1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "blorp_nir_builder.h"
25 
26 #include "blorp_priv.h"
27 
28 /* header-only include needed for _mesa_unorm_to_float and friends. */
29 #include "mesa/main/format_utils.h"
30 
31 #define FILE_DEBUG_FLAG DEBUG_BLORP
32 
33 static const bool split_blorp_blit_debug = false;
34 
35 /**
36  * Enum to specify the order of arguments in a sampler message
37  */
38 enum sampler_message_arg
39 {
40    SAMPLER_MESSAGE_ARG_U_FLOAT,
41    SAMPLER_MESSAGE_ARG_V_FLOAT,
42    SAMPLER_MESSAGE_ARG_U_INT,
43    SAMPLER_MESSAGE_ARG_V_INT,
44    SAMPLER_MESSAGE_ARG_R_INT,
45    SAMPLER_MESSAGE_ARG_SI_INT,
46    SAMPLER_MESSAGE_ARG_MCS_INT,
47    SAMPLER_MESSAGE_ARG_ZERO_INT,
48 };
49 
50 struct brw_blorp_blit_vars {
51    /* Input values from brw_blorp_wm_inputs */
52    nir_variable *v_discard_rect;
53    nir_variable *v_rect_grid;
54    nir_variable *v_coord_transform;
55    nir_variable *v_src_z;
56    nir_variable *v_src_offset;
57    nir_variable *v_dst_offset;
58    nir_variable *v_src_inv_size;
59 
60    /* gl_FragCoord */
61    nir_variable *frag_coord;
62 
63    /* gl_FragColor */
64    nir_variable *color_out;
65 };
66 
67 static void
brw_blorp_blit_vars_init(nir_builder * b,struct brw_blorp_blit_vars * v,const struct brw_blorp_blit_prog_key * key)68 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
69                          const struct brw_blorp_blit_prog_key *key)
70 {
71     /* Blended and scaled blits never use pixel discard. */
72     assert(!key->use_kill || !(key->blend && key->blit_scaled));
73 
74 #define LOAD_INPUT(name, type)\
75    v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
76 
77    LOAD_INPUT(discard_rect, glsl_vec4_type())
78    LOAD_INPUT(rect_grid, glsl_vec4_type())
79    LOAD_INPUT(coord_transform, glsl_vec4_type())
80    LOAD_INPUT(src_z, glsl_uint_type())
81    LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
82    LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
83    LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2))
84 
85 #undef LOAD_INPUT
86 
87    v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
88                                        glsl_vec4_type(), "gl_FragCoord");
89    v->frag_coord->data.location = VARYING_SLOT_POS;
90    v->frag_coord->data.origin_upper_left = true;
91 
92    v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
93                                       glsl_vec4_type(), "gl_FragColor");
94    v->color_out->data.location = FRAG_RESULT_COLOR;
95 }
96 
97 static nir_ssa_def *
blorp_blit_get_frag_coords(nir_builder * b,const struct brw_blorp_blit_prog_key * key,struct brw_blorp_blit_vars * v)98 blorp_blit_get_frag_coords(nir_builder *b,
99                            const struct brw_blorp_blit_prog_key *key,
100                            struct brw_blorp_blit_vars *v)
101 {
102    nir_ssa_def *coord = nir_f2i32(b, nir_load_var(b, v->frag_coord));
103 
104    /* Account for destination surface intratile offset
105     *
106     * Transformation parameters giving translation from destination to source
107     * coordinates don't take into account possible intra-tile destination
108     * offset.  Therefore it has to be first subtracted from the incoming
109     * coordinates.  Vertices are set up based on coordinates containing the
110     * intra-tile offset.
111     */
112    if (key->need_dst_offset)
113       coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
114 
115    if (key->persample_msaa_dispatch) {
116       return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
117                       nir_load_sample_id(b));
118    } else {
119       return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
120    }
121 }
122 
123 /**
124  * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
125  * coordinates.
126  */
127 static nir_ssa_def *
blorp_blit_apply_transform(nir_builder * b,nir_ssa_def * src_pos,struct brw_blorp_blit_vars * v)128 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
129                            struct brw_blorp_blit_vars *v)
130 {
131    nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
132 
133    nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
134                                      nir_channel(b, coord_transform, 3));
135    nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
136                                   nir_channel(b, coord_transform, 2));
137 
138    return nir_fadd(b, nir_fmul(b, src_pos, mul), offset);
139 }
140 
141 static inline void
blorp_nir_discard_if_outside_rect(nir_builder * b,nir_ssa_def * pos,struct brw_blorp_blit_vars * v)142 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
143                                   struct brw_blorp_blit_vars *v)
144 {
145    nir_ssa_def *c0, *c1, *c2, *c3;
146    nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
147    nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
148    nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
149    nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
150    nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
151 
152    c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
153    c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
154    c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
155    c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
156 
157    nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
158 
159    nir_intrinsic_instr *discard =
160       nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
161    discard->src[0] = nir_src_for_ssa(oob);
162    nir_builder_instr_insert(b, &discard->instr);
163 }
164 
165 static nir_tex_instr *
blorp_create_nir_tex_instr(nir_builder * b,struct brw_blorp_blit_vars * v,nir_texop op,nir_ssa_def * pos,unsigned num_srcs,nir_alu_type dst_type)166 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
167                            nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
168                            nir_alu_type dst_type)
169 {
170    nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
171 
172    tex->op = op;
173 
174    tex->dest_type = dst_type;
175    tex->is_array = false;
176    tex->is_shadow = false;
177 
178    /* Blorp only has one texture and it's bound at unit 0 */
179    tex->texture = NULL;
180    tex->sampler = NULL;
181    tex->texture_index = 0;
182    tex->sampler_index = 0;
183 
184    /* To properly handle 3-D and 2-D array textures, we pull the Z component
185     * from an input.  TODO: This is a bit magic; we should probably make this
186     * more explicit in the future.
187     */
188    assert(pos->num_components >= 2);
189    pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
190                      nir_load_var(b, v->v_src_z));
191 
192    tex->src[0].src_type = nir_tex_src_coord;
193    tex->src[0].src = nir_src_for_ssa(pos);
194    tex->coord_components = 3;
195 
196    nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
197 
198    return tex;
199 }
200 
201 static nir_ssa_def *
blorp_nir_tex(nir_builder * b,struct brw_blorp_blit_vars * v,const struct brw_blorp_blit_prog_key * key,nir_ssa_def * pos)202 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
203               const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos)
204 {
205    if (key->need_src_offset)
206       pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset)));
207 
208    /* If the sampler requires normalized coordinates, we need to compensate. */
209    if (key->src_coords_normalized)
210       pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size));
211 
212    nir_tex_instr *tex =
213       blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2,
214                                  key->texture_data_type);
215 
216    assert(pos->num_components == 2);
217    tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
218    tex->src[1].src_type = nir_tex_src_lod;
219    tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
220 
221    nir_builder_instr_insert(b, &tex->instr);
222 
223    return &tex->dest.ssa;
224 }
225 
226 static nir_ssa_def *
blorp_nir_txf(nir_builder * b,struct brw_blorp_blit_vars * v,nir_ssa_def * pos,nir_alu_type dst_type)227 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
228               nir_ssa_def *pos, nir_alu_type dst_type)
229 {
230    nir_tex_instr *tex =
231       blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
232 
233    tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
234    tex->src[1].src_type = nir_tex_src_lod;
235    tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
236 
237    nir_builder_instr_insert(b, &tex->instr);
238 
239    return &tex->dest.ssa;
240 }
241 
242 static nir_ssa_def *
blorp_nir_txf_ms(nir_builder * b,struct brw_blorp_blit_vars * v,nir_ssa_def * pos,nir_ssa_def * mcs,nir_alu_type dst_type)243 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
244                  nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
245 {
246    nir_tex_instr *tex =
247       blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
248                                  mcs != NULL ? 3 : 2, dst_type);
249 
250    tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
251 
252    tex->src[1].src_type = nir_tex_src_ms_index;
253    if (pos->num_components == 2) {
254       tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
255    } else {
256       assert(pos->num_components == 3);
257       tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
258    }
259 
260    if (mcs) {
261       tex->src[2].src_type = nir_tex_src_ms_mcs;
262       tex->src[2].src = nir_src_for_ssa(mcs);
263    }
264 
265    nir_builder_instr_insert(b, &tex->instr);
266 
267    return &tex->dest.ssa;
268 }
269 
270 static nir_ssa_def *
blorp_blit_txf_ms_mcs(nir_builder * b,struct brw_blorp_blit_vars * v,nir_ssa_def * pos)271 blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v,
272                       nir_ssa_def *pos)
273 {
274    nir_tex_instr *tex =
275       blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
276                                  pos, 1, nir_type_int);
277 
278    tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
279 
280    nir_builder_instr_insert(b, &tex->instr);
281 
282    return &tex->dest.ssa;
283 }
284 
285 static nir_ssa_def *
nir_mask_shift_or(struct nir_builder * b,nir_ssa_def * dst,nir_ssa_def * src,uint32_t src_mask,int src_left_shift)286 nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
287                   uint32_t src_mask, int src_left_shift)
288 {
289    nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
290 
291    nir_ssa_def *shifted;
292    if (src_left_shift > 0) {
293       shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
294    } else if (src_left_shift < 0) {
295       shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
296    } else {
297       assert(src_left_shift == 0);
298       shifted = masked;
299    }
300 
301    return nir_ior(b, dst, shifted);
302 }
303 
304 /**
305  * Emit code to compensate for the difference between Y and W tiling.
306  *
307  * This code modifies the X and Y coordinates according to the formula:
308  *
309  *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
310  *
311  * (See brw_blorp_build_nir_shader).
312  */
313 static inline nir_ssa_def *
blorp_nir_retile_y_to_w(nir_builder * b,nir_ssa_def * pos)314 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
315 {
316    assert(pos->num_components == 2);
317    nir_ssa_def *x_Y = nir_channel(b, pos, 0);
318    nir_ssa_def *y_Y = nir_channel(b, pos, 1);
319 
320    /* Given X and Y coordinates that describe an address using Y tiling,
321     * translate to the X and Y coordinates that describe the same address
322     * using W tiling.
323     *
324     * If we break down the low order bits of X and Y, using a
325     * single letter to represent each low-order bit:
326     *
327     *   X = A << 7 | 0bBCDEFGH
328     *   Y = J << 5 | 0bKLMNP                                       (1)
329     *
330     * Then we can apply the Y tiling formula to see the memory offset being
331     * addressed:
332     *
333     *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
334     *
335     * If we apply the W detiling formula to this memory location, that the
336     * corresponding X' and Y' coordinates are:
337     *
338     *   X' = A << 6 | 0bBCDPFH                                     (3)
339     *   Y' = J << 6 | 0bKLMNEG
340     *
341     * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
342     * we need to make the following computation:
343     *
344     *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
345     *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
346     */
347    nir_ssa_def *x_W = nir_imm_int(b, 0);
348    x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
349    x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
350    x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
351 
352    nir_ssa_def *y_W = nir_imm_int(b, 0);
353    y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
354    y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
355    y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
356 
357    return nir_vec2(b, x_W, y_W);
358 }
359 
360 /**
361  * Emit code to compensate for the difference between Y and W tiling.
362  *
363  * This code modifies the X and Y coordinates according to the formula:
364  *
365  *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
366  *
367  * (See brw_blorp_build_nir_shader).
368  */
369 static inline nir_ssa_def *
blorp_nir_retile_w_to_y(nir_builder * b,nir_ssa_def * pos)370 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
371 {
372    assert(pos->num_components == 2);
373    nir_ssa_def *x_W = nir_channel(b, pos, 0);
374    nir_ssa_def *y_W = nir_channel(b, pos, 1);
375 
376    /* Applying the same logic as above, but in reverse, we obtain the
377     * formulas:
378     *
379     * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
380     * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
381     */
382    nir_ssa_def *x_Y = nir_imm_int(b, 0);
383    x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
384    x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
385    x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
386    x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
387 
388    nir_ssa_def *y_Y = nir_imm_int(b, 0);
389    y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
390    y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
391 
392    return nir_vec2(b, x_Y, y_Y);
393 }
394 
395 /**
396  * Emit code to compensate for the difference between MSAA and non-MSAA
397  * surfaces.
