1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/framework/tensor.h"
17 
18 #include "tensorflow/core/framework/tensor.pb.h"
19 #include "tensorflow/core/framework/tensor_testutil.h"
20 #include "tensorflow/core/framework/types.h"
21 #include "tensorflow/core/framework/variant.h"
22 #include "tensorflow/core/framework/variant_encode_decode.h"
23 #include "tensorflow/core/framework/variant_tensor_data.h"
24 #include "tensorflow/core/lib/math/math_util.h"
25 #include "tensorflow/core/lib/strings/strcat.h"
26 #include "tensorflow/core/platform/logging.h"
27 #include "tensorflow/core/platform/test.h"
28 #include "tensorflow/core/platform/test_benchmark.h"
29 
30 namespace tensorflow {
31 
32 class TensorTestHelper {
33  public:
34   // This is an operation that can be done by VariableOp.
set_shape(Tensor * t,const TensorShape & s)35   static void set_shape(Tensor* t, const TensorShape& s) { t->set_shape(s); }
36 };
37 
38 // To make TestCopies do the right thing.
operator ==(const ResourceHandle & a,const ResourceHandle & b)39 bool operator==(const ResourceHandle& a, const ResourceHandle& b) {
40   return a.device() == b.device() && a.container() == b.container() &&
41          a.name() == b.name() && a.hash_code() == b.hash_code() &&
42          a.maybe_type_name() == b.maybe_type_name();
43 }
44 
operator ==(const Variant & a,const Variant & b)45 bool operator==(const Variant& a, const Variant& b) {
46   if (a.is_empty()) {
47     return b.is_empty();
48   }
49 
50   if (a.TypeId() != b.TypeId()) return false;
51   if (a.TypeName() != b.TypeName()) return false;
52 
53   VariantTensorData a_data, b_data;
54   a.Encode(&a_data);
55   b.Encode(&b_data);
56 
57   string a_metadata;
58   string b_metadata;
59   a_data.get_metadata(&a_metadata);
60   b_data.get_metadata(&b_metadata);
61   if (a_metadata != b_metadata) return false;
62 
63   if (a_data.tensors_size() != b_data.tensors_size()) return false;
64 
65   for (int i = 0; i < a_data.tensors_size(); ++i) {
66     TensorProto a_proto, b_proto;
67     a_data.tensors(i).AsProtoTensorContent(&a_proto);
68     b_data.tensors(i).AsProtoTensorContent(&b_proto);
69     string a_str, b_str;
70     a_proto.SerializeToString(&a_str);
71     b_proto.SerializeToString(&b_str);
72     if (a_str != b_str) return false;
73   }
74 
75   return true;
76 }
77 
78 namespace {
79 
TEST(TensorTest,Default)80 TEST(TensorTest, Default) {
81   Tensor t;
82   EXPECT_EQ(t.dtype(), DT_FLOAT);
83   EXPECT_EQ(t.dims(), 1);
84   EXPECT_EQ(t.NumElements(), 0);
85 }
86 
TEST(TensorTest,DataType_Traits)87 TEST(TensorTest, DataType_Traits) {
88   EXPECT_TRUE(std::is_trivial<float>::value);
89   EXPECT_TRUE(std::is_trivial<double>::value);
90   EXPECT_TRUE(std::is_trivial<int32>::value);
91   EXPECT_TRUE(std::is_trivial<uint8>::value);
92   EXPECT_TRUE(std::is_trivial<uint16>::value);
93   EXPECT_TRUE(std::is_trivial<int16>::value);
94   EXPECT_TRUE(std::is_trivial<int8>::value);
95   EXPECT_TRUE(std::is_trivial<int64>::value);
96   EXPECT_TRUE(std::is_trivial<bool>::value);
97   EXPECT_FALSE(std::is_trivial<string>::value);
98 
99   EXPECT_EQ(sizeof(bool), 1);
100 
101   // Unfortunately. std::complex::complex() initializes (0, 0).
102   EXPECT_FALSE(std::is_trivial<complex64>::value);
103   EXPECT_FALSE(std::is_trivial<complex128>::value);
104   EXPECT_TRUE(std::is_trivial<float[2]>::value);
105   EXPECT_TRUE(std::is_trivial<double[2]>::value);
106   struct MyComplex64 {
107     float re, im;
108   };
109   EXPECT_TRUE(std::is_trivial<MyComplex64>::value);
110   struct MyComplex128 {
111     double re, im;
112   };
113   EXPECT_TRUE(std::is_trivial<MyComplex128>::value);
114 }
115 
116 template <typename T>
TestCopies(const Tensor & t)117 void TestCopies(const Tensor& t) {
118   {
119     LOG(INFO) << "CopyFrom()";
120     Tensor t2(t.dtype());
121     EXPECT_TRUE(t2.CopyFrom(t, t.shape()));
122     test::ExpectTensorEqual<T>(t, t2);
123   }
124   {
125     LOG(INFO) << "operator=()";
126     Tensor t2(t.dtype());
127     t2 = t;
128     test::ExpectTensorEqual<T>(t, t2);
129   }
130   {
131     LOG(INFO) << "deep copy";
132     Tensor t2(t.dtype(), t.shape());
133     t2.flat<T>() = t.flat<T>();
134     test::ExpectTensorEqual<T>(t, t2);
135   }
136   {
137     LOG(INFO) << "AsProtoField()";
138     TensorProto proto;
139     t.AsProtoField(&proto);
140     Tensor t2(t.dtype());
141     EXPECT_TRUE(t2.FromProto(proto));
142     test::ExpectTensorEqual<T>(t, t2);
143   }
144   {
145     LOG(INFO) << "AsProtoTensorContent()";
146     TensorProto proto;
147     t.AsProtoTensorContent(&proto);
148     Tensor t2(t.dtype());
149     EXPECT_TRUE(t2.FromProto(proto));
150     test::ExpectTensorEqual<T>(t, t2);
151     // Make another copy via tensor_content field.
152     *proto.mutable_tensor_content() = proto.tensor_content();
153     Tensor t3(t.dtype());
154     EXPECT_TRUE(t3.FromProto(proto));
155     test::ExpectTensorEqual<T>(t, t2);
156   }
157   {
158     LOG(INFO) << "AsTensor";
159     gtl::ArraySlice<T> values(t.flat<T>().data(), t.NumElements());
160     Tensor t2 = test::AsTensor(values, t.shape());
161     test::ExpectTensorEqual<T>(t, t2);
162   }
163   {
164     LOG(INFO) << "Move constructor";
165     Tensor t2 = t;
166     Tensor t3(std::move(t2));
167     test::ExpectTensorEqual<T>(t, t3);
168     EXPECT_TRUE(t3.IsInitialized());
169     EXPECT_FALSE(t2.IsInitialized());
170   }
171   {
172     LOG(INFO) << "Move assignment";
173     Tensor t2 = t;
174     Tensor t3 = std::move(t2);
175     Tensor* t4 = &t3;
176     *t4 = std::move(t3);
177     test::ExpectTensorEqual<T>(t, t3);
178     EXPECT_TRUE(t3.IsInitialized());
179     EXPECT_FALSE(t2.IsInitialized());
180   }
181 }
182 
TEST(Tensor_Half,Simple)183 TEST(Tensor_Half, Simple) {
184   Tensor t(DT_HALF, TensorShape({5, 7}));
185   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({5, 7})));
186   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
187     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
188       t.matrix<Eigen::half>()(a, b) = static_cast<Eigen::half>(a * b);
189     }
190   }
191   TestCopies<Eigen::half>(t);
192 }
193 
TEST(Tensor_Bfloat16,Simple)194 TEST(Tensor_Bfloat16, Simple) {
195   Tensor t(DT_BFLOAT16, TensorShape({5, 7}));
196   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({5, 7})));
197   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
198     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
199       t.matrix<bfloat16>()(a, b) = static_cast<bfloat16>(a * b);
200     }
201   }
202   TestCopies<bfloat16>(t);
203 }
204 
TEST(Tensor_Float,Simple)205 TEST(Tensor_Float, Simple) {
206   Tensor t(DT_FLOAT, TensorShape({10, 20}));
207   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({10, 20})));
208   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
209     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
210       t.matrix<float>()(a, b) = static_cast<float>(a * b);
211     }
212   }
213   TestCopies<float>(t);
214 }
215 
TEST(Tensor_ResourceHandle,Simple)216 TEST(Tensor_ResourceHandle, Simple) {
217   Tensor t(DT_RESOURCE, TensorShape({}));
218   ResourceHandle tmp;
219   tmp.set_name("a");
220   t.flat<ResourceHandle>()(0) = tmp;
221   TestCopies<ResourceHandle>(t);
222 }
223 
TEST(Tensor_Variant,Simple)224 TEST(Tensor_Variant, Simple) {
225   Tensor t(DT_VARIANT, TensorShape({}));
226   Tensor value(DT_FLOAT, TensorShape({}));
227   value.flat<float>()(0) = 42.0f;
228   t.flat<Variant>()(0) = value;
229   // All the tests in TestCopies except the ones that serialize and deserialize
230   // the tensor. The consumer of a serialized Variant Tensor should know what
231   // type is stored in the Tensor, so not testing the generic
232   // serialize/deserialize case here.
