1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVIDIA Tegra SPI-SLINK controller
4  *
5  * Copyright (c) 2010-2013 NVIDIA Corporation
6  */
7 
8 #include <common.h>
9 #include <dm.h>
10 #include <asm/io.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch-tegra/clk_rst.h>
13 #include <spi.h>
14 #include <fdtdec.h>
15 #include "tegra_spi.h"
16 
17 DECLARE_GLOBAL_DATA_PTR;
18 
19 /* COMMAND */
20 #define SLINK_CMD_ENB			BIT(31)
21 #define SLINK_CMD_GO			BIT(30)
22 #define SLINK_CMD_M_S			BIT(28)
23 #define SLINK_CMD_IDLE_SCLK_DRIVE_LOW	(0 << 24)
24 #define SLINK_CMD_IDLE_SCLK_DRIVE_HIGH	BIT(24)
25 #define SLINK_CMD_IDLE_SCLK_PULL_LOW	(2 << 24)
26 #define SLINK_CMD_IDLE_SCLK_PULL_HIGH	(3 << 24)
27 #define SLINK_CMD_IDLE_SCLK_MASK	(3 << 24)
28 #define SLINK_CMD_CK_SDA		BIT(21)
29 #define SLINK_CMD_CS_POL		BIT(13)
30 #define SLINK_CMD_CS_VAL		BIT(12)
31 #define SLINK_CMD_CS_SOFT		BIT(11)
32 #define SLINK_CMD_BIT_LENGTH		BIT(4)
33 #define SLINK_CMD_BIT_LENGTH_MASK	GENMASK(4, 0)
34 /* COMMAND2 */
35 #define SLINK_CMD2_TXEN			BIT(30)
36 #define SLINK_CMD2_RXEN			BIT(31)
37 #define SLINK_CMD2_SS_EN		BIT(18)
38 #define SLINK_CMD2_SS_EN_SHIFT		18
39 #define SLINK_CMD2_SS_EN_MASK		GENMASK(19, 18)
40 #define SLINK_CMD2_CS_ACTIVE_BETWEEN	BIT(17)
41 /* STATUS */
42 #define SLINK_STAT_BSY			BIT(31)
43 #define SLINK_STAT_RDY			BIT(30)
44 #define SLINK_STAT_ERR			BIT(29)
45 #define SLINK_STAT_RXF_FLUSH		BIT(27)
46 #define SLINK_STAT_TXF_FLUSH		BIT(26)
47 #define SLINK_STAT_RXF_OVF		BIT(25)
48 #define SLINK_STAT_TXF_UNR		BIT(24)
49 #define SLINK_STAT_RXF_EMPTY		BIT(23)
50 #define SLINK_STAT_RXF_FULL		BIT(22)
51 #define SLINK_STAT_TXF_EMPTY		BIT(21)
52 #define SLINK_STAT_TXF_FULL		BIT(20)
53 #define SLINK_STAT_TXF_OVF		BIT(19)
54 #define SLINK_STAT_RXF_UNR		BIT(18)
55 #define SLINK_STAT_CUR_BLKCNT		BIT(15)
56 /* STATUS2 */
57 #define SLINK_STAT2_RXF_FULL_CNT	BIT(16)
58 #define SLINK_STAT2_TXF_FULL_CNT	BIT(0)
59 
60 #define SPI_TIMEOUT		1000
61 #define TEGRA_SPI_MAX_FREQ	52000000
62 
63 struct spi_regs {
64 	u32 command;	/* SLINK_COMMAND_0 register  */
65 	u32 command2;	/* SLINK_COMMAND2_0 reg */
66 	u32 status;	/* SLINK_STATUS_0 register */
67 	u32 reserved;	/* Reserved offset 0C */
68 	u32 mas_data;	/* SLINK_MAS_DATA_0 reg */
69 	u32 slav_data;	/* SLINK_SLAVE_DATA_0 reg */
70 	u32 dma_ctl;	/* SLINK_DMA_CTL_0 register */
71 	u32 status2;	/* SLINK_STATUS2_0 reg */
72 	u32 rsvd[56];	/* 0x20 to 0xFF reserved */
73 	u32 tx_fifo;	/* SLINK_TX_FIFO_0 reg off 100h */
74 	u32 rsvd2[31];	/* 0x104 to 0x17F reserved */
75 	u32 rx_fifo;	/* SLINK_RX_FIFO_0 reg off 180h */
76 };
77 
78 struct tegra30_spi_priv {
79 	struct spi_regs *regs;
80 	unsigned int freq;
81 	unsigned int mode;
82 	int periph_id;
83 	int valid;
84 	int last_transaction_us;
85 };
86 
87 struct tegra_spi_slave {
88 	struct spi_slave slave;
89 	struct tegra30_spi_priv *ctrl;
90 };
91 
tegra30_spi_ofdata_to_platdata(struct udevice * bus)92 static int tegra30_spi_ofdata_to_platdata(struct udevice *bus)
93 {
94 	struct tegra_spi_platdata *plat = bus->platdata;
95 	const void *blob = gd->fdt_blob;
96 	int node = dev_of_offset(bus);
97 
98 	plat->base = devfdt_get_addr(bus);
99 	plat->periph_id = clock_decode_periph_id(bus);
100 
101 	if (plat->periph_id == PERIPH_ID_NONE) {
102 		debug("%s: could not decode periph id %d\n", __func__,
103 		      plat->periph_id);