398  *
399  * This code modifies the X and Y coordinates according to the formula:
400  *
401  *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
402  *
403  * (See brw_blorp_blit_program).
404  */
405 static inline nir_ssa_def *
blorp_nir_encode_msaa(nir_builder * b,nir_ssa_def * pos,unsigned num_samples,enum isl_msaa_layout layout)406 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
407                       unsigned num_samples, enum isl_msaa_layout layout)
408 {
409    assert(pos->num_components == 2 || pos->num_components == 3);
410 
411    switch (layout) {
412    case ISL_MSAA_LAYOUT_NONE:
413       assert(pos->num_components == 2);
414       return pos;
415    case ISL_MSAA_LAYOUT_ARRAY:
416       /* No translation needed */
417       return pos;
418    case ISL_MSAA_LAYOUT_INTERLEAVED: {
419       nir_ssa_def *x_in = nir_channel(b, pos, 0);
420       nir_ssa_def *y_in = nir_channel(b, pos, 1);
421       nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
422                                                      nir_channel(b, pos, 2);
423 
424       nir_ssa_def *x_out = nir_imm_int(b, 0);
425       nir_ssa_def *y_out = nir_imm_int(b, 0);
426       switch (num_samples) {
427       case 2:
428       case 4:
429          /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
430           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
431           *         Y' = Y
432           *
433           * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
434           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
435           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
436           */
437          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
438          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
439          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
440          if (num_samples == 2) {
441             y_out = y_in;
442          } else {
443             y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
444             y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
445             y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
446          }
447          break;
448 
449       case 8:
450          /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
451           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
452           *              | (X & 0b1)
453           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
454           */
455          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
456          x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
457          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
458          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
459          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
460          y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
461          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
462          break;
463 
464       case 16:
465          /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
466           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
467           *              | (X & 0b1)
468           *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
469           *              | (Y & 0b1)
470           */
471          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
472          x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
473          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
474          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
475          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
476          y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
477          y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
478          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
479          break;
480 
481       default:
482          unreachable("Invalid number of samples for IMS layout");
483       }
484 
485       return nir_vec2(b, x_out, y_out);
486    }
487 
488    default:
489       unreachable("Invalid MSAA layout");
490    }
491 }
492 
493 /**
494  * Emit code to compensate for the difference between MSAA and non-MSAA
495  * surfaces.
496  *
497  * This code modifies the X and Y coordinates according to the formula:
498  *
499  *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
500  *
501  * (See brw_blorp_blit_program).
502  */
503 static inline nir_ssa_def *
blorp_nir_decode_msaa(nir_builder * b,nir_ssa_def * pos,unsigned num_samples,enum isl_msaa_layout layout)504 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
505                       unsigned num_samples, enum isl_msaa_layout layout)
506 {
507    assert(pos->num_components == 2 || pos->num_components == 3);
508 
509    switch (layout) {
510    case ISL_MSAA_LAYOUT_NONE:
511       /* No translation necessary, and S should already be zero. */
512       assert(pos->num_components == 2);
513       return pos;
514    case ISL_MSAA_LAYOUT_ARRAY:
515       /* No translation necessary. */
516       return pos;
517    case ISL_MSAA_LAYOUT_INTERLEAVED: {
518       assert(pos->num_components == 2);
519 
520       nir_ssa_def *x_in = nir_channel(b, pos, 0);
521       nir_ssa_def *y_in = nir_channel(b, pos, 1);
522 
523       nir_ssa_def *x_out = nir_imm_int(b, 0);
524       nir_ssa_def *y_out = nir_imm_int(b, 0);
525       nir_ssa_def *s_out = nir_imm_int(b, 0);
526       switch (num_samples) {
527       case 2:
528       case 4:
529          /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
530           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
531           *         S = (X & 0b10) >> 1
532           *
533           * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
534           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
535           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
536           *         S = (Y & 0b10) | (X & 0b10) >> 1
537           */
538          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
539          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
540          if (num_samples == 2) {
541             y_out = y_in;
542             s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
543          } else {
544             y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
545             y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
546             s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
547             s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
548          }
549          break;
550 
551       case 8:
552          /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
553           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
554           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
555           *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
556           */
557          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
558          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
559          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
560          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
561          s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
562          s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
563          s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
564          break;
565 
566       case 16:
567          /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
568           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
569           *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
570           *         S = (Y & 0b100) << 1 | (X & 0b100) |
571           *             (Y & 0b10) | (X & 0b10) >> 1
572           */
573          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
574          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
575          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
576          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
577          s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
578          s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
579          s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
580          s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
581          break;
582 
583       default:
584          unreachable("Invalid number of samples for IMS layout");
585       }
586 
587       return nir_vec3(b, x_out, y_out, s_out);
588    }
589 
590    default:
591       unreachable("Invalid MSAA layout");
592    }
593 }
594 
595 /**
596  * Count the number of trailing 1 bits in the given value.  For example:
597  *
598  * count_trailing_one_bits(0) == 0
599  * count_trailing_one_bits(7) == 3
600  * count_trailing_one_bits(11) == 2
601  */
count_trailing_one_bits(unsigned value)602 static inline int count_trailing_one_bits(unsigned value)
603 {
604 #ifdef HAVE___BUILTIN_CTZ
605    return __builtin_ctz(~value);
606 #else
607    return _mesa_bitcount(value & ~(value + 1));
608 #endif
609 }
610 
611 static nir_ssa_def *
blorp_nir_manual_blend_average(nir_builder * b,struct brw_blorp_blit_vars * v,nir_ssa_def * pos,unsigned tex_samples,enum isl_aux_usage tex_aux_usage,nir_alu_type dst_type)612 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
613                                nir_ssa_def *pos, unsigned tex_samples,
614                                enum isl_aux_usage tex_aux_usage,
615                                nir_alu_type dst_type)
616 {
617    /* If non-null, this is the outer-most if statement */
618    nir_if *outer_if = NULL;
619 
620    nir_variable *color =
621       nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
622 
623    nir_ssa_def *mcs = NULL;
624    if (tex_aux_usage == ISL_AUX_USAGE_MCS)
625       mcs = blorp_blit_txf_ms_mcs(b, v, pos);
626 
627    /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
628     *
629     *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
630     *
631     * This ensures that when all samples have the same value, no numerical
632     * precision is lost, since each addition operation always adds two equal
633     * values, and summing two equal floating point values does not lose
634     * precision.
635     *
636     * We perform this computation by treating the texture_data array as a
637     * stack and performing the following operations:
638     *
639     * - push sample 0 onto stack
640     * - push sample 1 onto stack
641     * - add top two stack entries
642     * - push sample 2 onto stack
643     * - push sample 3 onto stack
644     * - add top two stack entries
645     * - add top two stack entries
646     * - divide top stack entry by 4
647     *
648     * Note that after pushing sample i onto the stack, the number of add
649     * operations we do is equal to the number of trailing 1 bits in i.  This
650     * works provided the total number of samples is a power of two, which it
651     * always is for i965.
652     *
653     * For integer formats, we replace the add operations with average
654     * operations and skip the final division.
655     */
656    nir_ssa_def *texture_data[5];
657    unsigned stack_depth = 0;
658    for (unsigned i = 0; i < tex_samples; ++i) {
659       assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
660 
661       /* Push sample i onto the stack */
662       assert(stack_depth < ARRAY_SIZE(texture_data));
663 
664       nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
665                                         nir_channel(b, pos, 1),
666                                         nir_imm_int(b, i));
667       texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
668 
669       if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
670          /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
671           * suggests an optimization:
672           *
673           *     "A simple optimization with probable large return in
674           *     performance is to compare the MCS value to zero (indicating
675           *     all samples are on sample slice 0), and sample only from
676           *     sample slice 0 using ld2dss if MCS is zero."
677           *
678           * Note that in the case where the MCS value is zero, sampling from
679           * sample slice 0 using ld2dss and sampling from sample 0 using
680           * ld2dms are equivalent (since all samples are on sample slice 0).
681           * Since we have already sampled from sample 0, all we need to do is
682           * skip the remaining fetches and averaging if MCS is zero.
683           *
684           * It's also trivial to detect when the MCS has the magic clear color
685           * value.  In this case, the txf we did on sample 0 will return the
686           * clear color and we can skip the remaining fetches just like we do
687           * when MCS == 0.
688           */
689          nir_ssa_def *mcs_zero =
690             nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
691          if (tex_samples == 16) {
692             mcs_zero = nir_iand(b, mcs_zero,
693                nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
694          }
695          nir_ssa_def *mcs_clear =
696             blorp_nir_mcs_is_clear_color(b, mcs, tex_samples);
697 
698          nir_if *if_stmt = nir_if_create(b->shader);
699          if_stmt->condition = nir_src_for_ssa(nir_ior(b, mcs_zero, mcs_clear));
700          nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
701 
702          b->cursor = nir_after_cf_list(&if_stmt->then_list);
703          nir_store_var(b, color, texture_data[0], 0xf);
704 
705          b->cursor = nir_after_cf_list(&if_stmt->else_list);
706          outer_if = if_stmt;
707       }
708 
709       for (int j = 0; j < count_trailing_one_bits(i); j++) {
710          assert(stack_depth >= 2);
711          --stack_depth;
712 
713          assert(dst_type == nir_type_float);
714          texture_data[stack_depth - 1] =
715             nir_fadd(b, texture_data[stack_depth - 1],
716                         texture_data[stack_depth]);
717       }
718    }
719 
720    /* We should have just 1 sample on the stack now. */
721    assert(stack_depth == 1);
722 
723    texture_data[0] = nir_fmul(b, texture_data[0],
724                               nir_imm_float(b, 1.0 / tex_samples));
725 
726    nir_store_var(b, color, texture_data[0], 0xf);
727 
728    if (outer_if)
729       b->cursor = nir_after_cf_node(&outer_if->cf_node);
730 
731    return nir_load_var(b, color);
732 }
733 
734 static inline nir_ssa_def *
nir_imm_vec2(nir_builder * build,float x,float y)735 nir_imm_vec2(nir_builder *build, float x, float y)
736 {
737    nir_const_value v;
738 
739    memset(&v, 0, sizeof(v));
740    v.f32[0] = x;
741    v.f32[1] = y;
742 
743    return nir_build_imm(build, 4, 32, v);
744 }
745 
746 static nir_ssa_def *
blorp_nir_manual_blend_bilinear(nir_builder * b,nir_ssa_def * pos,unsigned tex_samples,const struct brw_blorp_blit_prog_key * key,struct brw_blorp_blit_vars * v)747 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
748                                 unsigned tex_samples,
749                                 const struct brw_blorp_blit_prog_key *key,
750                                 struct brw_blorp_blit_vars *v)
751 {
752    nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
753    nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
754    nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
755 
756    /* Translate coordinates to lay out the samples in a rectangular  grid
757     * roughly corresponding to sample locations.
758     */
759    pos_xy = nir_fmul(b, pos_xy, scale);
760    /* Adjust coordinates so that integers represent pixel centers rather
761     * than pixel edges.
762     */
763    pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
764    /* Clamp the X, Y texture coordinates to properly handle the sampling of
765     * texels on texture edges.
766     */
767    pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
768                         nir_vec2(b, nir_channel(b, rect_grid, 0),
769                                     nir_channel(b, rect_grid, 1)));
770 
771    /* Store the fractional parts to be used as bilinear interpolation
772     * coefficients.
