Home
last modified time | relevance | path

Searched refs:RNN (Results 1 – 25 of 56) sorted by relevance

123

/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_CudnnRNNParamsSize.pbtxt3 summary: "Computes size of weights that can be used by a Cudnn RNN model."
5 Return the params size that can be used by the Cudnn RNN model. Subsequent
8 num_layers: Specifies the number of layers in the RNN model.
11 rnn_mode: Indicates the type of the RNN model.
22 initialized for this RNN model. Note that this params buffer may not be
Dapi_def_CudnnRNN.pbtxt3 summary: "A RNN backed by cuDNN."
5 Computes the RNN from the input and initial states, with respect to the params
8 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNV2.pbtxt4 summary: "A RNN backed by cuDNN."
6 Computes the RNN from the input and initial states, with respect to the params
9 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNBackpropV2.pbtxt6 Compute the backprop of both data and weights in a RNN. Takes an extra
7 "host_reserved" inupt than CudnnRNNBackprop, which is used to determine RNN
10 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNV3.pbtxt4 summary: "A RNN backed by cuDNN."
6 Computes the RNN from the input and initial states, with respect to the params
9 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNParamsToCanonical.pbtxt12 num_layers: Specifies the number of layers in the RNN model.
24 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNCanonicalToParams.pbtxt12 num_layers: Specifies the number of layers in the RNN model.
24 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNBackprop.pbtxt5 Compute the backprop of both data and weights in a RNN.
7 rnn_mode: Indicates the type of the RNN model.
Dapi_def_CudnnRNNBackpropV3.pbtxt6 Compute the backprop of both data and weights in a RNN. Takes an extra
9 rnn_mode: Indicates the type of the RNN model.
/external/tensorflow/tensorflow/python/keras/layers/
Drecurrent_test.py78 layer = keras.layers.RNN(cell)
91 layer = keras.layers.RNN(cells)
121 layer = keras.layers.RNN(cell)
134 layer = keras.layers.RNN(cells)
178 layer = keras.layers.RNN(cell)
193 layer = keras.layers.RNN.from_config(config)
204 layer = keras.layers.RNN(cells)
219 layer = keras.layers.RNN.from_config(config)
260 layer = keras.layers.RNN(cell)
273 layer = keras.layers.RNN(cells)
[all …]
Dcudnn_recurrent.py30 from tensorflow.python.keras.layers.recurrent import RNN
37 class _CuDNNRNN(RNN):
65 super(RNN, self).__init__(**kwargs) # pylint: disable=bad-super-call
133 RNN, self).get_config()
154 return super(RNN, self).losses
158 RNN, self).get_losses_for(inputs=inputs)
Drecurrent.py183 class RNN(Layer): class
394 super(RNN, self).__init__(**kwargs)
639 return super(RNN, self).__call__(inputs, **kwargs)
679 output = super(RNN, self).__call__(full_input, **kwargs)
690 return super(RNN, self).__call__(inputs, **kwargs)
899 base_config = super(RNN, self).get_config()
1292 class SimpleRNN(RNN):
1785 class GRU(RNN):
2400 class LSTM(RNN):
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_colorbot/
DREADME.md1 RNN Colorbot: An RNN that predicts colors using eager execution.
13 3. implement a multi-layer RNN using Python control flow
/external/tensorflow/tensorflow/contrib/eager/python/g3doc/
Dguide.md17 - [RNN to generate colors](https://www.tensorflow.org/code/tensorflow/contrib/eager/python/examples…
18 - [RNN language model](https://www.tensorflow.org/code/tensorflow/contrib/eager/python/examples/rnn…
/external/tensorflow/tensorflow/contrib/autograph/examples/notebooks/
Drnn_keras_estimator.ipynb65 "# Case study: training a custom RNN, using Keras and Estimators\n"
78 …"In this section, we show how you can use AutoGraph to build RNNColorbot, an RNN that takes as inp…
159 …"To show the use of control flow, we write the RNN loop by hand, rather than using a pre-built RNN
185 " \"\"\"RNN Colorbot model.\"\"\"\n",
194 " \"\"\"A single RNN layer.\n",
224 " \"\"\"The RNN model code. Uses Eager.\n",
226 " The model consists of two RNN layers (made by lower_cell and upper_cell),\n",
538 …\"elementId\": \"id3\", \"contentHeight\": [\"initial\"], \"tabNames\": [\"RNN Colorbot\"], \"loca…
1020 "tb = widgets.TabBar([\"RNN Colorbot\"])\n",
1044 "name": "RNN Colorbot using Keras and Estimators",
/external/tensorflow/tensorflow/lite/g3doc/convert/
Dcmdline_examples.md349 * RNN state arrays are green. Because of the way that the converter
350 represents RNN back-edges explicitly, each RNN state is represented by a
352 * The activation array that is the source of the RNN back-edge (i.e.
353 whose contents are copied into the RNN state array after having been
357 * The actual RNN state array is
359 green</span>. It is the destination of the RNN back-edge updating
/external/tensorflow/tensorflow/lite/g3doc/guide/
Droadmap.md29 * **LSTM / RNN support**
69 * RNN Support
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_ptb/
Drnn_ptb.py44 class RNN(tf.keras.Model): class
51 super(RNN, self).__init__()
127 self.rnn = RNN(hidden_dim, num_layers, self.keep_ratio)
/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.keras.layers.-r-n-n.pbtxt1 path: "tensorflow.keras.layers.RNN"
3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.RNN\'>"
/external/tensorflow/tensorflow/tools/api/golden/v1/
Dtensorflow.keras.layers.-r-n-n.pbtxt1 path: "tensorflow.keras.layers.RNN"
3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.RNN\'>"
/external/tensorflow/tensorflow/contrib/eager/python/examples/generative_examples/
Dtext_generation.ipynb14 "# Text Generation using a RNN\n",
/external/tensorflow/tensorflow/python/keras/
Dintegration_test.py150 model.add(keras.layers.RNN(rnn_cell.LSTMCell(5), return_sequences=True,
152 model.add(keras.layers.RNN(rnn_cell.GRUCell(y_train.shape[-1],
/external/tensorflow/tensorflow/contrib/cudnn_rnn/
DBUILD2 # A Cudnn RNN wrapper.
/external/tensorflow/tensorflow/contrib/feature_column/python/feature_column/
Dsequence_feature_column_integration_test.py97 rnn_layer = recurrent.RNN(recurrent.SimpleRNNCell(10))
/external/tensorflow/tensorflow/python/feature_column/
Dsequence_feature_column_integration_test.py99 rnn_layer = recurrent.RNN(recurrent.SimpleRNNCell(10))

123