233   {
234     LOG(INFO) << "CopyFrom()";
235     Tensor t2(t.dtype());
236     EXPECT_TRUE(t2.CopyFrom(t, t.shape()));
237     test::ExpectTensorEqual<Variant>(t, t2);
238   }
239   {
240     LOG(INFO) << "operator=()";
241     Tensor t2(t.dtype());
242     t2 = t;
243     test::ExpectTensorEqual<Variant>(t, t2);
244   }
245   {
246     LOG(INFO) << "deep copy";
247     Tensor t2(t.dtype(), t.shape());
248     t2.flat<Variant>() = t.flat<Variant>();
249     test::ExpectTensorEqual<Variant>(t, t2);
250   }
251   {
252     LOG(INFO) << "AsTensor";
253     gtl::ArraySlice<Variant> values(t.flat<Variant>().data(), t.NumElements());
254     Tensor t2 = test::AsTensor(values, t.shape());
255     test::ExpectTensorEqual<Variant>(t, t2);
256   }
257   {
258     LOG(INFO) << "Move constructor";
259     Tensor t2 = t;
260     Tensor t3(std::move(t2));
261     test::ExpectTensorEqual<Variant>(t, t3);
262     EXPECT_TRUE(t3.IsInitialized());
263     EXPECT_FALSE(t2.IsInitialized());
264   }
265   {
266     LOG(INFO) << "Move assignment";
267     Tensor t2 = t;
268     Tensor t3 = std::move(t2);
269     Tensor* t4 = &t3;
270     *t4 = std::move(t3);
271     test::ExpectTensorEqual<Variant>(t, t3);
272     EXPECT_TRUE(t3.IsInitialized());
273     EXPECT_FALSE(t2.IsInitialized());
274   }
275 }
276 
TEST(Tensor_Variant,Marshal)277 TEST(Tensor_Variant, Marshal) {
278   Tensor t(DT_VARIANT, TensorShape({}));
279 
280   Tensor internal(DT_FLOAT, TensorShape({}));
281   internal.flat<float>()(0) = 42.0f;
282   t.flat<Variant>()(0) = internal;
283 
284   LOG(INFO) << "AsProtoField()";
285   TensorProto proto;
286   t.AsProtoField(&proto);
287 
288   // This performs a decode operation.
289   Tensor t2(t.dtype());
290   EXPECT_TRUE(t2.FromProto(proto));
291 
292   Tensor* out = t2.flat<Variant>()(0).get<Tensor>();
293   EXPECT_NE(out, nullptr);
294   EXPECT_FLOAT_EQ(out->scalar<float>()(), 42.0f);
295 }
296 
TEST(Tensor_UInt16,Simple)297 TEST(Tensor_UInt16, Simple) {
298   Tensor t(DT_UINT16, TensorShape({2, 2}));
299   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 2})));
300   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
301     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
302       t.matrix<uint16>()(a, b) = uint16(a * b);
303     }
304   }
305   TestCopies<uint16>(t);
306 }
307 
TEST(Tensor_QInt8,Simple)308 TEST(Tensor_QInt8, Simple) {
309   Tensor t(DT_QINT8, TensorShape({2, 2}));
310   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 2})));
311   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
312     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
313       t.matrix<qint8>()(a, b) = qint8(a * b);
314     }
315   }
316   TestCopies<qint8>(t);
317 }
318 
TEST(Tensor_QUInt8,Simple)319 TEST(Tensor_QUInt8, Simple) {
320   Tensor t(DT_QUINT8, TensorShape({2, 2}));
321   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 2})));
322   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
323     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
324       t.matrix<Eigen::QUInt8>()(a, b) = Eigen::QUInt8(a * b);
325     }
326   }
327   TestCopies<Eigen::QUInt8>(t);
328 }
329 
TEST(Tensor_QInt32,Simple)330 TEST(Tensor_QInt32, Simple) {
331   Tensor t(DT_QINT32, TensorShape({2, 2}));
332   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 2})));
333   for (int64 a = 0; a < t.shape().dim_size(0); a++) {
334     for (int64 b = 0; b < t.shape().dim_size(1); b++) {
335       t.matrix<qint32>()(a, b) = qint32(static_cast<int32>(a * b));
336     }
337   }
338   TestCopies<qint32>(t);
339 }
340 
341 class TensorReshapeTest : public ::testing::Test {
342  protected:
343   Tensor t;
344   Tensor zero_t;
345 
TensorReshapeTest()346   TensorReshapeTest()
347       : t(DT_FLOAT, TensorShape({2, 3, 4, 5})),
348         zero_t(DT_FLOAT, TensorShape({3, 0, 2, 0, 5})) {}
349 
SetUp()350   void SetUp() override {
351     EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 3, 4, 5})));
352     EXPECT_TRUE(zero_t.shape().IsSameSize(TensorShape({3, 0, 2, 0, 5})));
353 
354     auto tensor = t.tensor<float, 4>();
355     EXPECT_EQ(2, tensor.dimension(0));
356     EXPECT_EQ(3, tensor.dimension(1));
357     EXPECT_EQ(4, tensor.dimension(2));
358     EXPECT_EQ(5, tensor.dimension(3));
359 
360     // Set first and last elements.
361     tensor(0, 0, 0, 0) = 0.01f;
362     tensor(1, 2, 3, 4) = 0.02f;
363   }
364 
365   template <typename T>
366   using ReshapeFunc = T (Tensor::*)(gtl::ArraySlice<int64>);
367   template <typename T>
368   using ConstReshapeFunc = T (Tensor::*)(gtl::ArraySlice<int64>) const;
369 
370   template <typename T, ReshapeFunc<T> Func>
TestReshape(std::initializer_list<int64> sizes)371   void TestReshape(std::initializer_list<int64> sizes) {
372     T shaped = (t.*Func)(sizes);
373     TestReshapeImpl(shaped, sizes);
374   }
375 
376   template <typename T, ConstReshapeFunc<T> Func>
TestReshape(std::initializer_list<int64> sizes)377   void TestReshape(std::initializer_list<int64> sizes) {
378     T shaped = (static_cast<const Tensor&>(t).*Func)(sizes);
379     TestReshapeImpl(shaped, sizes);
380   }
381 
382   template <typename T>
TestReshapeImpl(T shaped,std::initializer_list<int64> sizes)383   void TestReshapeImpl(T shaped, std::initializer_list<int64> sizes) {
384     auto iter = sizes.begin();
385     for (int i = 0; i < shaped.rank(); ++i, ++iter) {
386       EXPECT_EQ(*iter, shaped.dimension(i));
387     }
388 
389     using Index = typename T::Index;
390     using Scalar = typename T::Scalar;
391     constexpr int N = T::NumIndices;
392 
393     // To handle the cast when `shaped` is bit casted into a different type.
394     const float expected_first = 0.01f;
395     Eigen::DSizes<Index, N> coord;
396     EXPECT_EQ(shaped(coord), *reinterpret_cast<const Scalar*>(&expected_first));
397 
398     for (int i = 0; i < N; ++i) {
399       coord[i] = shaped.dimension(i) - 1;
400     }
401     const float expected_last = 0.02f;
402     constexpr int kNumScalarPerFloat =
403         sizeof(float) / sizeof(Scalar);  // Assuming even divide.
404     EXPECT_EQ(shaped(coord), reinterpret_cast<const Scalar*>(
405                                  &expected_last)[kNumScalarPerFloat - 1]);
406   }
407 };
408 
TEST_F(TensorReshapeTest,Reshape)409 TEST_F(TensorReshapeTest, Reshape) {
410   LOG(INFO) << "shaped";
411 
412 #define TEST_RESHAPE(...)                                                  \
413   {                                                                        \
414     constexpr int N = (sizeof((int[]){__VA_ARGS__}) / sizeof(int));        \
415     TestReshape<TTypes<float, N>::Tensor, &Tensor::shaped<float, N>>(      \
416         {__VA_ARGS__});                                                    \
417     TestReshape<TTypes<float, N>::ConstTensor, &Tensor::shaped<float, N>>( \
418         {__VA_ARGS__});                                                    \
419     TestReshape<TTypes<float, N>::UnalignedTensor,                         \
420                 &Tensor::unaligned_shaped<float, N>>({__VA_ARGS__});       \
421     TestReshape<TTypes<float, N>::UnalignedConstTensor,                    \
422                 &Tensor::unaligned_shaped<float, N>>({__VA_ARGS__});       \
423     TestReshape<TTypes<float, N>::Tensor,                                  \
424                 &Tensor::bit_casted_shaped<float, N>>({__VA_ARGS__});      \
425     TestReshape<TTypes<float, N>::ConstTensor,                             \
426                 &Tensor::bit_casted_shaped<float, N>>({__VA_ARGS__});      \
427     TestReshape<TTypes<int32, N>::Tensor,                                  \
428                 &Tensor::bit_casted_shaped<int32, N>>({__VA_ARGS__});      \
429     TestReshape<TTypes<int32, N>::ConstTensor,                             \
430                 &Tensor::bit_casted_shaped<int32, N>>({__VA_ARGS__});      \
431   }
432 
433   TEST_RESHAPE(120);
434   TEST_RESHAPE(6, 20);
435   TEST_RESHAPE(6, 4, 5);
436   TEST_RESHAPE(2, 3, 4, 5);
437 #undef TEST_RESHAPE
438 }
439 
TEST_F(TensorReshapeTest,BitcastReshapeDifferentSize)440 TEST_F(TensorReshapeTest, BitcastReshapeDifferentSize) {
441 #define TEST_BITCAST8_RESHAPE(...)                                    \
442   {                                                                   \
443     constexpr int N = (sizeof((int[]){__VA_ARGS__}) / sizeof(int));   \
444     TestReshape<TTypes<uint8, N>::Tensor,                             \
445                 &Tensor::bit_casted_shaped<uint8, N>>({__VA_ARGS__}); \
446   }
447 
448   TEST_BITCAST8_RESHAPE(480);
449   TEST_BITCAST8_RESHAPE(24, 20);
450   TEST_BITCAST8_RESHAPE(6, 16, 5);
451   TEST_BITCAST8_RESHAPE(2, 3, 4, 20);
452 #undef TEST_BITCAST8_RESHAPE
453 #define TEST_BITCAST16_RESHAPE(...)                                   \
454   {                                                                   \
455     constexpr int N = (sizeof((int[]){__VA_ARGS__}) / sizeof(int));   \
456     TestReshape<TTypes<int16, N>::Tensor,                             \
457                 &Tensor::bit_casted_shaped<int16, N>>({__VA_ARGS__}); \
458   }
459 
460   TEST_BITCAST16_RESHAPE(240);
461   TEST_BITCAST16_RESHAPE(6, 40);
462   TEST_BITCAST16_RESHAPE(12, 4, 5);
463   TEST_BITCAST16_RESHAPE(2, 3, 8, 5);
464   TEST_BITCAST16_RESHAPE(2, 3, 4, 1, 10);
465 #undef TEST_BITCAST16_RESHAPE
466 }
467 
TEST_F(TensorReshapeTest,ReshapeError)468 TEST_F(TensorReshapeTest, ReshapeError) {
469   EXPECT_DEATH((t.shaped<float, 0>({})), "1 vs. 120");
470   EXPECT_DEATH((t.shaped<float, 1>({119})), "119 vs. 120");
471   EXPECT_DEATH((t.shaped<float, 4>({2, 3, 4, 6})), "144 vs. 120");
472 
473   EXPECT_DEATH((t.unaligned_shaped<float, 0>({})), "1 vs. 120");
474   EXPECT_DEATH((t.unaligned_shaped<float, 1>({119})), "119 vs. 120");
475   EXPECT_DEATH((t.unaligned_shaped<float, 4>({2, 3, 4, 6})), "144 vs. 120");
476 
477   EXPECT_DEATH((t.bit_casted_shaped<float, 0>({})), "4 vs. 480");
478   EXPECT_DEATH((t.bit_casted_shaped<float, 1>({119})), "476 vs. 480");
479   EXPECT_DEATH((t.bit_casted_shaped<float, 4>({2, 3, 4, 6})), "576 vs. 480");
480 
481   Tensor string_tensor{DT_STRING, {10}};
482   // Note that the error message compare # of elements, not # of bytes.