773     */
774    nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
775    /* Round the float coordinates down to nearest integer */
776    pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
777 
778    nir_ssa_def *tex_data[4];
779    for (unsigned i = 0; i < 4; ++i) {
780       float sample_off_x = (float)(i & 0x1) / key->x_scale;
781       float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
782       nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
783 
784       nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
785       nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
786 
787       /* The MCS value we fetch has to match up with the pixel that we're
788        * sampling from. Since we sample from different pixels in each
789        * iteration of this "for" loop, the call to mcs_fetch() should be
790        * here inside the loop after computing the pixel coordinates.
791        */
792       nir_ssa_def *mcs = NULL;
793       if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
794          mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int);
795 
796       /* Compute sample index and map the sample index to a sample number.
797        * Sample index layout shows the numbering of slots in a rectangular
798        * grid of samples with in a pixel. Sample number layout shows the
799        * rectangular grid of samples roughly corresponding to the real sample
800        * locations with in a pixel.
801        * In case of 4x MSAA, layout of sample indices matches the layout of
802        * sample numbers:
803        *           ---------
804        *           | 0 | 1 |
805        *           ---------
806        *           | 2 | 3 |
807        *           ---------
808        *
809        * In case of 8x MSAA the two layouts don't match.
810        * sample index layout :  ---------    sample number layout :  ---------
811        *                        | 0 | 1 |                            | 3 | 7 |
812        *                        ---------                            ---------
813        *                        | 2 | 3 |                            | 5 | 0 |
814        *                        ---------                            ---------
815        *                        | 4 | 5 |                            | 1 | 2 |
816        *                        ---------                            ---------
817        *                        | 6 | 7 |                            | 4 | 6 |
818        *                        ---------                            ---------
819        *
820        * Fortunately, this can be done fairly easily as:
821        * S' = (0x17306425 >> (S * 4)) & 0xf
822        *
823        * In the case of 16x MSAA the two layouts don't match.
824        * Sample index layout:                Sample number layout:
825        * ---------------------               ---------------------
826        * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
827        * ---------------------               ---------------------
828        * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
829        * ---------------------               ---------------------
830        * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
831        * ---------------------               ---------------------
832        * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
833        * ---------------------               ---------------------
834        *
835        * This is equivalent to
836        * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
837        */
838       nir_ssa_def *frac = nir_ffract(b, sample_coords);
839       nir_ssa_def *sample =
840          nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
841                                             key->x_scale * key->y_scale));
842       sample = nir_f2i32(b, sample);
843 
844       if (tex_samples == 8) {
845          sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
846                                        nir_ishl(b, sample, nir_imm_int(b, 2))),
847                            nir_imm_int(b, 0xf));
848       } else if (tex_samples == 16) {
849          nir_ssa_def *sample_low =
850             nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
851                                  nir_ishl(b, sample, nir_imm_int(b, 2))),
852                      nir_imm_int(b, 0xf));
853          nir_ssa_def *sample_high =
854             nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
855                                  nir_ishl(b, nir_iadd(b, sample,
856                                                       nir_imm_int(b, -8)),
857                                           nir_imm_int(b, 2))),
858                      nir_imm_int(b, 0xf));
859 
860          sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
861                             sample_low, sample_high);
862       }
863       nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
864                                         nir_channel(b, sample_coords_int, 1),
865                                         sample);
866       tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
867    }
868 
869    nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
870    nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
871    return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
872                       nir_flrp(b, tex_data[2], tex_data[3], frac_x),
873                       frac_y);
874 }
875 
876 /** Perform a color bit-cast operation
877  *
878  * For copy operations involving CCS, we may need to use different formats for
879  * the source and destination surfaces.  The two formats must both be UINT
880  * formats and must have the same size but may have different bit layouts.
881  * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
882  * to R16G16_UINT.  This function generates code to shuffle bits around to get
883  * us from one to the other.
884  */
885 static nir_ssa_def *
bit_cast_color(struct nir_builder * b,nir_ssa_def * color,const struct brw_blorp_blit_prog_key * key)886 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
887                const struct brw_blorp_blit_prog_key *key)
888 {
889    assert(key->texture_data_type == nir_type_uint);
890 
891    if (key->dst_bpc > key->src_bpc) {
892       nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
893       nir_ssa_def *dst_chan[2] = { u, u };
894       unsigned shift = 0;
895       unsigned dst_idx = 0;
896       for (unsigned i = 0; i < 4; i++) {
897          nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
898                                             nir_imm_int(b, shift));
899          if (shift == 0) {
900             dst_chan[dst_idx] = shifted;
901          } else {
902             dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
903          }
904 
905          shift += key->src_bpc;
906          if (shift >= key->dst_bpc) {
907             dst_idx++;
908             shift = 0;
909          }
910       }
911 
912       return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
913    } else {
914       assert(key->dst_bpc < key->src_bpc);
915 
916       nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
917 
918       nir_ssa_def *dst_chan[4];
919       unsigned src_idx = 0;
920       unsigned shift = 0;
921       for (unsigned i = 0; i < 4; i++) {
922          dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
923                                                nir_imm_int(b, shift)),
924                                    mask);
925          shift += key->dst_bpc;
926          if (shift >= key->src_bpc) {
927             src_idx++;
928             shift = 0;
929          }
930       }
931 
932       return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
933    }
934 }
935 
936 /**
937  * Generator for WM programs used in BLORP blits.
938  *
939  * The bulk of the work done by the WM program is to wrap and unwrap the
940  * coordinate transformations used by the hardware to store surfaces in
941  * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
942  * sample index for a multisampled surface) to a memory offset by the
943  * following formulas:
944  *
945  *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
946  *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
947  *
948  * For a single-sampled surface, or for a multisampled surface using
949  * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
950  * function:
951  *
952  *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
953  *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
954  *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
955  *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
956  *
957  * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
958  * embeds the sample number into bit 1 of the X and Y coordinates:
959  *
960  *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
961  *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
962  *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
963  *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
964  *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
965  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
966  *           S = (Y & 0b10) | (X & 0b10) >> 1
967  *
968  * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
969  * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
970  * the Y coordinate:
971  *
972  *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
973  *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
974  *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
975  *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
976  *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
977  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
978  *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
979  *
980  * For X tiling, tile() combines together the low-order bits of the X and Y
981  * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
982  * bytes wide and 8 rows high:
983  *
984  *   tile(x_tiled, X, Y, S) = A
985  *     where A = tile_num << 12 | offset
986  *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
987  *           offset = (Y' & 0b111) << 9
988  *                    | (X & 0b111111111)
989  *           X' = X * cpp
990  *           Y' = Y + S * qpitch
991  *   detile(x_tiled, A) = (X, Y, S)
992  *     where X = X' / cpp
993  *           Y = Y' % qpitch
994  *           S = Y' / qpitch
995  *           Y' = (tile_num / tile_pitch) << 3
996  *                | (A & 0b111000000000) >> 9
997  *           X' = (tile_num % tile_pitch) << 9
998  *                | (A & 0b111111111)
999  *
1000  * (In all tiling formulas, cpp is the number of bytes occupied by a single
1001  * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
1002  * to fill the width of the surface, and qpitch is the spacing (in rows)
1003  * between array slices).
1004  *
1005  * For Y tiling, tile() combines together the low-order bits of the X and Y
1006  * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
1007  * bytes wide and 32 rows high:
1008  *
1009  *   tile(y_tiled, X, Y, S) = A
1010  *     where A = tile_num << 12 | offset
1011  *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
1012  *           offset = (X' & 0b1110000) << 5
1013  *                    | (Y' & 0b11111) << 4
1014  *                    | (X' & 0b1111)
1015  *           X' = X * cpp
1016  *           Y' = Y + S * qpitch
1017  *   detile(y_tiled, A) = (X, Y, S)
1018  *     where X = X' / cpp
1019  *           Y = Y' % qpitch
1020  *           S = Y' / qpitch
1021  *           Y' = (tile_num / tile_pitch) << 5
1022  *                | (A & 0b111110000) >> 4
1023  *           X' = (tile_num % tile_pitch) << 7
1024  *                | (A & 0b111000000000) >> 5
1025  *                | (A & 0b1111)
1026  *
1027  * For W tiling, tile() combines together the low-order bits of the X and Y
1028  * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1029  * bytes wide and 64 rows high (note that W tiling is only used for stencil
1030  * buffers, which always have cpp = 1 and S=0):
1031  *
1032  *   tile(w_tiled, X, Y, S) = A
1033  *     where A = tile_num << 12 | offset
1034  *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1035  *           offset = (X' & 0b111000) << 6
1036  *                    | (Y' & 0b111100) << 3
1037  *                    | (X' & 0b100) << 2
1038  *                    | (Y' & 0b10) << 2
1039  *                    | (X' & 0b10) << 1
1040  *                    | (Y' & 0b1) << 1
1041  *                    | (X' & 0b1)
1042  *           X' = X * cpp = X
1043  *           Y' = Y + S * qpitch
1044  *   detile(w_tiled, A) = (X, Y, S)
1045  *     where X = X' / cpp = X'
1046  *           Y = Y' % qpitch = Y'
1047  *           S = Y / qpitch = 0
1048  *           Y' = (tile_num / tile_pitch) << 6
1049  *                | (A & 0b111100000) >> 3
1050  *                | (A & 0b1000) >> 2
1051  *                | (A & 0b10) >> 1
1052  *           X' = (tile_num % tile_pitch) << 6
1053  *                | (A & 0b111000000000) >> 6
1054  *                | (A & 0b10000) >> 2
1055  *                | (A & 0b100) >> 1
1056  *                | (A & 0b1)
1057  *
1058  * Finally, for a non-tiled surface, tile() simply combines together the X and
1059  * Y coordinates in the natural way:
1060  *
1061  *   tile(untiled, X, Y, S) = A
1062  *     where A = Y * pitch + X'
1063  *           X' = X * cpp
1064  *           Y' = Y + S * qpitch
1065  *   detile(untiled, A) = (X, Y, S)
1066  *     where X = X' / cpp
1067  *           Y = Y' % qpitch
1068  *           S = Y' / qpitch
1069  *           X' = A % pitch
1070  *           Y' = A / pitch
1071  *
1072  * (In these formulas, pitch is the number of bytes occupied by a single row
1073  * of samples).
1074  */
1075 static nir_shader *
brw_blorp_build_nir_shader(struct blorp_context * blorp,void * mem_ctx,const struct brw_blorp_blit_prog_key * key)1076 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
1077                            const struct brw_blorp_blit_prog_key *key)
1078 {
1079    const struct gen_device_info *devinfo = blorp->isl_dev->info;
1080    nir_ssa_def *src_pos, *dst_pos, *color;
1081 
1082    /* Sanity checks */
1083    if (key->dst_tiled_w && key->rt_samples > 1) {
1084       /* If the destination image is W tiled and multisampled, then the thread
1085        * must be dispatched once per sample, not once per pixel.  This is
1086        * necessary because after conversion between W and Y tiling, there's no
1087        * guarantee that all samples corresponding to a single pixel will still
1088        * be together.
1089        */
1090       assert(key->persample_msaa_dispatch);
1091    }
1092 
1093    if (key->blend) {
1094       /* We are blending, which means we won't have an opportunity to
1095        * translate the tiling and sample count for the texture surface.  So
1096        * the surface state for the texture must be configured with the correct
1097        * tiling and sample count.
1098        */
1099       assert(!key->src_tiled_w);
1100       assert(key->tex_samples == key->src_samples);
1101       assert(key->tex_layout == key->src_layout);
1102       assert(key->tex_samples > 0);
1103    }
1104 
1105    if (key->persample_msaa_dispatch) {
1106       /* It only makes sense to do persample dispatch if the render target is
1107        * configured as multisampled.
