp0 348 paddw xmm3, xmm5 ; xmm3=tmp1 349 350 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 351 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 352 353 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 354 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 355 356 ; -- Odd part 357 358 ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 359 360 movdqa xmm2, xmm0 361 movdqa xmm6, xmm4 362 psubw xmm0, xmm7 ; xmm0=z12 363 psubw xmm4, xmm5 ; xmm4=z10 364 paddw xmm2, xmm7 ; xmm2=z11 365 paddw xmm6, xmm5 ; xmm6=z13 366 367 movdqa xmm7, xmm4 ; xmm7=z10(unscaled) 368 psllw xmm0, PRE_MULTIPLY_SCALE_BITS 369 psllw xmm4, PRE_MULTIPLY_SCALE_BITS 370 371 movdqa xmm5, xmm2 372 psubw xmm2, xmm6 373 paddw xmm5, xmm6 ; xmm5=tmp7 374 375 psllw xmm2, PRE_MULTIPLY_SCALE_BITS 376 pmulhw xmm2, [rel PW_F1414] ; xmm2=tmp11 377 378 ; To avoid overflow... 379 ; 380 ; (Original) 381 ; tmp12 = -2.613125930 * z10 + z5; 382 ; 383 ; (This implementation) 384 ; tmp12 = (-1.613125930 - 1) * z10 + z5; 385 ; = -1.613125930 * z10 - z10 + z5; 386 387 movdqa xmm6, xmm4 388 paddw xmm4, xmm0 389 pmulhw xmm4, [rel PW_F1847] ; xmm4=z5 390 pmulhw xmm6, [rel PW_MF1613] 391 pmulhw xmm0, [rel PW_F1082] 392 psubw xmm6, xmm7 393 psubw xmm0, xmm4 ; xmm0=tmp10 394 paddw xmm6, xmm4 ; xmm6=tmp12 395 396 ; -- Final output stage 397 398 psubw xmm6, xmm5 ; xmm6=tmp6 399 movdqa xmm7, xmm1 400 movdqa xmm4, xmm3 401 paddw xmm1, xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) 402 paddw xmm3, xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) 403 psraw xmm1, (PASS1_BITS+3) ; descale 404 psraw xmm3, (PASS1_BITS+3) ; descale 405 psubw xmm7, xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) 406 psubw xmm4, xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) 407 psraw xmm7, (PASS1_BITS+3) ; descale 408 psraw xmm4, (PASS1_BITS+3) ; descale 409 psubw xmm2, xmm6 ; xmm2=tmp5 410 411 packsswb xmm1, xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) 412 packsswb xmm3, xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) 413 414 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 415 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 416 417 paddw xmm0, xmm2 ; xmm0=tmp4 418 movdqa xmm4, xmm5 419 movdqa xmm7, xmm6 420 paddw xmm5, xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) 421 paddw xmm6, xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) 422 psraw xmm5, (PASS1_BITS+3) ; descale 423 psraw xmm6, (PASS1_BITS+3) ; descale 424 psubw xmm4, xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) 425 psubw xmm7, xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) 426 psraw xmm4, (PASS1_BITS+3) ; descale 427 psraw xmm7, (PASS1_BITS+3) ; descale 428 429 movdqa xmm2, [rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] 430 431 packsswb xmm5, xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) 432 packsswb xmm7, xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) 433 434 paddb xmm1, xmm2 435 paddb xmm3, xmm2 436 paddb xmm5, xmm2 437 paddb xmm7, xmm2 438 439 movdqa xmm0, xmm1 ; transpose coefficients(phase 1) 440 punpcklbw xmm1, xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) 441 punpckhbw xmm0, xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) 442 movdqa xmm6, xmm5 ; transpose coefficients(phase 1) 443 punpcklbw xmm5, xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) 444 punpckhbw xmm6, xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) 445 446 movdqa xmm4, xmm1 ; transpose coefficients(phase 2) 447 punpcklwd xmm1, xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) 448 punpckhwd xmm4, xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) 449 movdqa xmm2, xmm6 ; transpose coefficients(phase 2) 450 punpcklwd xmm6, xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) 451 punpckhwd xmm2, xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) 452 453 movdqa xmm3, xmm1 ; transpose coefficients(phase 3) 454 punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) 455 punpckhdq xmm3, xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) 456 movdqa xmm7, xmm4 ; transpose coefficients(phase 3) 457 punpckldq xmm4, xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) 458 punpckhdq xmm7, xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) 459 460 pshufd xmm5, xmm1, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) 461 pshufd xmm0, xmm3, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) 462 pshufd xmm6, xmm4, 0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) 463 pshufd xmm2, xmm7, 0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) 464 465 mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] 466 mov rsi, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] 467 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 468 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 469 mov rdx, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] 470 mov rsi, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] 471 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 472 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 473 474 mov rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] 475 mov rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] 476 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 477 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 478 mov rdx, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] 479 mov rsi, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] 480 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 481 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 482 483 uncollect_args 4 484 mov rsp, rbp ; rsp <- aligned rbp 485 pop rsp ; rsp <- original rbp 486 pop rbp 487 ret 488 ret 489 490; For some reason, the OS X linker does not honor the request to align the 491; segment unless we do this. 492 align 32 493