483   EXPECT_DEATH((string_tensor.bit_casted_shaped<string, 1>({9})), "9 vs. 10");
484 }
485 
TEST_F(TensorReshapeTest,Flat)486 TEST_F(TensorReshapeTest, Flat) {
487   LOG(INFO) << "flat";
488   {
489     auto flat = t.flat<float>();
490     EXPECT_EQ(flat(0), 0.01f);
491     EXPECT_EQ(120, flat.dimension(0));
492     EXPECT_EQ(flat(0), 0.01f);
493     EXPECT_EQ(flat(119), 0.02f);
494   }
495 }
496 
TEST_F(TensorReshapeTest,FlatInnerDims)497 TEST_F(TensorReshapeTest, FlatInnerDims) {
498   LOG(INFO) << "flat_inner_dims";
499   {
500     auto flat_inner_dims = t.flat_inner_dims<float>();
501     EXPECT_EQ(24, flat_inner_dims.dimension(0));
502     EXPECT_EQ(5, flat_inner_dims.dimension(1));
503     EXPECT_EQ(flat_inner_dims(0, 0), 0.01f);
504     EXPECT_EQ(flat_inner_dims(23, 4), 0.02f);
505   }
506   {
507     auto flat_inner_dims = t.flat_inner_dims<float, 3>();
508     EXPECT_EQ(6, flat_inner_dims.dimension(0));
509     EXPECT_EQ(4, flat_inner_dims.dimension(1));
510     EXPECT_EQ(5, flat_inner_dims.dimension(2));
511     EXPECT_EQ(flat_inner_dims(0, 0, 0), 0.01f);
512     EXPECT_EQ(flat_inner_dims(5, 3, 4), 0.02f);
513   }
514   {
515     auto flat_inner_dims = t.flat_inner_dims<float, 5>();
516     EXPECT_EQ(1, flat_inner_dims.dimension(0));
517     EXPECT_EQ(2, flat_inner_dims.dimension(1));
518     EXPECT_EQ(3, flat_inner_dims.dimension(2));
519     EXPECT_EQ(4, flat_inner_dims.dimension(3));
520     EXPECT_EQ(5, flat_inner_dims.dimension(4));
521     EXPECT_EQ(flat_inner_dims(0, 0, 0, 0, 0), 0.01f);
522     EXPECT_EQ(flat_inner_dims(0, 1, 2, 3, 4), 0.02f);
523   }
524   {
525     auto flat_inner_dims = zero_t.flat_inner_dims<float>();
526     EXPECT_EQ(0, flat_inner_dims.dimension(0));
527     EXPECT_EQ(5, flat_inner_dims.dimension(1));
528   }
529   {
530     auto flat_inner_dims = zero_t.flat_inner_dims<float, 3>();
531     EXPECT_EQ(0, flat_inner_dims.dimension(0));
532     EXPECT_EQ(0, flat_inner_dims.dimension(1));
533     EXPECT_EQ(5, flat_inner_dims.dimension(2));
534   }
535   {
536     auto flat_inner_dims = zero_t.flat_inner_dims<float, 5>();
537     EXPECT_EQ(3, flat_inner_dims.dimension(0));
538     EXPECT_EQ(0, flat_inner_dims.dimension(1));
539     EXPECT_EQ(2, flat_inner_dims.dimension(2));
540     EXPECT_EQ(0, flat_inner_dims.dimension(3));
541     EXPECT_EQ(5, flat_inner_dims.dimension(4));
542   }
543 }
544 
TEST_F(TensorReshapeTest,FlatOuterDims)545 TEST_F(TensorReshapeTest, FlatOuterDims) {
546   LOG(INFO) << "flat_outer_dims";
547   {
548     auto flat_outer_dims = t.flat_outer_dims<float>();
549     EXPECT_EQ(2, flat_outer_dims.dimension(0));
550     EXPECT_EQ(60, flat_outer_dims.dimension(1));
551     EXPECT_EQ(flat_outer_dims(0, 0), 0.01f);
552     EXPECT_EQ(flat_outer_dims(1, 59), 0.02f);
553   }
554   {
555     auto flat_outer_dims = t.flat_outer_dims<float, 3>();
556     EXPECT_EQ(2, flat_outer_dims.dimension(0));
557     EXPECT_EQ(3, flat_outer_dims.dimension(1));
558     EXPECT_EQ(20, flat_outer_dims.dimension(2));
559     EXPECT_EQ(flat_outer_dims(0, 0, 0), 0.01f);
560     EXPECT_EQ(flat_outer_dims(1, 2, 19), 0.02f);
561   }
562   {
563     auto flat_outer_dims = t.flat_outer_dims<float, 5>();
564     EXPECT_EQ(2, flat_outer_dims.dimension(0));
565     EXPECT_EQ(3, flat_outer_dims.dimension(1));
566     EXPECT_EQ(4, flat_outer_dims.dimension(2));
567     EXPECT_EQ(5, flat_outer_dims.dimension(3));
568     EXPECT_EQ(1, flat_outer_dims.dimension(4));
569     EXPECT_EQ(flat_outer_dims(0, 0, 0, 0, 0), 0.01f);
570     EXPECT_EQ(flat_outer_dims(1, 2, 3, 4, 0), 0.02f);
571   }
572   {
573     auto flat_outer_dims = zero_t.flat_outer_dims<float>();
574     EXPECT_EQ(3, flat_outer_dims.dimension(0));
575     EXPECT_EQ(0, flat_outer_dims.dimension(1));
576   }
577   {
578     auto flat_outer_dims = zero_t.flat_outer_dims<float, 3>();
579     EXPECT_EQ(3, flat_outer_dims.dimension(0));
580     EXPECT_EQ(0, flat_outer_dims.dimension(1));
581     EXPECT_EQ(0, flat_outer_dims.dimension(2));
582   }
583   {
584     auto flat_outer_dims = zero_t.flat_outer_dims<float, 5>();
585     EXPECT_EQ(3, flat_outer_dims.dimension(0));
586     EXPECT_EQ(0, flat_outer_dims.dimension(1));
587     EXPECT_EQ(2, flat_outer_dims.dimension(2));
588     EXPECT_EQ(0, flat_outer_dims.dimension(3));
589     EXPECT_EQ(5, flat_outer_dims.dimension(4));
590   }
591 }
592 
TEST_F(TensorReshapeTest,FlatInnerOuterDims)593 TEST_F(TensorReshapeTest, FlatInnerOuterDims) {
594   LOG(INFO) << "flat_inner_outer_dims";
595   {
596     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 4>(0);
597     EXPECT_EQ(2, flat_inner_outer_dims.dimension(0));
598     EXPECT_EQ(3, flat_inner_outer_dims.dimension(1));
599     EXPECT_EQ(4, flat_inner_outer_dims.dimension(2));
600     EXPECT_EQ(5, flat_inner_outer_dims.dimension(3));
601     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0, 0), 0.01f);
602     EXPECT_EQ(flat_inner_outer_dims(1, 2, 3, 4), 0.02f);
603   }
604   {
605     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 6>(-2);
606     EXPECT_EQ(1, flat_inner_outer_dims.dimension(0));
607     EXPECT_EQ(1, flat_inner_outer_dims.dimension(1));
608     EXPECT_EQ(2, flat_inner_outer_dims.dimension(2));
609     EXPECT_EQ(3, flat_inner_outer_dims.dimension(3));
610     EXPECT_EQ(4, flat_inner_outer_dims.dimension(4));
611     EXPECT_EQ(5, flat_inner_outer_dims.dimension(5));
612     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0, 0, 0, 0), 0.01f);
613     EXPECT_EQ(flat_inner_outer_dims(0, 0, 1, 2, 3, 4), 0.02f);
614   }
615   {
616     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 6>(0);
617     EXPECT_EQ(2, flat_inner_outer_dims.dimension(0));
618     EXPECT_EQ(3, flat_inner_outer_dims.dimension(1));
619     EXPECT_EQ(4, flat_inner_outer_dims.dimension(2));
620     EXPECT_EQ(5, flat_inner_outer_dims.dimension(3));
621     EXPECT_EQ(1, flat_inner_outer_dims.dimension(4));
622     EXPECT_EQ(1, flat_inner_outer_dims.dimension(5));
623     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0, 0, 0, 0), 0.01f);
624     EXPECT_EQ(flat_inner_outer_dims(1, 2, 3, 4, 0, 0), 0.02f);
625   }
626   {
627     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 8>(-2);
628     EXPECT_EQ(1, flat_inner_outer_dims.dimension(0));
629     EXPECT_EQ(1, flat_inner_outer_dims.dimension(1));
630     EXPECT_EQ(2, flat_inner_outer_dims.dimension(2));
631     EXPECT_EQ(3, flat_inner_outer_dims.dimension(3));
632     EXPECT_EQ(4, flat_inner_outer_dims.dimension(4));
633     EXPECT_EQ(5, flat_inner_outer_dims.dimension(5));
634     EXPECT_EQ(1, flat_inner_outer_dims.dimension(6));
635     EXPECT_EQ(1, flat_inner_outer_dims.dimension(7));
636     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0, 0, 0, 0, 0, 0), 0.01f);
637     EXPECT_EQ(flat_inner_outer_dims(0, 0, 1, 2, 3, 4, 0, 0), 0.02f);
638   }
639   {
640     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 3>(1);
641     EXPECT_EQ(6, flat_inner_outer_dims.dimension(0));
642     EXPECT_EQ(4, flat_inner_outer_dims.dimension(1));