1108        */
1109       assert(key->rt_samples > 0);
1110    }
1111 
1112    /* Make sure layout is consistent with sample count */
1113    assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1114           (key->tex_samples <= 1));
1115    assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1116           (key->rt_samples <= 1));
1117    assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1118           (key->src_samples <= 1));
1119    assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1120           (key->dst_samples <= 1));
1121 
1122    nir_builder b;
1123    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
1124 
1125    struct brw_blorp_blit_vars v;
1126    brw_blorp_blit_vars_init(&b, &v, key);
1127 
1128    dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
1129 
1130    /* Render target and texture hardware don't support W tiling until Gen8. */
1131    const bool rt_tiled_w = false;
1132    const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
1133 
1134    /* The address that data will be written to is determined by the
1135     * coordinates supplied to the WM thread and the tiling and sample count of
1136     * the render target, according to the formula:
1137     *
1138     * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1139     *
1140     * If the actual tiling and sample count of the destination surface are not
1141     * the same as the configuration of the render target, then these
1142     * coordinates are wrong and we have to adjust them to compensate for the
1143     * difference.
1144     */
1145    if (rt_tiled_w != key->dst_tiled_w ||
1146        key->rt_samples != key->dst_samples ||
1147        key->rt_layout != key->dst_layout) {
1148       dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1149                                       key->rt_layout);
1150       /* Now (X, Y, S) = detile(rt_tiling, offset) */
1151       if (rt_tiled_w != key->dst_tiled_w)
1152          dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1153       /* Now (X, Y, S) = detile(rt_tiling, offset) */
1154       dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1155                                       key->dst_layout);
1156    }
1157 
1158    /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1159     *
1160     * That is: X, Y and S now contain the true coordinates and sample index of
1161     * the data that the WM thread should output.
1162     *
1163     * If we need to kill pixels that are outside the destination rectangle,
1164     * now is the time to do it.
1165     */
1166    if (key->use_kill) {
1167       assert(!(key->blend && key->blit_scaled));
1168       blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
1169    }
1170 
1171    src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
1172    if (dst_pos->num_components == 3) {
1173       /* The sample coordinate is an integer that we want left alone but
1174        * blorp_blit_apply_transform() blindly applies the transform to all
1175        * three coordinates.  Grab the original sample index.
1176        */
1177       src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1178                              nir_channel(&b, src_pos, 1),
1179                              nir_channel(&b, dst_pos, 2));
1180    }
1181 
1182    /* If the source image is not multisampled, then we want to fetch sample
1183     * number 0, because that's the only sample there is.
1184     */
1185    if (key->src_samples == 1)
1186       src_pos = nir_channels(&b, src_pos, 0x3);
1187 
1188    /* X, Y, and S are now the coordinates of the pixel in the source image
1189     * that we want to texture from.  Exception: if we are blending, then S is
1190     * irrelevant, because we are going to fetch all samples.
1191     */
1192    if (key->blend && !key->blit_scaled) {
1193       /* Resolves (effecively) use texelFetch, so we need integers and we
1194        * don't care about the sample index if we got one.
1195        */
1196       src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
1197 
1198       if (devinfo->gen == 6) {
1199          /* Because gen6 only supports 4x interleved MSAA, we can do all the
1200           * blending we need with a single linear-interpolated texture lookup
1201           * at the center of the sample. The texture coordinates to be odd
1202           * integers so that they correspond to the center of a 2x2 block
1203           * representing the four samples that maxe up a pixel.  So we need
1204           * to multiply our X and Y coordinates each by 2 and then add 1.
1205           */
1206          assert(key->src_coords_normalized);
1207          src_pos = nir_fadd(&b,
1208                             nir_i2f32(&b, src_pos),
1209                             nir_imm_float(&b, 0.5f));
1210          color = blorp_nir_tex(&b, &v, key, src_pos);
1211       } else {
1212          /* Gen7+ hardware doesn't automaticaly blend. */
1213          color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
1214                                                 key->tex_aux_usage,
1215                                                 key->texture_data_type);
1216       }
1217    } else if (key->blend && key->blit_scaled) {
1218       assert(!key->use_kill);
1219       color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
1220    } else {
1221       if (key->bilinear_filter) {
1222          color = blorp_nir_tex(&b, &v, key, src_pos);
1223       } else {
1224          /* We're going to use texelFetch, so we need integers */
1225          if (src_pos->num_components == 2) {
1226             src_pos = nir_f2i32(&b, src_pos);
1227          } else {
1228             assert(src_pos->num_components == 3);
1229             src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
1230                                    nir_channel(&b, nir_f2i32(&b, src_pos), 1),
1231                                    nir_channel(&b, src_pos, 2));
1232          }
1233 
1234          /* We aren't blending, which means we just want to fetch a single
1235           * sample from the source surface.  The address that we want to fetch
1236           * from is related to the X, Y and S values according to the formula:
1237           *
1238           * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1239           *
1240           * If the actual tiling and sample count of the source surface are
1241           * not the same as the configuration of the texture, then we need to
1242           * adjust the coordinates to compensate for the difference.
1243           */
1244          if (tex_tiled_w != key->src_tiled_w ||
1245              key->tex_samples != key->src_samples ||
1246              key->tex_layout != key->src_layout) {
1247             src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1248                                             key->src_layout);
1249             /* Now (X, Y, S) = detile(src_tiling, offset) */
1250             if (tex_tiled_w != key->src_tiled_w)
1251                src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1252             /* Now (X, Y, S) = detile(tex_tiling, offset) */
1253             src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1254                                             key->tex_layout);
1255          }
1256 
1257          if (key->need_src_offset)
1258             src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1259 
1260          /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1261           *
1262           * In other words: X, Y, and S now contain values which, when passed to
1263           * the texturing unit, will cause data to be read from the correct
1264           * memory location.  So we can fetch the texel now.
1265           */
1266          if (key->src_samples == 1) {
1267             color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1268          } else {
1269             nir_ssa_def *mcs = NULL;
1270             if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
1271                mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos);
1272 
1273             color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1274          }
1275       }
1276    }
1277 
1278    if (key->dst_bpc != key->src_bpc)
1279       color = bit_cast_color(&b, color, key);
1280 
1281    if (key->dst_rgb) {
1282       /* The destination image is bound as a red texture three times as wide
1283        * as the actual image.  Our shader is effectively running one color
1284        * component at a time.  We need to pick off the appropriate component
1285        * from the source color and write that to destination red.
1286        */
1287       assert(dst_pos->num_components == 2);
1288       nir_ssa_def *comp =
1289          nir_umod(&b, nir_channel(&b, dst_pos, 0), nir_imm_int(&b, 3));
1290 
1291       nir_ssa_def *color_component =
1292          nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
1293                        nir_channel(&b, color, 0),
1294                        nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
1295                                      nir_channel(&b, color, 1),
1296                                      nir_channel(&b, color, 2)));
1297 
1298       nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1299       color = nir_vec4(&b, color_component, u, u, u);
1300    }
1301 
1302    nir_store_var(&b, v.color_out, color, 0xf);
1303 
1304    return b.shader;
1305 }
1306 
1307 static bool
brw_blorp_get_blit_kernel(struct blorp_context * blorp,struct blorp_params * params,const struct brw_blorp_blit_prog_key * prog_key)1308 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
1309                           struct blorp_params *params,
1310                           const struct brw_blorp_blit_prog_key *prog_key)
1311 {
1312    if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
1313                             &params->wm_prog_kernel, &params->wm_prog_data))
1314       return true;
1315 
1316    void *mem_ctx = ralloc_context(NULL);
1317 
1318    const unsigned *program;
1319    struct brw_wm_prog_data prog_data;
1320 
1321    nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
1322    nir->info.name = ralloc_strdup(nir, "BLORP-blit");
1323 
1324    struct brw_wm_prog_key wm_key;
1325    brw_blorp_init_wm_prog_key(&wm_key);
1326    wm_key.tex.compressed_multisample_layout_mask =
1327       prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1328    wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
1329    wm_key.multisample_fbo = prog_key->rt_samples > 1;
1330 
1331    program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1332                               &prog_data);
1333 
1334    bool result =
1335       blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
1336                            program, prog_data.base.program_size,
1337                            &prog_data.base, sizeof(prog_data),
1338                            &params->wm_prog_kernel, &params->wm_prog_data);
1339 
1340    ralloc_free(mem_ctx);
1341    return result;
1342 }
1343 
1344 static void
brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform * xform,GLfloat src0,GLfloat src1,GLfloat dst0,GLfloat dst1,bool mirror)1345 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1346                                 GLfloat src0, GLfloat src1,
1347                                 GLfloat dst0, GLfloat dst1,
1348                                 bool mirror)
1349 {
1350    double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1351    if (!mirror) {
1352       /* When not mirroring a coordinate (say, X), we need:
1353        *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1354        * Therefore:
1355        *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1356        *
1357        * blorp program uses "round toward zero" to convert the
1358        * transformed floating point coordinates to integer coordinates,
1359        * whereas the behaviour we actually want is "round to nearest",
1360        * so 0.5 provides the necessary correction.
1361        */
1362       xform->multiplier = scale;
1363       xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1364    } else {
1365       /* When mirroring X we need:
1366        *   src_x - src_x0 = dst_x1 - dst_x - 0.5
1367        * Therefore:
1368        *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1369        */
1370       xform->multiplier = -scale;
1371       xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1372    }
1373 }
1374 
1375 static inline void
surf_get_intratile_offset_px(struct brw_blorp_surface_info * info,uint32_t * tile_x_px,uint32_t * tile_y_px)1376 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1377                              uint32_t *tile_x_px, uint32_t *tile_y_px)
1378 {
1379    if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1380       struct isl_extent2d px_size_sa =
1381          isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1382       assert(info->tile_x_sa % px_size_sa.width == 0);
1383       assert(info->tile_y_sa % px_size_sa.height == 0);
1384       *tile_x_px = info->tile_x_sa / px_size_sa.width;
1385       *tile_y_px = info->tile_y_sa / px_size_sa.height;
1386    } else {
1387       *tile_x_px = info->tile_x_sa;
1388       *tile_y_px = info->tile_y_sa;
1389    }
1390 }
1391 
1392 void
blorp_surf_convert_to_single_slice(const struct isl_device * isl_dev,struct brw_blorp_surface_info * info)1393 blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev,
1394                                    struct brw_blorp_surface_info *info)
1395 {
1396    bool ok UNUSED;
1397 
1398    /* Just bail if we have nothing to do. */
1399    if (info->surf.dim == ISL_SURF_DIM_2D &&
1400        info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1401        info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1402       return;
1403 
1404    /* If this gets triggered then we've gotten here twice which.  This
1405     * shouldn't happen thanks to the above early return.
1406     */
1407    assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1408 
1409    uint32_t layer = 0, z = 0;
1410    if (info->surf.dim == ISL_SURF_DIM_3D)
1411       z = info->view.base_array_layer + info->z_offset;
1412    else
1413       layer = info->view.base_array_layer;
1414 
1415    uint32_t byte_offset;
1416    isl_surf_get_image_surf(isl_dev, &info->surf,
1417                            info->view.base_level, layer, z,
1418                            &info->surf,
1419                            &byte_offset, &info->tile_x_sa, &info->tile_y_sa);
1420    info->addr.offset += byte_offset;
1421 
1422    uint32_t tile_x_px, tile_y_px;
1423    surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1424 
1425    /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place
1426     * the image at the tile boundary and offset our sampling or rendering.
1427     * For this reason, we need to grow the image by the offset to ensure that
1428     * the hardware doesn't think we've gone past the edge.