104 		return -FDT_ERR_NOTFOUND;
105 	}
106 
107 	/* Use 500KHz as a suitable default */
108 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
109 					500000);
110 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
111 					"spi-deactivate-delay", 0);
112 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
113 	      __func__, plat->base, plat->periph_id, plat->frequency,
114 	      plat->deactivate_delay_us);
115 
116 	return 0;
117 }
118 
tegra30_spi_probe(struct udevice * bus)119 static int tegra30_spi_probe(struct udevice *bus)
120 {
121 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
122 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
123 
124 	priv->regs = (struct spi_regs *)plat->base;
125 
126 	priv->last_transaction_us = timer_get_us();
127 	priv->freq = plat->frequency;
128 	priv->periph_id = plat->periph_id;
129 
130 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
131 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
132 			       priv->freq);
133 
134 	return 0;
135 }
136 
tegra30_spi_claim_bus(struct udevice * dev)137 static int tegra30_spi_claim_bus(struct udevice *dev)
138 {
139 	struct udevice *bus = dev->parent;
140 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
141 	struct spi_regs *regs = priv->regs;
142 	u32 reg;
143 
144 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
145 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
146 			       priv->freq);
147 
148 	/* Clear stale status here */
149 	reg = SLINK_STAT_RDY | SLINK_STAT_RXF_FLUSH | SLINK_STAT_TXF_FLUSH | \
150 		SLINK_STAT_RXF_UNR | SLINK_STAT_TXF_OVF;
151 	writel(reg, &regs->status);
152 	debug("%s: STATUS = %08x\n", __func__, readl(&regs->status));
153 
154 	/* Set master mode and sw controlled CS */
155 	reg = readl(&regs->command);
156 	reg |= SLINK_CMD_M_S | SLINK_CMD_CS_SOFT;
157 	writel(reg, &regs->command);
158 	debug("%s: COMMAND = %08x\n", __func__, readl(&regs->command));
159 
160 	return 0;
161 }
162 
spi_cs_activate(struct udevice * dev)163 static void spi_cs_activate(struct udevice *dev)
164 {
165 	struct udevice *bus = dev->parent;
166 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
167 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
168 
169 	/* If it's too soon to do another transaction, wait */
170 	if (pdata->deactivate_delay_us &&
171 	    priv->last_transaction_us) {
172 		ulong delay_us;		/* The delay completed so far */
173 		delay_us = timer_get_us() - priv->last_transaction_us;
174 		if (delay_us < pdata->deactivate_delay_us)
175 			udelay(pdata->deactivate_delay_us - delay_us);
176 	}
177 
178 	/* CS is negated on Tegra, so drive a 1 to get a 0 */
179 	setbits_le32(&priv->regs->command, SLINK_CMD_CS_VAL);
180 }
181 
spi_cs_deactivate(struct udevice * dev)182 static void spi_cs_deactivate(struct udevice *dev)
183 {
184 	struct udevice *bus = dev->parent;
185 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
186 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
187 
188 	/* CS is negated on Tegra, so drive a 0 to get a 1 */
189 	clrbits_le32(&priv->regs->command, SLINK_CMD_CS_VAL);
190 
191 	/* Remember time of this transaction so we can honour the bus delay */
192 	if (pdata->deactivate_delay_us)
193 		priv->last_transaction_us = timer_get_us();
194 }
195 
tegra30_spi_xfer(struct udevice * dev,unsigned int bitlen,const void * data_out,void * data_in,unsigned long flags)196 static int tegra30_spi_xfer(struct udevice *dev, unsigned int bitlen,