643     EXPECT_EQ(5, flat_inner_outer_dims.dimension(2));
644     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0), 0.01f);
645     EXPECT_EQ(flat_inner_outer_dims(5, 3, 4), 0.02f);
646   }
647   {
648     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 5>(1);
649     EXPECT_EQ(6, flat_inner_outer_dims.dimension(0));
650     EXPECT_EQ(4, flat_inner_outer_dims.dimension(1));
651     EXPECT_EQ(5, flat_inner_outer_dims.dimension(2));
652     EXPECT_EQ(1, flat_inner_outer_dims.dimension(3));
653     EXPECT_EQ(1, flat_inner_outer_dims.dimension(4));
654     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0, 0, 0), 0.01f);
655     EXPECT_EQ(flat_inner_outer_dims(5, 3, 4, 0, 0), 0.02f);
656   }
657   {
658     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 3>(0);
659     EXPECT_EQ(2, flat_inner_outer_dims.dimension(0));
660     EXPECT_EQ(3, flat_inner_outer_dims.dimension(1));
661     EXPECT_EQ(20, flat_inner_outer_dims.dimension(2));
662     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0), 0.01f);
663     EXPECT_EQ(flat_inner_outer_dims(1, 2, 19), 0.02f);
664   }
665   {
666     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 5>(-2);
667     EXPECT_EQ(1, flat_inner_outer_dims.dimension(0));
668     EXPECT_EQ(1, flat_inner_outer_dims.dimension(1));
669     EXPECT_EQ(2, flat_inner_outer_dims.dimension(2));
670     EXPECT_EQ(3, flat_inner_outer_dims.dimension(3));
671     EXPECT_EQ(20, flat_inner_outer_dims.dimension(4));
672     EXPECT_EQ(flat_inner_outer_dims(0, 0, 0, 0, 0), 0.01f);
673     EXPECT_EQ(flat_inner_outer_dims(0, 0, 1, 2, 19), 0.02f);
674   }
675   {
676     auto flat_inner_outer_dims = t.flat_inner_outer_dims<float, 2>(1);
677     EXPECT_EQ(6, flat_inner_outer_dims.dimension(0));
678     EXPECT_EQ(20, flat_inner_outer_dims.dimension(1));
679     EXPECT_EQ(flat_inner_outer_dims(0, 0), 0.01f);
680     EXPECT_EQ(flat_inner_outer_dims(5, 19), 0.02f);
681   }
682   {
683     auto flat_inner_outer_dims = zero_t.flat_inner_outer_dims<float, 2>(0);
684     EXPECT_EQ(3, flat_inner_outer_dims.dimension(0));
685     EXPECT_EQ(0, flat_inner_outer_dims.dimension(1));
686   }
687   {
688     auto flat_inner_outer_dims = zero_t.flat_inner_outer_dims<float, 3>(0);
689     EXPECT_EQ(3, flat_inner_outer_dims.dimension(0));
690     EXPECT_EQ(0, flat_inner_outer_dims.dimension(1));
691     EXPECT_EQ(0, flat_inner_outer_dims.dimension(2));
692   }
693   {
694     auto flat_inner_outer_dims = zero_t.flat_inner_outer_dims<float, 5>(0);
695     EXPECT_EQ(3, flat_inner_outer_dims.dimension(0));
696     EXPECT_EQ(0, flat_inner_outer_dims.dimension(1));
697     EXPECT_EQ(2, flat_inner_outer_dims.dimension(2));
698     EXPECT_EQ(0, flat_inner_outer_dims.dimension(3));
699     EXPECT_EQ(5, flat_inner_outer_dims.dimension(4));
700   }
701   {
702     auto flat_inner_outer_dims = zero_t.flat_inner_outer_dims<float, 2>(3);
703     EXPECT_EQ(0, flat_inner_outer_dims.dimension(0));
704     EXPECT_EQ(5, flat_inner_outer_dims.dimension(1));
705   }
706   {
707     auto flat_inner_outer_dims = zero_t.flat_inner_outer_dims<float, 3>(2);
708     EXPECT_EQ(0, flat_inner_outer_dims.dimension(0));
709     EXPECT_EQ(0, flat_inner_outer_dims.dimension(1));
710     EXPECT_EQ(5, flat_inner_outer_dims.dimension(2));
711   }
712   {
713     auto flat_inner_outer_dims = zero_t.flat_inner_outer_dims<float, 3>(1);
714     EXPECT_EQ(0, flat_inner_outer_dims.dimension(0));
715     EXPECT_EQ(2, flat_inner_outer_dims.dimension(1));
716     EXPECT_EQ(0, flat_inner_outer_dims.dimension(2));
717   }
718 }
719 
TEST(ReinterpretLastDimension,Reinterpret_NCHW_VECT_C_as_NCHW)720 TEST(ReinterpretLastDimension, Reinterpret_NCHW_VECT_C_as_NCHW) {
721   LOG(INFO) << "reinterpret_last_dimension";
722   {
723     Tensor t_nchw_vect_c(DT_QINT8, TensorShape({2, 3, 5, 7, 4}));
724     auto nchw_vect_c = t_nchw_vect_c.tensor<qint8, 5>();
725     Tensor t_expected_nchw(DT_INT32, TensorShape({2, 3, 5, 7}));
726     auto expected_nchw = t_expected_nchw.tensor<int32, 4>();
727     int8 val = 0;
728     for (int n = 0; n < t_nchw_vect_c.shape().dim_size(0); ++n) {
729       for (int c = 0; c < t_nchw_vect_c.shape().dim_size(1); ++c) {
730         for (int h = 0; h < t_nchw_vect_c.shape().dim_size(2); ++h, ++val) {
731           int8 packet[4];
732           for (int w = 0; w < t_nchw_vect_c.shape().dim_size(3); ++w) {
733             packet[0] = nchw_vect_c(n, c, h, w, 0) = ++val;
734             packet[1] = nchw_vect_c(n, c, h, w, 1) = ++val;
735             packet[2] = nchw_vect_c(n, c, h, w, 2) = ++val;
736             packet[3] = nchw_vect_c(n, c, h, w, 3) = ++val;
737             expected_nchw(n, c, h, w) = *reinterpret_cast<int32*>(&packet[0]);
738           }
739         }
740       }
741     }
742     auto actual_nchw = t_nchw_vect_c.reinterpret_last_dimension<int32, 4>();
743     const auto& const_t_nchw_vect_c = t_nchw_vect_c;
744     auto const_actual_nchw =
745         const_t_nchw_vect_c.reinterpret_last_dimension<int32, 4>();
746     for (int n = 0; n < t_nchw_vect_c.shape().dim_size(0); ++n) {
747       for (int c = 0; c < t_nchw_vect_c.shape().dim_size(1); ++c) {
748         for (int h = 0; h < t_nchw_vect_c.shape().dim_size(2); ++h) {
749           for (int w = 0; w < t_nchw_vect_c.shape().dim_size(3); ++w) {
750             EXPECT_EQ(expected_nchw(n, c, h, w), actual_nchw(n, c, h, w));
751             EXPECT_EQ(expected_nchw(n, c, h, w), const_actual_nchw(n, c, h, w));
752           }
753         }
754       }
755     }
756   }
757 }
758 
TEST(Tensor_Scalar,Basics)759 TEST(Tensor_Scalar, Basics) {
760   {
761     Tensor t(DT_BOOL, TensorShape({}));
762     EXPECT_EQ(1, t.NumElements());
763     auto Tt = t.scalar<bool>();
764     EXPECT_EQ(1, Tt.size());
765     EXPECT_EQ(0, Tt.rank());
766     t.scalar<bool>()() = true;
767     EXPECT_TRUE(Tt());
768   }
769   {
770     Tensor t(DT_FLOAT, TensorShape({}));
771     EXPECT_EQ(1, t.NumElements());
772     auto Tt = t.scalar<float>();
773     EXPECT_EQ(1, Tt.size());
774     EXPECT_EQ(0, Tt.rank());
775     t.scalar<float>()() = 123.45f;
776     EXPECT_FLOAT_EQ(123.45f, Tt());
777   }
778   {
779     Tensor t(DT_FLOAT, TensorShape({1}));
780     EXPECT_EQ(1, t.NumElements());
781     auto Tt = t.vec<float>();
782     EXPECT_EQ(1, Tt.size());
783     t.vec<float>()(0) = 123.45f;
784     EXPECT_FLOAT_EQ(123.45f, Tt(0));
785   }
786   {
787     Tensor t(DT_FLOAT, TensorShape({1, 1, 1}));
788     EXPECT_EQ(1, t.NumElements());
789     auto Tt = t.scalar<float>();
790     EXPECT_EQ(1, Tt.size());
791     EXPECT_EQ(0, Tt.rank());
792     t.flat<float>()(0) = 123.45f;
793     EXPECT_FLOAT_EQ(123.45f, Tt());
794   }
795   {
796     Tensor t(DT_STRING, TensorShape({}));
797     EXPECT_EQ(1, t.NumElements());
798     auto Tt = t.scalar<string>();
799     EXPECT_EQ(1, Tt.size());
800     EXPECT_EQ(0, Tt.rank());
801     t.scalar<string>()() = "foo";
802     EXPECT_EQ("foo", Tt());
803   }
804   {
805     Tensor t(DT_STRING, TensorShape({1}));
806     EXPECT_EQ(1, t.NumElements());