1429     */
1430    info->surf.logical_level0_px.w += tile_x_px;
1431    info->surf.logical_level0_px.h += tile_y_px;
1432    info->surf.phys_level0_sa.w += info->tile_x_sa;
1433    info->surf.phys_level0_sa.h += info->tile_y_sa;
1434 
1435    /* The view is also different now. */
1436    info->view.base_level = 0;
1437    info->view.levels = 1;
1438    info->view.base_array_layer = 0;
1439    info->view.array_len = 1;
1440    info->z_offset = 0;
1441 }
1442 
1443 static void
surf_fake_interleaved_msaa(const struct isl_device * isl_dev,struct brw_blorp_surface_info * info)1444 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1445                            struct brw_blorp_surface_info *info)
1446 {
1447    assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1448 
1449    /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1450    blorp_surf_convert_to_single_slice(isl_dev, info);
1451 
1452    info->surf.logical_level0_px = info->surf.phys_level0_sa;
1453    info->surf.samples = 1;
1454    info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1455 }
1456 
1457 static void
surf_retile_w_to_y(const struct isl_device * isl_dev,struct brw_blorp_surface_info * info)1458 surf_retile_w_to_y(const struct isl_device *isl_dev,
1459                    struct brw_blorp_surface_info *info)
1460 {
1461    assert(info->surf.tiling == ISL_TILING_W);
1462 
1463    /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1464    blorp_surf_convert_to_single_slice(isl_dev, info);
1465 
1466    /* On gen7+, we don't have interleaved multisampling for color render
1467     * targets so we have to fake it.
1468     *
1469     * TODO: Are we sure we don't also need to fake it on gen6?
1470     */
1471    if (isl_dev->info->gen > 6 &&
1472        info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1473       surf_fake_interleaved_msaa(isl_dev, info);
1474    }
1475 
1476    if (isl_dev->info->gen == 6) {
1477       /* Gen6 stencil buffers have a very large alignment coming in from the
1478        * miptree.  It's out-of-bounds for what the surface state can handle.
1479        * Since we have a single layer and level, it doesn't really matter as
1480        * long as we don't pass a bogus value into isl_surf_fill_state().
1481        */
1482       info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1483    }
1484 
1485    /* Now that we've converted everything to a simple 2-D surface with only
1486     * one miplevel, we can go about retiling it.
1487     */
1488    const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1489    info->surf.tiling = ISL_TILING_Y0;
1490    info->surf.logical_level0_px.width =
1491       ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1492    info->surf.logical_level0_px.height =
1493       ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1494    info->tile_x_sa *= 2;
1495    info->tile_y_sa /= 2;
1496 }
1497 
1498 static bool
can_shrink_surface(const struct brw_blorp_surface_info * surf)1499 can_shrink_surface(const struct brw_blorp_surface_info *surf)
1500 {
1501    /* The current code doesn't support offsets into the aux buffers. This
1502     * should be possible, but we need to make sure the offset is page
1503     * aligned for both the surface and the aux buffer surface. Generally
1504     * this mean using the page aligned offset for the aux buffer.
1505     *
1506     * Currently the cases where we must split the blit are limited to cases
1507     * where we don't have a aux buffer.
1508     */
1509    if (surf->aux_addr.buffer != NULL)
1510       return false;
1511 
1512    /* We can't support splitting the blit for gen <= 7, because the qpitch
1513     * size is calculated by the hardware based on the surface height for
1514     * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1515     */
1516    if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1517       return false;
1518 
1519    return true;
1520 }
1521 
1522 static bool
can_shrink_surfaces(const struct blorp_params * params)1523 can_shrink_surfaces(const struct blorp_params *params)
1524 {
1525    return
1526       can_shrink_surface(&params->src) &&
1527       can_shrink_surface(&params->dst);
1528 }
1529 
1530 static unsigned
get_max_surface_size(const struct gen_device_info * devinfo,const struct blorp_params * params)1531 get_max_surface_size(const struct gen_device_info *devinfo,
1532                      const struct blorp_params *params)
1533 {
1534    const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
1535    if (split_blorp_blit_debug && can_shrink_surfaces(params))
1536       return max >> 4; /* A smaller restriction when debug is enabled */
1537    else
1538       return max;
1539 }
1540 
1541 struct blt_axis {
1542    double src0, src1, dst0, dst1;
1543    bool mirror;
1544 };
1545 
1546 struct blt_coords {
1547    struct blt_axis x, y;
1548 };
1549 
1550 static void
surf_fake_rgb_with_red(const struct isl_device * isl_dev,struct brw_blorp_surface_info * info,uint32_t * x,uint32_t * width)1551 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1552                        struct brw_blorp_surface_info *info,
1553                        uint32_t *x, uint32_t *width)
1554 {
1555    blorp_surf_convert_to_single_slice(isl_dev, info);
1556 
1557    info->surf.logical_level0_px.width *= 3;
1558    info->surf.phys_level0_sa.width *= 3;
1559    info->tile_x_sa *= 3;
1560    *x *= 3;
1561    *width *= 3;
1562 
1563    enum isl_format red_format;
1564    switch (info->view.format) {
1565    case ISL_FORMAT_R8G8B8_UNORM:
1566       red_format = ISL_FORMAT_R8_UNORM;
1567       break;
1568    case ISL_FORMAT_R8G8B8_UINT:
1569       red_format = ISL_FORMAT_R8_UINT;
1570       break;
1571    case ISL_FORMAT_R16G16B16_UNORM:
1572       red_format = ISL_FORMAT_R16_UNORM;
1573       break;
1574    case ISL_FORMAT_R16G16B16_UINT:
1575       red_format = ISL_FORMAT_R16_UINT;
1576       break;
1577    case ISL_FORMAT_R32G32B32_UINT:
1578       red_format = ISL_FORMAT_R32_UINT;
1579       break;
1580    default:
1581       unreachable("Invalid RGB copy destination format");
1582    }
1583    assert(isl_format_get_layout(red_format)->channels.r.type ==
1584           isl_format_get_layout(info->view.format)->channels.r.type);
1585    assert(isl_format_get_layout(red_format)->channels.r.bits ==
1586           isl_format_get_layout(info->view.format)->channels.r.bits);
1587 
1588    info->surf.format = info->view.format = red_format;
1589 }
1590 
1591 static void
fake_dest_rgb_with_red(const struct isl_device * dev,struct blorp_params * params,struct brw_blorp_blit_prog_key * wm_prog_key,struct blt_coords * coords)1592 fake_dest_rgb_with_red(const struct isl_device *dev,
1593                        struct blorp_params *params,
1594                        struct brw_blorp_blit_prog_key *wm_prog_key,
1595                        struct blt_coords *coords)
1596 {
1597    /* Handle RGB destinations for blorp_copy */
1598    const struct isl_format_layout *dst_fmtl =
1599       isl_format_get_layout(params->dst.surf.format);
1600 
1601    if (dst_fmtl->bpb % 3 == 0) {
1602       uint32_t dst_x = coords->x.dst0;
1603       uint32_t dst_width = coords->x.dst1 - dst_x;
1604       surf_fake_rgb_with_red(dev, &params->dst,
1605                              &dst_x, &dst_width);
1606       coords->x.dst0 = dst_x;
1607       coords->x.dst1 = dst_x + dst_width;
1608       wm_prog_key->dst_rgb = true;
1609       wm_prog_key->need_dst_offset = true;
1610    }
1611 }
1612 
1613 enum blit_shrink_status {
1614    BLIT_NO_SHRINK = 0,
1615    BLIT_WIDTH_SHRINK = 1,
1616    BLIT_HEIGHT_SHRINK = 2,
1617 };
1618 
1619 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
1620  * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1621  * returned, then the blit was successful.
1622  */
1623 static enum blit_shrink_status
try_blorp_blit(struct blorp_batch * batch,struct blorp_params * params,struct brw_blorp_blit_prog_key * wm_prog_key,struct blt_coords * coords)1624 try_blorp_blit(struct blorp_batch *batch,
1625                struct blorp_params *params,
1626                struct brw_blorp_blit_prog_key *wm_prog_key,
1627                struct blt_coords *coords)
1628 {
1629    const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
1630 
1631    fake_dest_rgb_with_red(batch->blorp->isl_dev, params, wm_prog_key, coords);
1632 
1633    if (isl_format_has_sint_channel(params->src.view.format)) {
1634       wm_prog_key->texture_data_type = nir_type_int;
1635    } else if (isl_format_has_uint_channel(params->src.view.format)) {
1636       wm_prog_key->texture_data_type = nir_type_uint;
1637    } else {
1638       wm_prog_key->texture_data_type = nir_type_float;
1639    }
1640 
1641    /* src_samples and dst_samples are the true sample counts */
1642    wm_prog_key->src_samples = params->src.surf.samples;
1643    wm_prog_key->dst_samples = params->dst.surf.samples;
1644 
1645    wm_prog_key->tex_aux_usage = params->src.aux_usage;
1646 
1647    /* src_layout and dst_layout indicate the true MSAA layout used by src and
1648     * dst.
1649     */
1650    wm_prog_key->src_layout = params->src.surf.msaa_layout;
1651    wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
1652 
1653    /* Round floating point values to nearest integer to avoid "off by one texel"
1654     * kind of errors when blitting.
1655     */
1656    params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
1657    params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
1658    params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
1659    params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
1660 
1661    brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1662                                    coords->x.src0, coords->x.src1,
1663                                    coords->x.dst0, coords->x.dst1,
1664                                    coords->x.mirror);
1665    brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1666                                    coords->y.src0, coords->y.src1,
1667                                    coords->y.dst0, coords->y.dst1,
1668                                    coords->y.mirror);
1669 
1670 
1671    if (devinfo->gen == 4) {
1672       /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
1673        * Convert them to a single slice on gen4.
1674        */
1675       if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1676          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->dst);
1677          wm_prog_key->need_dst_offset = true;
1678       }
1679 
1680       if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1681          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->src);
1682          wm_prog_key->need_src_offset = true;
1683       }
1684    }
1685 
1686    if (devinfo->gen > 6 &&
1687        params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1688       assert(params->dst.surf.samples > 1);
1689 
1690       /* We must expand the rectangle we send through the rendering pipeline,
1691        * to account for the fact that we are mapping the destination region as
1692        * single-sampled when it is in fact multisampled.  We must also align
1693        * it to a multiple of the multisampling pattern, because the
1694        * differences between multisampled and single-sampled surface formats
1695        * will mean that pixels are scrambled within the multisampling pattern.
1696        * TODO: what if this makes the coordinates too large?
1697        *
1698        * Note: this only works if the destination surface uses the IMS layout.
1699        * If it's UMS, then we have no choice but to set up the rendering
1700        * pipeline as multisampled.
1701        */
1702       struct isl_extent2d px_size_sa =
1703          isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1704       params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1705       params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1706       params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1707       params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1708 
1709       surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1710 
1711       wm_prog_key->use_kill = true;
1712       wm_prog_key->need_dst_offset = true;
1713    }
1714 
1715    if (params->dst.surf.tiling == ISL_TILING_W) {
1716       /* We must modify the rectangle we send through the rendering pipeline
1717        * (and the size and x/y offset of the destination surface), to account
1718        * for the fact that we are mapping it as Y-tiled when it is in fact
1719        * W-tiled.
1720        *
1721        * Both Y tiling and W tiling can be understood as organizations of
1722        * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
1723        * is different, but the layout of the 32-byte sub-tiles within the 4k
1724        * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
1725        * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
1726        * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
1727        *
1728        * Therefore, to account for the layout differences within the 32-byte
1729        * sub-tiles, we must expand the rectangle so the X coordinates of its
1730        * edges are multiples of 8 (the W sub-tile width), and its Y
1731        * coordinates of its edges are multiples of 4 (the W sub-tile height).
1732        * Then we need to scale the X and Y coordinates of the rectangle to
1733        * account for the differences in aspect ratio between the Y and W
1734        * sub-tiles.  We need to modify the layer width and height similarly.
1735        *
1736        * A correction needs to be applied when MSAA is in use: since
1737        * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
1738        * we need to align the Y coordinates to multiples of 8, so that when
1739        * they are divided by two they are still multiples of 4.
1740        *
1741        * Note: Since the x/y offset of the surface will be applied using the
1742        * SURFACE_STATE command packet, it will be invisible to the swizzling
1743        * code in the shader; therefore it needs to be in a multiple of the
1744        * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
1745        * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
1746        * buffer), and the miplevel alignment used for stencil buffers is 8
1747        * pixels horizontally and either 4 or 8 pixels vertically (see
1748        * intel_horizontal_texture_alignment_unit() and
1749        * intel_vertical_texture_alignment_unit()).
1750        *
1751        * Note: Also, since the SURFACE_STATE command packet can only apply
1752        * offsets that are multiples of 4 pixels horizontally and 2 pixels
1753        * vertically, it is important that the offsets will be multiples of
1754        * these sizes after they are converted into Y-tiled coordinates.
1755        * Fortunately they will be, since we know from above that the offsets
1756        * are a multiple of the 32-byte sub-tile size, and in Y-tiled
1757        * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
1758        *
1759        * TODO: what if this makes the coordinates (or the texture size) too
1760        * large?
1761        */
1762       const unsigned x_align = 8;
1763       const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
1764       params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
1765       params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
1766       params->x1 = ALIGN(params->x1, x_align) * 2;
1767       params->y1 = ALIGN(params->y1, y_align) / 2;
1768 
1769       /* Retile the surface to Y-tiled */
1770       surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
1771 
1772       wm_prog_key->dst_tiled_w = true;
1773       wm_prog_key->use_kill = true;
1774       wm_prog_key->need_dst_offset = true;
1775 
1776       if (params->dst.surf.samples > 1) {
1777          /* If the destination surface is a W-tiled multisampled stencil
1778           * buffer that we're mapping as Y tiled, then we need to arrange for
1779           * the WM program to run once per sample rather than once per pixel,
1780           * because the memory layout of related samples doesn't match between
1781           * W and Y tiling.
1782           */
1783          wm_prog_key->persample_msaa_dispatch = true;
1784       }
1785    }
1786 
1787    if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
1788       /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
1789        * Broadwell adds support for sampling from stencil.
1790        *
1791        * See the comments above concerning x/y offset alignment for the
1792        * destination surface.
1793        *
1794        * TODO: what if this makes the texture size too large?
1795        */
1796       surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
1797 
1798       wm_prog_key->src_tiled_w = true;
1799       wm_prog_key->need_src_offset = true;
1800    }
1801 
1802    /* tex_samples and rt_samples are the sample counts that are set up in
1803     * SURFACE_STATE.
1804     */
1805    wm_prog_key->tex_samples = params->src.surf.samples;
1806    wm_prog_key->rt_samples  = params->dst.surf.samples;
1807 
1808    /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1809     * use to access the source and destination surfaces.
1810     */
1811    wm_prog_key->tex_layout = params->src.surf.msaa_layout;
1812    wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
1813 
1814    if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
1815       /* We are blitting from a multisample buffer to a multisample buffer, so
1816        * we must preserve samples within a pixel.  This means we have to
1817        * arrange for the WM program to run once per sample rather than once
1818        * per pixel.
1819        */
1820       wm_prog_key->persample_msaa_dispatch = true;
1821    }
1822 
1823    params->num_samples = params->dst.surf.samples;
1824 
1825    if ((wm_prog_key->bilinear_filter ||
1826         (wm_prog_key->blend && !wm_prog_key->blit_scaled)) &&
1827        batch->blorp->isl_dev->info->gen <= 6) {
1828       /* Gen4-5 don't support non-normalized texture coordinates */
1829       wm_prog_key->src_coords_normalized = true;
1830       params->wm_inputs.src_inv_size[0] =
1831          1.0f / minify(params->src.surf.logical_level0_px.width,
1832                        params->src.view.base_level);
1833       params->wm_inputs.src_inv_size[1] =
1834          1.0f / minify(params->src.surf.logical_level0_px.height,
1835                        params->src.view.base_level);
1836    }
1837 
1838    if (params->src.tile_x_sa || params->src.tile_y_sa) {
1839       assert(wm_prog_key->need_src_offset);
1840       surf_get_intratile_offset_px(&params->src,
1841                                    &params->wm_inputs.src_offset.x,
1842                                    &params->wm_inputs.src_offset.y);
1843    }
1844 
1845    if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
1846       assert(wm_prog_key->need_dst_offset);
1847       surf_get_intratile_offset_px(&params->dst,
1848                                    &params->wm_inputs.dst_offset.x,
1849                                    &params->wm_inputs.dst_offset.y);
1850       params->x0 += params->wm_inputs.dst_offset.x;
1851       params->y0 += params->wm_inputs.dst_offset.y;
1852       params->x1 += params->wm_inputs.dst_offset.x;
1853       params->y1 += params->wm_inputs.dst_offset.y;
1854    }
1855 
1856    /* For some texture types, we need to pass the layer through the sampler. */
1857    params->wm_inputs.src_z = params->src.z_offset;
1858 
1859    if (!brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key))
1860       return 0;
1861 
1862    if (!blorp_ensure_sf_program(batch->blorp, params))
1863       return 0;
1864 
1865    unsigned result = 0;
1866    unsigned max_surface_size = get_max_surface_size(devinfo, params);
1867    if (params->src.surf.logical_level0_px.width > max_surface_size ||
1868        params->dst.surf.logical_level0_px.width > max_surface_size)
1869       result |= BLIT_WIDTH_SHRINK;
1870    if (params->src.surf.logical_level0_px.height > max_surface_size ||
1871        params->dst.surf.logical_level0_px.height > max_surface_size)
1872       result |= BLIT_HEIGHT_SHRINK;
1873 
1874    if (result == 0) {
1875       batch->blorp->exec(batch, params);
1876    }
1877 
1878    return result;
1879 }
1880 
1881 /* Adjust split blit source coordinates for the current destination
1882  * coordinates.
1883  */
1884 static void
adjust_split_source_coords(const struct blt_axis * orig,struct blt_axis * split_coords,double scale)1885 adjust_split_source_coords(const struct blt_axis *orig,
1886                            struct blt_axis *split_coords,
1887                            double scale)
1888 {
1889    /* When scale is greater than 0, then we are growing from the start, so
1890     * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
1891     * source range shrinks from the end. In that case src0 is adjusted by
1892     * delta1, and src1 is adjusted by delta0.
1893     */
1894    double delta0 = scale * (split_coords->dst0 - orig->dst0);
1895    double delta1 = scale * (split_coords->dst1 - orig->dst1);
1896    split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
1897    split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
1898 }
1899 
1900 static struct isl_extent2d
get_px_size_sa(const struct isl_surf * surf)1901 get_px_size_sa(const struct isl_surf *surf)
1902 {
1903    static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
1904 
1905    if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
1906       return one_to_one;
1907    else
1908       return isl_get_interleaved_msaa_px_size_sa(surf->samples);
1909 }
1910 
1911 static void
shrink_surface_params(const struct isl_device * dev,struct brw_blorp_surface_info * info,double * x0,double * x1,double * y0,double * y1)1912 shrink_surface_params(const struct isl_device *dev,
1913                       struct brw_blorp_surface_info *info,
1914                       double *x0, double *x1, double *y0, double *y1)
1915 {
1916    uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
1917    struct isl_extent2d px_size_sa;
1918    int adjust;
1919 
1920    blorp_surf_convert_to_single_slice(dev, info);
1921 
1922    px_size_sa = get_px_size_sa(&info->surf);
1923 
1924    /* Because this gets called after we lower compressed images, the tile
1925     * offsets may be non-zero and we need to incorporate them in our
1926     * calculations.
1927     */
1928    x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
1929    y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
1930    isl_tiling_get_intratile_offset_sa(info->surf.tiling,
1931                                       info->surf.format, info->surf.row_pitch,
1932                                       x_offset_sa, y_offset_sa,
1933                                       &byte_offset,
1934                                       &info->tile_x_sa, &info->tile_y_sa);
1935 
1936    info->addr.offset += byte_offset;
1937 
1938    adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
1939    *x0 += adjust;
1940    *x1 += adjust;
1941    info->tile_x_sa = 0;
1942 
1943    adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
1944    *y0 += adjust;
1945    *y1 += adjust;
1946    info->tile_y_sa = 0;
1947 
1948    size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
1949    info->surf.logical_level0_px.width = size;
1950    info->surf.phys_level0_sa.width = size * px_size_sa.w;
1951 
1952    size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
1953    info->surf.logical_level0_px.height = size;
1954    info->surf.phys_level0_sa.height = size * px_size_sa.h;
1955 }
1956 
1957 static void
shrink_surfaces(const struct isl_device * dev,struct blorp_params * params,struct brw_blorp_blit_prog_key * wm_prog_key,struct blt_coords * coords)1958 shrink_surfaces(const struct isl_device *dev,
1959                 struct blorp_params *params,
1960                 struct brw_blorp_blit_prog_key *wm_prog_key,
1961                 struct blt_coords *coords)
1962 {
1963    /* Shrink source surface */
1964    shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
1965                          &coords->y.src0, &coords->y.src1);
1966    wm_prog_key->need_src_offset = false;
1967 
1968    /* Shrink destination surface */
1969    shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
1970                          &coords->y.dst0, &coords->y.dst1);
1971    wm_prog_key->need_dst_offset = false;
1972 }
1973 
1974 static void
do_blorp_blit(struct blorp_batch * batch,const struct blorp_params * orig_params,struct brw_blorp_blit_prog_key * wm_prog_key,const struct blt_coords * orig)1975 do_blorp_blit(struct blorp_batch *batch,
1976               const struct blorp_params *orig_params,
1977               struct brw_blorp_blit_prog_key *wm_prog_key,
1978               const struct blt_coords *orig)
1979 {
1980    struct blorp_params params;
1981    struct blt_coords blit_coords;
1982    struct blt_coords split_coords = *orig;
1983    double w = orig->x.dst1 - orig->x.dst0;
1984    double h = orig->y.dst1 - orig->y.dst0;
1985    double x_scale = (orig->x.src1 - orig->x.src0) / w;
1986    double y_scale = (orig->y.src1 - orig->y.src0) / h;
1987    if (orig->x.mirror)
1988       x_scale = -x_scale;
1989    if (orig->y.mirror)
1990       y_scale = -y_scale;
1991 
1992    bool x_done, y_done;
1993    bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
1994    do {
1995       params = *orig_params;
1996       blit_coords = split_coords;
1997       if (shrink)
1998          shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
1999                          &blit_coords);
2000       enum blit_shrink_status result =
2001          try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
2002 
2003       if (result & BLIT_WIDTH_SHRINK) {
2004          w /= 2.0;
2005          assert(w >= 1.0);
2006          split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2007          adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2008       }
2009       if (result & BLIT_HEIGHT_SHRINK) {
2010          h /= 2.0;
2011          assert(h >= 1.0);
2012          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2013          adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2014       }
2015 
2016       if (result != 0) {
2017          assert(can_shrink_surfaces(orig_params));
2018          shrink = true;
2019          continue;
2020       }
2021 
2022       y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
2023       x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
2024       if (x_done) {
2025          break;
2026       } else if (y_done) {
2027          split_coords.x.dst0 += w;
2028          split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2029          split_coords.y.dst0 = orig->y.dst0;
2030          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2031          adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2032       } else {
2033          split_coords.y.dst0 += h;
2034          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2035          adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2036       }
2037    } while (true);
2038 }
2039 
2040 void
blorp_blit(struct blorp_batch * batch,const struct blorp_surf * src_surf,unsigned src_level,unsigned src_layer,enum isl_format src_format,struct isl_swizzle src_swizzle,const struct blorp_surf * dst_surf,unsigned dst_level,unsigned dst_layer,enum isl_format dst_format,struct isl_swizzle dst_swizzle,float src_x0,float src_y0,float src_x1,float src_y1,float dst_x0,float dst_y0,float dst_x1,float dst_y1,GLenum filter,bool mirror_x,bool mirror_y)2041 blorp_blit(struct blorp_batch *batch,
2042            const struct blorp_surf *src_surf,
2043            unsigned src_level, unsigned src_layer,
2044            enum isl_format src_format, struct isl_swizzle src_swizzle,
2045            const struct blorp_surf *dst_surf,
2046            unsigned dst_level, unsigned dst_layer,
2047            enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2048            float src_x0, float src_y0,
2049            float src_x1, float src_y1,
2050            float dst_x0, float dst_y0,
2051            float dst_x1, float dst_y1,
2052            GLenum filter, bool mirror_x, bool mirror_y)
2053 {
2054    struct blorp_params params;
2055    blorp_params_init(&params);
2056 
2057    /* We cannot handle combined depth and stencil. */
2058    if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2059       assert(src_surf->surf->format == ISL_FORMAT_R8_UINT);
2060    if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2061       assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT);
2062 
2063    if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
2064       assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT);
2065       /* Prior to Broadwell, we can't render to R8_UINT */
2066       if (batch->blorp->isl_dev->info->gen < 8) {
2067          src_format = ISL_FORMAT_R8_UNORM;
2068          dst_format = ISL_FORMAT_R8_UNORM;
2069       }
2070    }
2071 
2072    brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2073                                src_layer, src_format, false);
2074    brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2075                                dst_layer, dst_format, true);
2076 
2077    params.src.view.swizzle = src_swizzle;
2078    params.dst.view.swizzle = dst_swizzle;
2079 
2080    struct brw_blorp_blit_prog_key wm_prog_key = {
2081       .shader_type = BLORP_SHADER_TYPE_BLIT
2082    };
2083 
2084    /* Scaled blitting or not. */
2085    wm_prog_key.blit_scaled =
2086       ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2087        (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2088 
2089    /* Scaling factors used for bilinear filtering in multisample scaled
2090     * blits.