807     auto Tt = t.vec<string>();
808     EXPECT_EQ(1, Tt.size());
809     t.flat<string>()(0) = "foo";
810     EXPECT_EQ("foo", Tt(0));
811   }
812   {
813     Tensor t(DT_STRING, TensorShape({1, 1, 1}));
814     EXPECT_EQ(1, t.NumElements());
815     auto Tt = t.scalar<string>();
816     EXPECT_EQ(1, Tt.size());
817     EXPECT_EQ(0, Tt.rank());
818     t.flat<string>()(0) = "bar";
819     EXPECT_EQ("bar", Tt());
820   }
821   {
822     Tensor t(DT_FLOAT, TensorShape({0, 1}));
823     EXPECT_EQ(0, t.NumElements());
824     auto Tt = t.flat<float>();
825     EXPECT_EQ(0, Tt.size());
826     auto Tm = t.matrix<float>();
827     EXPECT_EQ(0, Tm.size());
828     EXPECT_EQ(0, Tm.dimensions()[0]);
829     EXPECT_EQ(1, Tm.dimensions()[1]);
830   }
831 }
832 
TEST(Tensor_HostScalar,Basics)833 TEST(Tensor_HostScalar, Basics) {
834   {
835     Tensor t(true);
836     EXPECT_EQ(DT_BOOL, t.dtype());
837     EXPECT_EQ(1, t.NumElements());
838     auto Tt = t.scalar<bool>();
839     EXPECT_EQ(1, Tt.size());
840     EXPECT_EQ(0, Tt.rank());
841     EXPECT_TRUE(Tt());
842     Tt() = false;
843     EXPECT_FALSE(Tt());
844   }
845   {
846     Tensor t(123.45f);
847     EXPECT_EQ(DT_FLOAT, t.dtype());
848     EXPECT_EQ(1, t.NumElements());
849     auto Tt = t.scalar<float>();
850     EXPECT_EQ(1, Tt.size());
851     EXPECT_EQ(0, Tt.rank());
852     EXPECT_FLOAT_EQ(123.45f, Tt());
853     Tt() = 42.0f;
854     EXPECT_FLOAT_EQ(42.0f, Tt());
855   }
856   {
857     // NOTE(mrry): Use long enough strings so that the contents are dynamically
858     // allocated, and the absence of a call to the string destructor would
859     // cause a memory leak.
860     Tensor t("fooooooooooooooooooooooooooooooooooooo");
861     EXPECT_EQ(DT_STRING, t.dtype());
862     EXPECT_EQ(1, t.NumElements());
863     auto Tt = t.scalar<string>();
864     EXPECT_EQ(1, Tt.size());
865     EXPECT_EQ(0, Tt.rank());
866     EXPECT_EQ("fooooooooooooooooooooooooooooooooooooo", Tt());
867     Tt() = "baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaar";
868     EXPECT_EQ("baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaar", Tt());
869   }
870 }
871 
TEST(Tensor_Float,Reshape_And_Slice_Assignment)872 TEST(Tensor_Float, Reshape_And_Slice_Assignment) {
873   // A test to experiment with a way to assign to a subset of a tensor
874   Tensor t(DT_FLOAT, TensorShape({10, 4, 3, 2}));
875   EXPECT_TRUE(t.shape().IsSameSize(TensorShape({10, 4, 3, 2})));
876 
877   // Get the N dimensional tensor (N==4 here)
878   auto e_t = t.tensor<float, 4>();
879   // Reshape to view it as a two-dimensional tensor
880   auto e_2d = t.shaped<float, 2>({10, 4 * 3 * 2});
881   for (int i = 0; i < 10; i++) {
882     // Assign a 1 x 4*3*2 matrix (really vector) to a slice of size
883     // 1 x 4*3*2 in e_t.
884     Eigen::Tensor<float, 2, Eigen::RowMajor> m(1, 4 * 3 * 2);
885     m.setConstant(i * 2.0);
886 
887     Eigen::DSizes<Eigen::DenseIndex, 2> indices(i, 0);
888     Eigen::DSizes<Eigen::DenseIndex, 2> sizes(1, 4 * 3 * 2);
889     e_2d.slice(indices, sizes) = m;
890   }
891   for (int i = 0; i < 10; i++) {
892     for (int j = 0; j < 4; j++) {
893       for (int k = 0; k < 3; k++) {
894         for (int l = 0; l < 2; l++) {
895           EXPECT_EQ(e_t(i, j, k, l), i * 2.0f);
896           LOG(INFO) << i << "," << j << "," << k << "," << l
897                     << " &e_t(i, j, k, l): " << &e_t(i, j, k, l) << " = "
898                     << e_t(i, j, k, l);
899         }
900       }
901     }
902   }
903 }
904 
TEST(Tensor_String,Simple)905 TEST(Tensor_String, Simple) {
906   Tensor t = test::AsTensor<string>(
907       {"hello", "world", "machine", "learning", "new", "york"},
908       TensorShape({3, 2}));
909   auto s = t.shape();
910   ASSERT_EQ(s.dims(), 2);
911   ASSERT_EQ(s.dim_size(0), 3);
912   ASSERT_EQ(s.dim_size(1), 2);
913   auto m = t.matrix<string>();
914   EXPECT_EQ(t.TotalBytes(), 3 * 2 * sizeof(string) + 5 + 5 + 7 + 8 + 3 + 4);
915 
916   EXPECT_EQ(m(0, 0), "hello");
917   EXPECT_EQ(m(0, 1), "world");
918   EXPECT_EQ(m(1, 0), "machine");
919   EXPECT_EQ(m(1, 1), "learning");
920   EXPECT_EQ(m(2, 0), "new");
921   EXPECT_EQ(m(2, 1), "york");
922 
923   TestCopies<string>(t);
924 }
925 
TEST(Tensor_Float,SimpleWithHelper)926 TEST(Tensor_Float, SimpleWithHelper) {
927   Tensor t1 = test::AsTensor<float>({0, 1, 2, 3, 4, 5}, {2, 3});
928   Tensor t2(t1.dtype(), t1.shape());
929   t2.flat<float>() = t1.flat<float>() * 2.0f;
930   Tensor t3 = test::AsTensor<float>({0, 2, 4, 6, 8, 10}, t1.shape());
931   test::ExpectTensorEqual<float>(t2, t3);
932 }
933 
TEST(Tensor_Int32,SimpleWithHelper)934 TEST(Tensor_Int32, SimpleWithHelper) {
935   Tensor t1 = test::AsTensor<int32>({0, 1, 2, 3, 4, 5}, {2, 3});
936   Tensor t2(t1.dtype(), t1.shape());
937   t2.flat<int32>() = t1.flat<int32>() * 2;
938   Tensor t3 = test::AsTensor<int32>({0, 2, 4, 6, 8, 10}, t1.shape());
939   test::ExpectTensorEqual<int32>(t2, t3);
940 }
941 
TEST(Tensor_UInt16,SimpleWithHelper)942 TEST(Tensor_UInt16, SimpleWithHelper) {
943   Tensor t1 = test::AsTensor<uint16>({0, 1, 2, 3, 4, 5}, {2, 3});
944   Tensor t2(t1.dtype(), t1.shape());
945   t2.flat<uint16>() = t1.flat<uint16>() * uint16(2);
946   Tensor t3 = test::AsTensor<uint16>({0, 2, 4, 6, 8, 10}, t1.shape());
947   test::ExpectTensorEqual<uint16>(t2, t3);
948 }
949 
TEST(Tensor_QInt8,SimpleWithHelper)950 TEST(Tensor_QInt8, SimpleWithHelper) {
951   Tensor t1 = test::AsTensor<qint8>({0, 1, 2, 3, 4, 5}, {2, 3});
952   Tensor t2(t1.dtype(), t1.shape());
953   t2.flat<qint8>() = t1.flat<qint8>() + qint8(-2);
954   Tensor t3 = test::AsTensor<qint8>({-2, -1, 0, 1, 2, 3}, {2, 3});
955   test::ExpectTensorEqual<qint8>(t2, t3);
956 }
957 
TEST(Tensor_QUInt8,SimpleWithHelper)958 TEST(Tensor_QUInt8, SimpleWithHelper) {
959   Tensor t1 = test::AsTensor<quint8>({0, 1, 2, 3, 4, 5}, {2, 3});
960   Tensor t2(t1.dtype(), t1.shape());
961   t2.flat<quint8>() = t1.flat<quint8>() + quint8(2);
962   Tensor t3 = test::AsTensor<quint8>({2, 3, 4, 5, 6, 7}, {2, 3});
963   test::ExpectTensorEqual<quint8>(t2, t3);
964 }
965 
TEST(Tensor_Int64,SimpleWithHelper)966 TEST(Tensor_Int64, SimpleWithHelper) {
967   Tensor t1 = test::AsTensor<int64>(
968       {0LL << 48, 1LL << 48, 2LL << 48, 3LL << 48, 4LL << 48, 5LL << 48},
969       {2, 3});
970   Tensor t2(t1.dtype(), t1.shape());
971   t2.flat<int64>() = t1.flat<int64>() * static_cast<int64>(2);
972   Tensor t3 = test::AsTensor<int64>(
973       {0LL << 48, 2LL << 48, 4LL << 48, 6LL << 48, 8LL << 48, 10LL << 48},
974       {2, 3});
975   test::ExpectTensorEqual<int64>(t2, t3);
976 }
977 
TEST(Tensor_String,SimpleWithHelper)978 TEST(Tensor_String, SimpleWithHelper) {
979   Tensor t1 = test::AsTensor<string>({"0", "1", "2", "3", "4", "5"}, {2, 3});
980   Tensor t2(DT_STRING, {2, 3});
981   for (int i = 0; i < 2; ++i) {
982     for (int j = 0; j < 3; ++j) {
983       t2.matrix<string>()(i, j) = strings::StrCat(i * 3 + j);
984     }
985   }
986 
987   // Test with helper.