2091     */
2092    if (params.src.surf.samples == 16)
2093       wm_prog_key.x_scale = 4.0f;
2094    else
2095       wm_prog_key.x_scale = 2.0f;
2096    wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
2097 
2098    if (filter == GL_LINEAR &&
2099        params.src.surf.samples <= 1 && params.dst.surf.samples <= 1) {
2100       wm_prog_key.bilinear_filter = true;
2101    }
2102 
2103    if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
2104        (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
2105        !isl_format_has_int_channel(params.src.surf.format) &&
2106        params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
2107       /* We are downsampling a non-integer color buffer, so blend.
2108        *
2109        * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
2110        *
2111        *    "If the source formats are integer types or stencil values, a
2112        *    single sample's value is selected for each pixel."
2113        *
2114        * This implies we should not blend in that case.
2115        */
2116       wm_prog_key.blend = true;
2117    }
2118 
2119    params.wm_inputs.rect_grid.x1 =
2120       minify(params.src.surf.logical_level0_px.width, src_level) *
2121       wm_prog_key.x_scale - 1.0f;
2122    params.wm_inputs.rect_grid.y1 =
2123       minify(params.src.surf.logical_level0_px.height, src_level) *
2124       wm_prog_key.y_scale - 1.0f;
2125 
2126    struct blt_coords coords = {
2127       .x = {
2128          .src0 = src_x0,
2129          .src1 = src_x1,
2130          .dst0 = dst_x0,
2131          .dst1 = dst_x1,
2132          .mirror = mirror_x
2133       },
2134       .y = {
2135          .src0 = src_y0,
2136          .src1 = src_y1,
2137          .dst0 = dst_y0,
2138          .dst1 = dst_y1,
2139          .mirror = mirror_y
2140       }
2141    };
2142 
2143    do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2144 }
2145 
2146 static enum isl_format
get_copy_format_for_bpb(const struct isl_device * isl_dev,unsigned bpb)2147 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2148 {
2149    /* The choice of UNORM and UINT formats is very intentional here.  Most
2150     * of the time, we want to use a UINT format to avoid any rounding error
2151     * in the blit.  For stencil blits, R8_UINT is required by the hardware.
2152     * (It's the only format allowed in conjunction with W-tiling.)  Also we
2153     * intentionally use the 4-channel formats whenever we can.  This is so
2154     * that, when we do a RGB <-> RGBX copy, the two formats will line up
2155     * even though one of them is 3/4 the size of the other.  The choice of
2156     * UNORM vs. UINT is also very intentional because we don't have 8 or
2157     * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2158     * Fortunately, the only time we should ever use two different formats in
2159     * the table below is for RGB -> RGBA blits and so we will never have any
2160     * UNORM/UINT mismatch.
2161     */
2162    if (ISL_DEV_GEN(isl_dev) >= 9) {
2163       switch (bpb) {
2164       case 8:  return ISL_FORMAT_R8_UINT;
2165       case 16: return ISL_FORMAT_R8G8_UINT;
2166       case 24: return ISL_FORMAT_R8G8B8_UINT;
2167       case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2168       case 48: return ISL_FORMAT_R16G16B16_UINT;
2169       case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2170       case 96: return ISL_FORMAT_R32G32B32_UINT;
2171       case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2172       default:
2173          unreachable("Unknown format bpb");
2174       }
2175    } else {
2176       switch (bpb) {
2177       case 8:  return ISL_FORMAT_R8_UINT;
2178       case 16: return ISL_FORMAT_R8G8_UINT;
2179       case 24: return ISL_FORMAT_R8G8B8_UNORM;
2180       case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2181       case 48: return ISL_FORMAT_R16G16B16_UNORM;
2182       case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2183       case 96: return ISL_FORMAT_R32G32B32_UINT;
2184       case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2185       default:
2186          unreachable("Unknown format bpb");
2187       }
2188    }
2189 }
2190 
2191 /** Returns a UINT format that is CCS-compatible with the given format
2192  *
2193  * The PRM's say absolutely nothing about how render compression works.  The
2194  * only thing they provide is a list of formats on which it is and is not
2195  * supported.  Empirical testing indicates that the compression is only based
2196  * on the bit-layout of the format and the channel encoding doesn't matter.
2197  * So, while texture views don't work in general, you can create a view as
2198  * long as the bit-layout of the formats are the same.
2199  *
2200  * Fortunately, for every render compression capable format, the UINT format
2201  * with the same bit layout also supports render compression.  This means that
2202  * we only need to handle UINT formats for copy operations.  In order to do
2203  * copies between formats with different bit layouts, we attach both with a
2204  * UINT format and use bit_cast_color() to generate code to do the bit-cast
2205  * operation between the two bit layouts.
2206  */
2207 static enum isl_format
get_ccs_compatible_uint_format(const struct isl_format_layout * fmtl)2208 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
2209 {
2210    switch (fmtl->format) {
2211    case ISL_FORMAT_R32G32B32A32_FLOAT:
2212    case ISL_FORMAT_R32G32B32A32_SINT:
2213    case ISL_FORMAT_R32G32B32A32_UINT:
2214    case ISL_FORMAT_R32G32B32A32_UNORM:
2215    case ISL_FORMAT_R32G32B32A32_SNORM:
2216    case ISL_FORMAT_R32G32B32X32_FLOAT:
2217       return ISL_FORMAT_R32G32B32A32_UINT;
2218 
2219    case ISL_FORMAT_R16G16B16A16_UNORM:
2220    case ISL_FORMAT_R16G16B16A16_SNORM:
2221    case ISL_FORMAT_R16G16B16A16_SINT:
2222    case ISL_FORMAT_R16G16B16A16_UINT:
2223    case ISL_FORMAT_R16G16B16A16_FLOAT:
2224    case ISL_FORMAT_R16G16B16X16_UNORM:
2225    case ISL_FORMAT_R16G16B16X16_FLOAT:
2226       return ISL_FORMAT_R16G16B16A16_UINT;
2227 
2228    case ISL_FORMAT_R32G32_FLOAT:
2229    case ISL_FORMAT_R32G32_SINT:
2230    case ISL_FORMAT_R32G32_UINT:
2231    case ISL_FORMAT_R32G32_UNORM:
2232    case ISL_FORMAT_R32G32_SNORM:
2233       return ISL_FORMAT_R32G32_UINT;
2234 
2235    case ISL_FORMAT_B8G8R8A8_UNORM:
2236    case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2237    case ISL_FORMAT_R8G8B8A8_UNORM:
2238    case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2239    case ISL_FORMAT_R8G8B8A8_SNORM:
2240    case ISL_FORMAT_R8G8B8A8_SINT:
2241    case ISL_FORMAT_R8G8B8A8_UINT:
2242    case ISL_FORMAT_B8G8R8X8_UNORM:
2243    case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2244    case ISL_FORMAT_R8G8B8X8_UNORM:
2245    case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2246       return ISL_FORMAT_R8G8B8A8_UINT;
2247 
2248    case ISL_FORMAT_R16G16_UNORM:
2249    case ISL_FORMAT_R16G16_SNORM:
2250    case ISL_FORMAT_R16G16_SINT:
2251    case ISL_FORMAT_R16G16_UINT:
2252    case ISL_FORMAT_R16G16_FLOAT:
2253       return ISL_FORMAT_R16G16_UINT;
2254 
2255    case ISL_FORMAT_R32_SINT:
2256    case ISL_FORMAT_R32_UINT:
2257    case ISL_FORMAT_R32_FLOAT:
2258    case ISL_FORMAT_R32_UNORM:
2259    case ISL_FORMAT_R32_SNORM:
2260       return ISL_FORMAT_R32_UINT;
2261 
2262    default:
2263       unreachable("Not a compressible format");
2264    }
2265 }
2266 
2267 /* Takes an isl_color_value and returns a color value that is the original
2268  * color value only bit-casted to a UINT format.  This value, together with
2269  * the format from get_ccs_compatible_uint_format, will yield the same bit
2270  * value as the original color and format.
2271  */
2272 static union isl_color_value
bitcast_color_value_to_uint(union isl_color_value color,const struct isl_format_layout * fmtl)2273 bitcast_color_value_to_uint(union isl_color_value color,
2274                             const struct isl_format_layout *fmtl)
2275 {
2276    /* All CCS formats have the same number of bits in each channel */
2277    const struct isl_channel_layout *chan = &fmtl->channels.r;
2278 
2279    union isl_color_value bits;
2280    switch (chan->type) {
2281    case ISL_UINT:
2282    case ISL_SINT:
2283       /* Hardware will ignore the high bits so there's no need to cast */
2284       bits = color;
2285       break;
2286 
2287    case ISL_UNORM:
2288       for (unsigned i = 0; i < 4; i++)
2289          bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
2290       break;
2291 
2292    case ISL_SNORM:
2293       for (unsigned i = 0; i < 4; i++)
2294          bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
2295       break;
2296 
2297    case ISL_SFLOAT:
2298       switch (chan->bits) {
2299       case 16:
2300          for (unsigned i = 0; i < 4; i++)
2301             bits.u32[i] = _mesa_float_to_half(color.f32[i]);
2302          break;
2303 
2304       case 32:
2305          bits = color;
2306          break;
2307 
2308       default:
2309          unreachable("Invalid float format size");
2310       }
2311       break;
2312 
2313    default:
2314       unreachable("Invalid channel type");
2315    }
2316 
2317    switch (fmtl->format) {
2318    case ISL_FORMAT_B8G8R8A8_UNORM:
2319    case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2320    case ISL_FORMAT_B8G8R8X8_UNORM:
2321    case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
2322       /* If it's a BGRA format, we need to swap blue and red */
2323       uint32_t tmp = bits.u32[0];
2324       bits.u32[0] = bits.u32[2];
2325       bits.u32[2] = tmp;
2326       break;
2327    }
2328 
2329    default:
2330       break; /* Nothing to do */
2331    }
2332 
2333    return bits;
2334 }
2335 
2336 void
blorp_surf_convert_to_uncompressed(const struct isl_device * isl_dev,struct brw_blorp_surface_info * info,uint32_t * x,uint32_t * y,uint32_t * width,uint32_t * height)2337 blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2338                                    struct brw_blorp_surface_info *info,
2339                                    uint32_t *x, uint32_t *y,
2340                                    uint32_t *width, uint32_t *height)
2341 {
2342    const struct isl_format_layout *fmtl =
2343       isl_format_get_layout(info->surf.format);
2344 
2345    assert(fmtl->bw > 1 || fmtl->bh > 1);
2346 
2347    /* This is a compressed surface.  We need to convert it to a single
2348     * slice (because compressed layouts don't perfectly match uncompressed
2349     * ones with the same bpb) and divide x, y, width, and height by the
2350     * block size.