988   test::ExpectTensorEqual<string>(t1, t2);
989 }
990 
TEST(Tensor_Bool,SimpleWithHelper)991 TEST(Tensor_Bool, SimpleWithHelper) {
992   Tensor t1 =
993       test::AsTensor<bool>({false, true, false, true, false, true}, {2, 3});
994 
995   Tensor t2(DT_BOOL, {2, 3});
996   for (int i = 0; i < 2; ++i) {
997     for (int j = 0; j < 3; ++j) {
998       t2.matrix<bool>()(i, j) = (((i + j) % 2) != 0);
999     }
1000   }
1001 
1002   // Test with helper.
1003   test::ExpectTensorEqual<bool>(t1, t2);
1004 }
1005 
TEST(Tensor_Complex,Simple64)1006 TEST(Tensor_Complex, Simple64) {
1007   Tensor t(DT_COMPLEX64, {4, 5, 3, 7});
1008   t.flat<complex64>().setRandom();
1009   TestCopies<complex64>(t);
1010 }
1011 
TEST(Tensor_Complex,Simple128)1012 TEST(Tensor_Complex, Simple128) {
1013   Tensor t(DT_COMPLEX128, {4, 5, 3, 7});
1014   t.flat<complex128>().setRandom();
1015   TestCopies<complex128>(t);
1016 }
1017 
TEST(Tensor_Complex,SimpleWithHelper64)1018 TEST(Tensor_Complex, SimpleWithHelper64) {
1019   {
1020     Tensor t1 = test::AsTensor<complex64>({0,
1021                                            {1, 1},
1022                                            complex64(2),
1023                                            complex64(3, 3),
1024                                            complex64(0, 4),
1025                                            complex64(2, 5)},
1026                                           {2, 3});
1027     Tensor t2(t1.dtype(), t1.shape());
1028     t2.flat<complex64>() = t1.flat<complex64>() * complex64(0, 2);
1029     Tensor t3 = test::AsTensor<complex64>(
1030         {0, {-2, 2}, {0, 4}, {-6, 6}, {-8, 0}, {-10, 4}},
1031         // shape
1032         {2, 3});
1033     test::ExpectTensorEqual<complex64>(t2, t3);
1034   }
1035 
1036   // Does some numeric operations for complex64 numbers.
1037   {
1038     const float PI = std::acos(-1);
1039     const complex64 rotate_45 = std::polar(1.0f, PI / 4);
1040 
1041     // x contains all the 8-th root of unity.
1042     Tensor x(DT_COMPLEX64, TensorShape({8}));
1043     for (int i = 0; i < 8; ++i) {
1044       x.vec<complex64>()(i) = MathUtil::IPow(rotate_45, i);
1045     }
1046 
1047     // Shift the roots by 45 degree.
1048     Tensor y(DT_COMPLEX64, TensorShape({8}));
1049     y.vec<complex64>() = x.vec<complex64>() * rotate_45;
1050     Tensor y_expected(DT_COMPLEX64, TensorShape({8}));
1051     for (int i = 0; i < 8; ++i) {
1052       y_expected.vec<complex64>()(i) = MathUtil::IPow(rotate_45, i + 1);
1053     }
1054     test::ExpectTensorNear<complex64>(y, y_expected, 1e-5);
1055 
1056     // Raise roots to the power of 8.
1057     Tensor z(DT_COMPLEX64, TensorShape({8}));
1058     z.vec<complex64>() = x.vec<complex64>().pow(8);
1059     Tensor z_expected(DT_COMPLEX64, TensorShape({8}));
1060     for (int i = 0; i < 8; ++i) {
1061       z_expected.vec<complex64>()(i) = 1;
1062     }
1063     test::ExpectTensorNear<complex64>(z, z_expected, 1e-5);
1064   }
1065 }
1066 
TEST(Tensor_Complex,SimpleWithHelper128)1067 TEST(Tensor_Complex, SimpleWithHelper128) {
1068   {
1069     Tensor t1 = test::AsTensor<complex128>({0,
1070                                             {1, 1},
1071                                             complex128(2),
1072                                             complex128(3, 3),
1073                                             complex128(0, 4),
1074                                             complex128(2, 5)},
1075                                            {2, 3});
1076     Tensor t2(t1.dtype(), t1.shape());
1077     t2.flat<complex128>() = t1.flat<complex128>() * complex128(0, 2);
1078     Tensor t3 = test::AsTensor<complex128>(
1079         {0, {-2, 2}, {0, 4}, {-6, 6}, {-8, 0}, {-10, 4}},
1080         // shape
1081         {2, 3});
1082     test::ExpectTensorEqual<complex128>(t2, t3);
1083   }
1084 
1085   // Does some numeric operations for complex128 numbers.
1086   {
1087     const double PI = std::acos(-1);
1088     const complex128 rotate_45 = std::polar(1.0, PI / 4);
1089 
1090     // x contains all the 8-th root of unity.
1091     Tensor x(DT_COMPLEX128, TensorShape({8}));
1092     for (int i = 0; i < 8; ++i) {
1093       x.vec<complex128>()(i) = MathUtil::IPow(rotate_45, i);
1094     }
1095 
1096     // Shift the roots by 45 degree.
1097     Tensor y(DT_COMPLEX128, TensorShape({8}));
1098     y.vec<complex128>() = x.vec<complex128>() * rotate_45;
1099     Tensor y_expected(DT_COMPLEX128, TensorShape({8}));
1100     for (int i = 0; i < 8; ++i) {
1101       y_expected.vec<complex128>()(i) = MathUtil::IPow(rotate_45, i + 1);
1102     }
1103     test::ExpectTensorNear<complex128>(y, y_expected, 1e-5);
1104 
1105     // Raise roots to the power of 8.
1106     Tensor z(DT_COMPLEX128, TensorShape({8}));
1107     z.vec<complex128>() = x.vec<complex128>().pow(8);
1108     Tensor z_expected(DT_COMPLEX128, TensorShape({8}));
1109     for (int i = 0; i < 8; ++i) {
1110       z_expected.vec<complex128>()(i) = 1;
1111     }
1112     test::ExpectTensorNear<complex128>(z, z_expected, 1e-5);
1113   }
1114 }
1115 
1116 // An allocator that always returns nullptr, for testing
1117 // failures to allocate.
1118 class DummyCPUAllocator : public Allocator {
1119  public:
1120   DummyCPUAllocator() = default;
Name()1121   string Name() override { return "cpu"; }
AllocateRaw(size_t alignment,size_t num_bytes)1122   void* AllocateRaw(size_t alignment, size_t num_bytes) override {
1123     return nullptr;
1124   }
DeallocateRaw(void * ptr)1125   void DeallocateRaw(void* ptr) override {}
1126 };
1127 
TEST(Tensor,SharesBufferWith)1128 TEST(Tensor, SharesBufferWith) {
1129   Tensor a_empty;
1130   Tensor b_empty;
1131   Tensor a(DT_FLOAT, TensorShape({1}));
1132   Tensor b(DT_FLOAT, TensorShape({1}));
1133   Tensor copy(a);
1134   EXPECT_FALSE(a_empty.SharesBufferWith(a_empty));
1135   EXPECT_FALSE(a_empty.SharesBufferWith(b_empty));
1136   EXPECT_FALSE(a_empty.SharesBufferWith(a));
1137   EXPECT_FALSE(a_empty.SharesBufferWith(copy));
1138   EXPECT_TRUE(a.SharesBufferWith(a));
1139   EXPECT_FALSE(a.SharesBufferWith(b));
1140   EXPECT_TRUE(a.SharesBufferWith(copy));
1141 }
1142 
TEST(Tensor,FailureToAllocate)1143 TEST(Tensor, FailureToAllocate) {
1144   TensorShape shape({1});
1145   DummyCPUAllocator allocator;
1146   {
1147     Tensor a(&allocator, DT_FLOAT, shape);
1148     ASSERT_FALSE(a.IsInitialized());
1149   }
1150 
1151   // Float
1152   {
1153     Tensor t(DT_FLOAT, TensorShape({1}));
1154     t.vec<float>()(0) = 1.0;
1155     TensorProto proto;
1156     t.AsProtoField(&proto);
1157 
1158     // FromProto should fail nicely.
1159     Tensor a(&allocator, DT_FLOAT, TensorShape({1}));
1160     ASSERT_FALSE(a.FromProto(&allocator, proto));
1161   }
1162 
1163   // String
1164   {
1165     Tensor t(DT_STRING, TensorShape({1}));
1166     t.vec<string>()(0) = "foo";
1167     TensorProto proto;
1168     t.AsProtoField(&proto);
1169 
1170     // FromProto should fail nicely.
1171     Tensor a(&allocator, DT_STRING, TensorShape({1}));
1172     ASSERT_FALSE(a.FromProto(&allocator, proto));
1173   }
1174 
1175   // Half
1176   {
1177     Tensor t(DT_HALF, TensorShape({1}));
1178     t.vec<Eigen::half>()(0) = Eigen::half(1.0);
1179     TensorProto proto;
1180     t.AsProtoField(&proto);
1181 
1182     // FromProto should fail nicely.
1183     Tensor a(&allocator, DT_HALF, TensorShape({1}));
1184     ASSERT_FALSE(a.FromProto(&allocator, proto));
1185   }
1186 }
1187 
1188 // On the alignment.
1189 //
1190 // As of 2018/5, tensorflow::Tensor allocates its buffer with 64-byte
1191 // alignment. Tensor::tensor/flat/vec/matrix methods requires the
1192 // buffer satisfies Eigen::Aligned (e.g., 16-bytes aligned usually,
1193 // 32-bytes for AVX, and 64-bytes for AVX512). Tensor::Slice requires
1194 // the caller to ensure its result is aligned if the caller intends
1195 // to use those methods. In this test case, we simply make sure each
1196 // slice is 64-byte aligned: sizeof(float) * 4 * 36 = 576.  576 % 64 = 0.
TEST(Tensor,Slice_Basic)1197 TEST(Tensor, Slice_Basic) {
1198   Tensor saved;
1199   {  // General
1200     Tensor x(DT_FLOAT, TensorShape({10, 4, 36}));
1201     // Fills in known values.
1202     for (int i = 0; i < 10; ++i) {
1203       x.Slice(i, i + 1).flat<float>().setConstant(i * 1.f);
1204     }
1205     // A simple slice along dim0.
1206     Tensor y = x.Slice(4, 8);
1207     EXPECT_TRUE(y.shape().IsSameSize(TensorShape({4, 4, 36})));
1208     auto tx = x.tensor<float, 3>();
1209     auto ty = y.tensor<float, 3>();
1210     for (int i = 0; i < 4; ++i) {
1211       for (int j = 0; j < 4; ++j) {
1212         for (int k = 0; k < 36; ++k) {
1213           EXPECT_EQ(ty(i, j, k), 4.0 + i);
1214           EXPECT_EQ(&tx(4 + i, j, k), &ty(i, j, k));
1215         }
1216       }
1217     }
1218     // A simple slice equivalent to identity.
1219     TestCopies<float>(y);
1220     y = x.Slice(0, 10);
1221     test::ExpectTensorEqual<float>(x, y);
1222     EXPECT_EQ(x.flat<float>().data(), y.flat<float>().data());
1223 
1224     // A slice of a slice.
1225     auto z = x.Slice(4, 8).Slice(2, 3);
1226     auto tz = z.tensor<float, 3>();
1227     EXPECT_EQ(1, z.dim_size(0));
1228     for (int j = 0; j < 4; ++j) {
1229       for (int k = 0; k < 36; ++k) {
1230         EXPECT_EQ(tz(0, j, k), 6.0);
1231       }
1232     }
1233 
1234     // x and y will be out of scope. But 'saved' should be alive.
1235     saved = z;
1236   }
1237   {
1238     EXPECT_EQ(1, saved.dim_size(0));
1239     auto tsaved = saved.tensor<float, 3>();
1240     for (int j = 0; j < 4; ++j) {
1241       for (int k = 0; k < 36; ++k) {
1242         EXPECT_EQ(tsaved(0, j, k), 6.0);
1243       }
1244     }
1245   }
1246   {  // Empty
1247     Tensor x(DT_FLOAT, TensorShape({10, 0, 36}));
1248     x.flat<float>().setRandom();
1249     Tensor y = x.Slice(4, 8);
1250     EXPECT_TRUE(y.shape().IsSameSize(TensorShape({4, 0, 36})));
1251   }
1252 
1253   {
1254     // Test unaligned access via a Slice.
1255     Tensor x(DT_FLOAT, TensorShape({30}));
1256     x.flat<float>().setConstant(0.0);
1257 
1258     // Take an unaligned slice.
1259     Tensor y = x.Slice(1, 13);
1260 #if EIGEN_MAX_ALIGN_BYTES > 0
1261     EXPECT_FALSE(y.IsAligned());
1262 #endif
1263     y.unaligned_flat<float>().setConstant(1.0);
1264     for (int64 i = 0; i < y.NumElements(); ++i) {
1265       EXPECT_EQ(1.0, y.unaligned_flat<float>()(i));
1266     }
1267   }
1268 }
1269 
TEST(Tensor,SubSlice_Basic)1270 TEST(Tensor, SubSlice_Basic) {
1271   {  // General
1272     Tensor x(DT_FLOAT, TensorShape({10, 4, 36}));
1273     // Fills in known values.
1274     for (int i = 0; i < 10; ++i) {
1275       x.SubSlice(i).flat<float>().setConstant(i * 1.f);
1276     }
1277     // A simple sub-slice along dim0.
1278     Tensor y = x.SubSlice(5);
1279     EXPECT_TRUE(y.shape().IsSameSize(TensorShape({4, 36})));
1280     auto tx = x.tensor<float, 3>();
1281     auto ty = y.tensor<float, 2>();
1282     for (int j = 0; j < 4; ++j) {
1283       for (int k = 0; k < 36; ++k) {
1284         EXPECT_EQ(ty(j, k), 5.0);
1285         EXPECT_EQ(&tx(5, j, k), &ty(j, k));
1286       }
1287     }
1288     Tensor z = y.SubSlice(3).SubSlice(31);
1289     auto tz = z.unaligned_flat<float>();
1290     EXPECT_EQ(*tz.data(), 5.0);
1291   }
1292   {
1293     // Test unaligned access via a SubSlice.
1294     Tensor x(DT_FLOAT, TensorShape({30, 5}));
1295     x.flat<float>().setConstant(0.0);
1296 
1297     // Take an unaligned subslice.
1298     Tensor y = x.SubSlice(1);
1299 #if EIGEN_MAX_ALIGN_BYTES > 0
1300     EXPECT_FALSE(y.IsAligned());
1301 #endif
1302     y.unaligned_flat<float>().setConstant(1.0);
1303     for (int64 i = 0; i < y.NumElements(); ++i) {
1304       EXPECT_EQ(1.0, y.unaligned_flat<float>()(i));
1305     }
1306   }
1307 }
1308 
1309 template <typename T>
MkTensor(DataType dt,const TensorShape & shape,std::vector<T> init_values)1310 Tensor MkTensor(DataType dt, const TensorShape& shape,
1311                 std::vector<T> init_values) {
1312   Tensor x(dt, shape);
1313   const int limit = x.NumElements();
1314   int vi = 0;
1315   for (int i = 0; i < limit; ++i) {
1316     x.flat<T>()(i) = init_values[vi++];
1317     if (vi >= init_values.size()) vi = 0;
1318   }
1319   return x;
1320 }
1321 
TEST(SummarizeValue,Uninitialized)1322 TEST(SummarizeValue, Uninitialized) {
1323   Tensor x(DT_INT32);
1324   TensorTestHelper::set_shape(&x, TensorShape({4, 4}));
1325   EXPECT_EQ(
1326       strings::StrCat("uninitialized Tensor of 16 elements of type ", DT_INT32),
1327       x.SummarizeValue(16));
1328 }
1329 
TEST(SummarizeValue,INT32)1330 TEST(SummarizeValue, INT32) {
1331   Tensor x = MkTensor<int>(DT_INT32, TensorShape({5}), {1, 2, 3, 4, 0});
1332   EXPECT_EQ("1 2 3 4 0", x.SummarizeValue(16));
1333   x = MkTensor<int>(DT_INT32, TensorShape({2, 2}), {1, 2, 3, 4, 0});
1334   EXPECT_EQ("[1 2][3 4]", x.SummarizeValue(16));
1335   x = MkTensor<int>(DT_INT32, TensorShape({2, 2, 1, 1}), {1, 2, 3, 4, 0});
1336   EXPECT_EQ("[[[1]][[2]]][[[3]][[4]]]", x.SummarizeValue(16));
1337   EXPECT_EQ("[[[1]][[2]]][[[3]]]...", x.SummarizeValue(3));
1338   x = MkTensor<int>(DT_INT32, TensorShape({0}), {});
1339   EXPECT_EQ("", x.SummarizeValue(16));
1340 }
1341 
TEST(SummarizeValue,INT32Dims)1342 TEST(SummarizeValue, INT32Dims) {
1343   Tensor x = MkTensor<int>(DT_INT32, TensorShape({3, 4}),
1344                            {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
1345   EXPECT_EQ("[1 2 3...]...", x.SummarizeValue(3));
1346   EXPECT_EQ("[1 2 3 4][5 6 7 8][9 10...]...", x.SummarizeValue(10));
1347 }
1348 
TEST(SummarizeValue,FLOAT)1349 TEST(SummarizeValue, FLOAT) {
1350   Tensor x = MkTensor<float>(DT_FLOAT, TensorShape({5}), {1, 2, 3, 4, 0});
1351   EXPECT_EQ("1 2 3 4 0", x.SummarizeValue(16));
1352   x = MkTensor<float>(DT_FLOAT, TensorShape({2, 2}), {1, 2, 3, 4, 0});
1353   EXPECT_EQ("[1 2][3 4]", x.SummarizeValue(16));
1354   x = MkTensor<float>(DT_FLOAT, TensorShape({2, 2, 1, 1}), {1, 2, 3, 4, 0});
1355   EXPECT_EQ("[[[1]][[2]]][[[3]][[4]]]", x.SummarizeValue(16));
1356   EXPECT_EQ("[[[1]][[2]]][[[3]]]...", x.SummarizeValue(3));