2351     */
2352    blorp_surf_convert_to_single_slice(isl_dev, info);
2353 
2354    if (width && height) {
2355 #ifndef NDEBUG
2356       uint32_t right_edge_px = info->tile_x_sa + *x + *width;
2357       uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
2358       assert(*width % fmtl->bw == 0 ||
2359              right_edge_px == info->surf.logical_level0_px.width);
2360       assert(*height % fmtl->bh == 0 ||
2361              bottom_edge_px == info->surf.logical_level0_px.height);
2362 #endif
2363       *width = DIV_ROUND_UP(*width, fmtl->bw);
2364       *height = DIV_ROUND_UP(*height, fmtl->bh);
2365    }
2366 
2367    if (x && y) {
2368       assert(*x % fmtl->bw == 0);
2369       assert(*y % fmtl->bh == 0);
2370       *x /= fmtl->bw;
2371       *y /= fmtl->bh;
2372    }
2373 
2374    info->surf.logical_level0_px.width =
2375       DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
2376    info->surf.logical_level0_px.height =
2377       DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
2378 
2379    assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
2380    assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
2381    info->surf.phys_level0_sa.width /= fmtl->bw;
2382    info->surf.phys_level0_sa.height /= fmtl->bh;
2383 
2384    assert(info->tile_x_sa % fmtl->bw == 0);
2385    assert(info->tile_y_sa % fmtl->bh == 0);
2386    info->tile_x_sa /= fmtl->bw;
2387    info->tile_y_sa /= fmtl->bh;
2388 
2389    /* It's now an uncompressed surface so we need an uncompressed format */
2390    info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
2391 }
2392 
2393 void
blorp_copy(struct blorp_batch * batch,const struct blorp_surf * src_surf,unsigned src_level,unsigned src_layer,const struct blorp_surf * dst_surf,unsigned dst_level,unsigned dst_layer,uint32_t src_x,uint32_t src_y,uint32_t dst_x,uint32_t dst_y,uint32_t src_width,uint32_t src_height)2394 blorp_copy(struct blorp_batch *batch,
2395            const struct blorp_surf *src_surf,
2396            unsigned src_level, unsigned src_layer,
2397            const struct blorp_surf *dst_surf,
2398            unsigned dst_level, unsigned dst_layer,
2399            uint32_t src_x, uint32_t src_y,
2400            uint32_t dst_x, uint32_t dst_y,
2401            uint32_t src_width, uint32_t src_height)
2402 {
2403    const struct isl_device *isl_dev = batch->blorp->isl_dev;
2404    struct blorp_params params;
2405 
2406    if (src_width == 0 || src_height == 0)
2407       return;
2408 
2409    blorp_params_init(&params);
2410    brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2411                                src_layer, ISL_FORMAT_UNSUPPORTED, false);
2412    brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2413                                dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2414 
2415    struct brw_blorp_blit_prog_key wm_prog_key = {
2416       .shader_type = BLORP_SHADER_TYPE_BLIT
2417    };
2418 
2419    const struct isl_format_layout *src_fmtl =
2420       isl_format_get_layout(params.src.surf.format);
2421    const struct isl_format_layout *dst_fmtl =
2422       isl_format_get_layout(params.dst.surf.format);
2423 
2424    assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2425           params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2426           params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
2427    assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
2428           params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
2429           params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
2430 
2431    if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2432       params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
2433       if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2434          params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2435       } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2436          params.src.view.format = params.dst.view.format;
2437       } else {
2438          params.src.view.format =
2439             get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2440       }
2441    } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2442       params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2443       if (src_fmtl->bpb == dst_fmtl->bpb) {
2444          params.dst.view.format = params.src.view.format;
2445       } else {
2446          params.dst.view.format =
2447             get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2448       }
2449    } else {
2450       params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2451       params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2452    }
2453 
2454    if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2455       /* It's safe to do a blorp_copy between things which are sRGB with CCS_E
2456        * enabled even though CCS_E doesn't technically do sRGB on SKL because
2457        * we stomp everything to UINT anyway.  The one thing we have to be
2458        * careful of is clear colors.  Because fast clear colors for sRGB on
2459        * gen9 are encoded as the float values between format conversion and
2460        * sRGB curve application, a given clear color float will convert to the
2461        * same bits regardless of whether the format is UNORM or sRGB.
2462        * Therefore, we can handle sRGB without any special cases.
2463        */
2464       UNUSED enum isl_format linear_src_format =
2465          isl_format_srgb_to_linear(src_surf->surf->format);
2466       assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2467                                               linear_src_format,
2468                                               params.src.view.format));
2469       params.src.clear_color =
2470          bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
2471    }
2472 
2473    if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2474       /* See above where we handle linear_src_format */
2475       UNUSED enum isl_format linear_dst_format =
2476          isl_format_srgb_to_linear(dst_surf->surf->format);
2477       assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2478                                               linear_dst_format,
2479                                               params.dst.view.format));
2480       params.dst.clear_color =
2481          bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
2482    }
2483 
2484    wm_prog_key.src_bpc =
2485       isl_format_get_layout(params.src.view.format)->channels.r.bits;
2486    wm_prog_key.dst_bpc =
2487       isl_format_get_layout(params.dst.view.format)->channels.r.bits;
2488 
2489    if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2490       blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2491                                          &src_x, &src_y,
2492                                          &src_width, &src_height);
2493       wm_prog_key.need_src_offset = true;
2494    }
2495 
2496    if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2497       blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2498                                          &dst_x, &dst_y, NULL, NULL);
2499       wm_prog_key.need_dst_offset = true;
2500    }
2501 
2502    /* Once both surfaces are stompped to uncompressed as needed, the
2503     * destination size is the same as the source size.
2504     */
2505    uint32_t dst_width = src_width;
2506    uint32_t dst_height = src_height;
2507 
2508    struct blt_coords coords = {
2509       .x = {
2510          .src0 = src_x,
2511          .src1 = src_x + src_width,
2512          .dst0 = dst_x,
2513          .dst1 = dst_x + dst_width,
2514          .mirror = false
2515       },
2516       .y = {
2517          .src0 = src_y,
2518          .src1 = src_y + src_height,
2519          .dst0 = dst_y,
2520          .dst1 = dst_y + dst_height,
2521          .mirror = false
2522       }
2523    };
2524 
2525    do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2526 }
2527 
2528 static enum isl_format
isl_format_for_size(unsigned size_B)2529 isl_format_for_size(unsigned size_B)
2530 {
2531    switch (size_B) {
2532    case 1:  return ISL_FORMAT_R8_UINT;
2533    case 2:  return ISL_FORMAT_R8G8_UINT;
2534    case 4:  return ISL_FORMAT_R8G8B8A8_UINT;
2535    case 8:  return ISL_FORMAT_R16G16B16A16_UINT;
2536    case 16: return ISL_FORMAT_R32G32B32A32_UINT;
2537    default:
2538       unreachable("Not a power-of-two format size");
2539    }
2540 }
2541 
2542 /**
2543  * Returns the greatest common divisor of a and b that is a power of two.
2544  */
2545 static uint64_t
gcd_pow2_u64(uint64_t a,uint64_t b)2546 gcd_pow2_u64(uint64_t a, uint64_t b)
2547 {
2548    assert(a > 0 || b > 0);
2549 
2550    unsigned a_log2 = ffsll(a) - 1;
2551    unsigned b_log2 = ffsll(b) - 1;
2552 
2553    /* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
2554     * case, the MIN2() will take the other one.  If both are 0 then we will
2555     * hit the assert above.
2556     */
2557    return 1 << MIN2(a_log2, b_log2);
2558 }
2559 
2560 static void
do_buffer_copy(struct blorp_batch * batch,struct blorp_address * src,struct blorp_address * dst,int width,int height,int block_size)2561 do_buffer_copy(struct blorp_batch *batch,
2562                struct blorp_address *src,
2563                struct blorp_address *dst,
2564                int width, int height, int block_size)
2565 {
2566    /* The actual format we pick doesn't matter as blorp will throw it away.
2567     * The only thing that actually matters is the size.
2568     */
2569    enum isl_format format = isl_format_for_size(block_size);
2570 
2571    UNUSED bool ok;
2572    struct isl_surf surf;
2573    ok = isl_surf_init(batch->blorp->isl_dev, &surf,
2574                       .dim = ISL_SURF_DIM_2D,
2575                       .format = format,
2576                       .width = width,
2577                       .height = height,
2578                       .depth = 1,
2579                       .levels = 1,
2580                       .array_len = 1,
2581                       .samples = 1,
2582                       .row_pitch = width * block_size,
2583                       .usage = ISL_SURF_USAGE_TEXTURE_BIT |
2584                                ISL_SURF_USAGE_RENDER_TARGET_BIT,
2585                       .tiling_flags = ISL_TILING_LINEAR_BIT);
2586    assert(ok);
2587 
2588    struct blorp_surf src_blorp_surf = {
2589       .surf = &surf,
2590       .addr = *src,
2591    };
2592 
2593    struct blorp_surf dst_blorp_surf = {
2594       .surf = &surf,
2595       .addr = *dst,
2596    };
2597 
2598    blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
2599               0, 0, 0, 0, width, height);
2600 }
2601 
2602 void
blorp_buffer_copy(struct blorp_batch * batch,struct blorp_address src,struct blorp_address dst,uint64_t size)2603 blorp_buffer_copy(struct blorp_batch *batch,
2604                   struct blorp_address src,
2605                   struct blorp_address dst,
2606                   uint64_t size)
2607 {
2608    const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
2609    uint64_t copy_size = size;
2610 
2611    /* This is maximum possible width/height our HW can handle */
2612    uint64_t max_surface_dim = 1 << (devinfo->gen >= 7 ? 14 : 13);
2613 
2614    /* First, we compute the biggest format that can be used with the
2615     * given offsets and size.
2616     */
2617    int bs = 16;
2618    bs = gcd_pow2_u64(bs, src.offset);
2619    bs = gcd_pow2_u64(bs, dst.offset);
2620    bs = gcd_pow2_u64(bs, size);
2621 
2622    /* First, we make a bunch of max-sized copies */
2623    uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
2624    while (copy_size >= max_copy_size) {
2625       do_buffer_copy(batch, &src, &dst, max_surface_dim, max_surface_dim, bs);
2626       copy_size -= max_copy_size;
2627       src.offset += max_copy_size;
2628       dst.offset += max_copy_size;
2629    }
2630 
2631    /* Now make a max-width copy */
2632    uint64_t height = copy_size / (max_surface_dim * bs);
2633    assert(height < max_surface_dim);
2634    if (height != 0) {
2635       uint64_t rect_copy_size = height * max_surface_dim * bs;
2636       do_buffer_copy(batch, &src, &dst, max_surface_dim, height, bs);
2637       copy_size -= rect_copy_size;
2638       src.offset += rect_copy_size;
2639       dst.offset += rect_copy_size;
2640    }
2641 
2642    /* Finally, make a small copy to finish it off */
2643    if (copy_size != 0) {
2644       do_buffer_copy(batch, &src, &dst, copy_size / bs, 1, bs);
2645    }
2646 }
2647