1357   x = MkTensor<float>(DT_FLOAT, TensorShape({0}), {});
1358   EXPECT_EQ("", x.SummarizeValue(16));
1359 }
1360 
TEST(SummarizeValue,BOOL)1361 TEST(SummarizeValue, BOOL) {
1362   Tensor x = MkTensor<bool>(DT_BOOL, TensorShape({5}), {false, true, true});
1363   EXPECT_EQ("0 1 1 0 1", x.SummarizeValue(16));
1364   EXPECT_EQ("0 1 1...", x.SummarizeValue(3));
1365 }
1366 
TEST(SummarizeValue,STRING)1367 TEST(SummarizeValue, STRING) {
1368   Tensor x = MkTensor<string>(DT_STRING, TensorShape({5}),
1369                               {"one", "two", "three", "four", "five"});
1370   EXPECT_EQ("one two three four five", x.SummarizeValue(16));
1371   x = MkTensor<string>(DT_STRING, TensorShape({5, 1, 5}),
1372                        {"one", "two", "three", "four", "five"});
1373   EXPECT_EQ("[[one two three four five]][[one...]]...", x.SummarizeValue(6));
1374 }
1375 
TEST(SummarizeValue,INT32_PRINT_V2)1376 TEST(SummarizeValue, INT32_PRINT_V2) {
1377   Tensor x = MkTensor<int>(DT_INT32, TensorShape({5}), {1, 2, 3, 4, 0});
1378   EXPECT_EQ("[1 2 3 4 0]", x.SummarizeValue(16, true));
1379   EXPECT_EQ("[1 2 3 4 0]", x.SummarizeValue(-1, true));
1380   EXPECT_EQ("[1 2 ... 4 0]", x.SummarizeValue(2, true));
1381   EXPECT_EQ("[1 ... 0]", x.SummarizeValue(1, true));
1382   x = MkTensor<int>(DT_INT32, TensorShape({2, 2}), {1, 2, 3, 4, 0});
1383   EXPECT_EQ("[[1 2]\n [3 4]]", x.SummarizeValue(16, true));
1384   x = MkTensor<int>(DT_INT32, TensorShape({2, 2, 1, 1}), {1, 2, 3, 4, 0});
1385   EXPECT_EQ("[[[[1]]\n\n  [[2]]]\n\n\n [[[3]]\n\n  [[4]]]]",
1386             x.SummarizeValue(16, true));
1387   x = MkTensor<int>(DT_INT32, TensorShape({0}), {});
1388   EXPECT_EQ("[]", x.SummarizeValue(16, true));
1389 }
1390 
TEST(SummarizeValue,INT32Dims_PRINT_V2)1391 TEST(SummarizeValue, INT32Dims_PRINT_V2) {
1392   Tensor x = MkTensor<int>(DT_INT32, TensorShape({3, 4}),
1393                            {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
1394   EXPECT_EQ("[[1 ... 4]\n ...\n [9 ... 12]]", x.SummarizeValue(1, true));
1395   EXPECT_EQ("[[1 2 3 4]\n [5 6 7 8]\n [9 10 11 12]]",
1396             x.SummarizeValue(10, true));
1397   EXPECT_EQ("[[1 2 3 4]\n [5 6 7 8]\n [9 10 11 12]]",
1398             x.SummarizeValue(-1, true));
1399 }
1400 
TEST(SummarizeValue,FLOAT_PRINT_V2)1401 TEST(SummarizeValue, FLOAT_PRINT_V2) {
1402   Tensor x = MkTensor<float>(DT_FLOAT, TensorShape({5}), {1, 2, 3, 4, 0});
1403   EXPECT_EQ("[1 2 3 4 0]", x.SummarizeValue(16, true));
1404   EXPECT_EQ("[1 2 3 4 0]", x.SummarizeValue(-1, true));
1405   EXPECT_EQ("[1 2 ... 4 0]", x.SummarizeValue(2, true));
1406   EXPECT_EQ("[1 ... 0]", x.SummarizeValue(1, true));
1407   x = MkTensor<float>(DT_FLOAT, TensorShape({2, 2}), {1, 2, 3, 4, 0});
1408   EXPECT_EQ("[[1 2]\n [3 4]]", x.SummarizeValue(16, true));
1409   x = MkTensor<float>(DT_FLOAT, TensorShape({2, 2, 1, 1}), {1, 2, 3, 4, 0});
1410   EXPECT_EQ("[[[[1]]\n\n  [[2]]]\n\n\n [[[3]]\n\n  [[4]]]]",
1411             x.SummarizeValue(16, true));
1412   x = MkTensor<float>(DT_FLOAT, TensorShape({0}), {});
1413   EXPECT_EQ("[]", x.SummarizeValue(16, true));
1414 }
1415 
TEST(SummarizeValue,BOOL_PRINT_V2)1416 TEST(SummarizeValue, BOOL_PRINT_V2) {
1417   Tensor x = MkTensor<bool>(DT_BOOL, TensorShape({5}), {false, true, true});
1418   EXPECT_EQ("[0 1 1 0 1]", x.SummarizeValue(16, true));
1419   EXPECT_EQ("[0 1 1 0 1]", x.SummarizeValue(-1, true));
1420   EXPECT_EQ("[0 1 ... 0 1]", x.SummarizeValue(2, true));
1421 }
1422 
TEST(SummarizeValue,STRING_PRINT_V2)1423 TEST(SummarizeValue, STRING_PRINT_V2) {
1424   Tensor x = MkTensor<string>(DT_STRING, TensorShape({5}),
1425                               {"one", "two", "three", "four", "five"});
1426   EXPECT_EQ("[\"one\" \"two\" \"three\" \"four\" \"five\"]",
1427             x.SummarizeValue(16, true));
1428   EXPECT_EQ("[\"one\" \"two\" \"three\" \"four\" \"five\"]",
1429             x.SummarizeValue(-1, true));
1430   EXPECT_EQ("[\"one\" \"two\" ... \"four\" \"five\"]",
1431             x.SummarizeValue(2, true));
1432   x = MkTensor<string>(DT_STRING, TensorShape({2, 2}),
1433                        {"one", "two", "three", "four", "five"});
1434   EXPECT_EQ("[[\"one\" \"two\"]\n [\"three\" \"four\"]]",
1435             x.SummarizeValue(16, true));
1436 }
1437 
BM_CreateAndDestroy(int iters)1438 void BM_CreateAndDestroy(int iters) {
1439   TensorShape shape({10, 20});
1440   while (--iters) {
1441     Tensor t(DT_FLOAT, shape);
1442   }
1443 }
1444 BENCHMARK(BM_CreateAndDestroy);
1445 
BM_Assign(int iters)1446 void BM_Assign(int iters) {
1447   Tensor a(DT_FLOAT, TensorShape({10, 20}));
1448   Tensor b(DT_FLOAT, TensorShape({10, 20}));
1449   bool a_to_b = true;
1450   while (--iters) {
1451     if (a_to_b) {
1452       b = a;
1453     } else {
1454       a = b;
1455     }
1456     a_to_b = !a_to_b;
1457   }
1458 }
1459 BENCHMARK(BM_Assign);
1460 
1461 // Ensure tensor_data() works on empty tensors
TEST(Tensor,EmptyTensorData)1462 TEST(Tensor, EmptyTensorData) {
1463   Tensor empty;
1464   EXPECT_EQ(empty.tensor_data().size(), 0);
1465 }
1466 
1467 // Benchmark create and destroy a tensor, with an allocated buffer.
BM_CreateAndDestroyWithBuf(int iters)1468 void BM_CreateAndDestroyWithBuf(int iters) {
1469   TensorShape shape({10, 20});
1470   Allocator* allocator = cpu_allocator();
1471   while (--iters) {
1472     Tensor a(allocator, DT_FLOAT, shape);
1473   }
1474 }
1475 BENCHMARK(BM_CreateAndDestroyWithBuf);
1476 
1477 // Benchmark create+copy a tensor, with an allocated buffer.
BM_CreateAndCopyCtrWithBuf(int iters)1478 void BM_CreateAndCopyCtrWithBuf(int iters) {
1479   TensorShape shape({10, 20});
1480   Allocator* allocator = cpu_allocator();
1481   while (--iters) {
1482     Tensor a(allocator, DT_FLOAT, shape);
1483     Tensor b(a);
1484   }
1485 }
1486 BENCHMARK(BM_CreateAndCopyCtrWithBuf);
1487 
1488 // Benchmark create+move a tensor, with an allocated buffer.
BM_CreateAndMoveCtrWithBuf(int iters)1489 void BM_CreateAndMoveCtrWithBuf(int iters) {
1490   TensorShape shape({10, 20});
1491   Allocator* allocator = cpu_allocator();
1492   while (--iters) {
1493     Tensor a(allocator, DT_FLOAT, shape);
1494     Tensor b(std::move(a));
1495   }
1496 }
1497 BENCHMARK(BM_CreateAndMoveCtrWithBuf);
1498 
1499 // Benchmark creating and destroy a host-scalar tensor, using the allocator
1500 // interface.
BM_CreateAndDestroyHostScalarNonOptimized(int iters)1501 void BM_CreateAndDestroyHostScalarNonOptimized(int iters) {
1502   TensorShape shape({});
1503   Allocator* allocator = cpu_allocator();
1504   while (--iters) {
1505     Tensor a(allocator, DT_FLOAT, shape);
1506     a.scalar<float>()() = 37.0;
1507   }
1508 }
1509 BENCHMARK(BM_CreateAndDestroyHostScalarNonOptimized);
1510 
1511 // Benchmark creating and destroy a host-scalar tensor, using the specialized
1512 // constructor.
BM_CreateAndDestroyHostScalarOptimized(int iters)1513 void BM_CreateAndDestroyHostScalarOptimized(int iters) {
1514   while (--iters) {
1515     Tensor a(37.0);
1516   }
1517 }
1518 BENCHMARK(BM_CreateAndDestroyHostScalarOptimized);
1519 
1520 }  // namespace
1521 }  // namespace tensorflow
1522