197 			    const void *data_out, void *data_in,
198 			    unsigned long flags)
199 {
200 	struct udevice *bus = dev->parent;
201 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
202 	struct spi_regs *regs = priv->regs;
203 	u32 reg, tmpdout, tmpdin = 0;
204 	const u8 *dout = data_out;
205 	u8 *din = data_in;
206 	int num_bytes;
207 	int ret;
208 
209 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
210 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
211 	if (bitlen % 8)
212 		return -1;
213 	num_bytes = bitlen / 8;
214 
215 	ret = 0;
216 
217 	reg = readl(&regs->status);
218 	writel(reg, &regs->status);	/* Clear all SPI events via R/W */
219 	debug("%s entry: STATUS = %08x\n", __func__, reg);
220 
221 	reg = readl(&regs->status2);
222 	writel(reg, &regs->status2);	/* Clear all STATUS2 events via R/W */
223 	debug("%s entry: STATUS2 = %08x\n", __func__, reg);
224 
225 	debug("%s entry: COMMAND = %08x\n", __func__, readl(&regs->command));
226 
227 	clrsetbits_le32(&regs->command2, SLINK_CMD2_SS_EN_MASK,
228 			SLINK_CMD2_TXEN | SLINK_CMD2_RXEN |
229 			(spi_chip_select(dev) << SLINK_CMD2_SS_EN_SHIFT));
230 	debug("%s entry: COMMAND2 = %08x\n", __func__, readl(&regs->command2));
231 
232 	if (flags & SPI_XFER_BEGIN)
233 		spi_cs_activate(dev);
234 
235 	/* handle data in 32-bit chunks */
236 	while (num_bytes > 0) {
237 		int bytes;
238 		int is_read = 0;
239 		int tm, i;
240 
241 		tmpdout = 0;
242 		bytes = (num_bytes > 4) ?  4 : num_bytes;
243 
244 		if (dout != NULL) {
245 			for (i = 0; i < bytes; ++i)
246 				tmpdout = (tmpdout << 8) | dout[i];
247 			dout += bytes;
248 		}
249 
250 		num_bytes -= bytes;
251 
252 		clrsetbits_le32(&regs->command, SLINK_CMD_BIT_LENGTH_MASK,
253 				bytes * 8 - 1);
254 		writel(tmpdout, &regs->tx_fifo);
255 		setbits_le32(&regs->command, SLINK_CMD_GO);
256 
257 		/*
258 		 * Wait for SPI transmit FIFO to empty, or to time out.
259 		 * The RX FIFO status will be read and cleared last
260 		 */
261 		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
262 			u32 status;
263 
264 			status = readl(&regs->status);
265 
266 			/* We can exit when we've had both RX and TX activity */
267 			if (is_read && (status & SLINK_STAT_TXF_EMPTY))
268 				break;
269 
270 			if ((status & (SLINK_STAT_BSY | SLINK_STAT_RDY)) !=
271 					SLINK_STAT_RDY)
272 				tm++;
273 
274 			else if (!(status & SLINK_STAT_RXF_EMPTY)) {
275 				tmpdin = readl(&regs->rx_fifo);
276 				is_read = 1;
277 
278 				/* swap bytes read in */
279 				if (din != NULL) {
280 					for (i = bytes - 1; i >= 0; --i) {
281 						din[i] = tmpdin & 0xff;
282 						tmpdin >>= 8;
283 					}
284 					din += bytes;
285 				}
286 			}
287 		}
288 
289 		if (tm >= SPI_TIMEOUT)
290 			ret = tm;
291 
292 		/* clear ACK RDY, etc. bits */
293 		writel(readl(&regs->status), &regs->status);
294 	}
295 
296 	if (flags & SPI_XFER_END)
297 		spi_cs_deactivate(dev);
298 
299 	debug("%s: transfer ended. Value=%08x, status = %08x\n",
300 	      __func__, tmpdin, readl(&regs->status));
301 
302 	if (ret) {
303 		printf("%s: timeout during SPI transfer, tm %d\n",
304 		       __func__, ret);
305 		return -1;
306 	}
307 
308 	return 0;
309 }
310 
tegra30_spi_set_speed(struct udevice * bus,uint speed)311 static int tegra30_spi_set_speed(struct udevice *bus, uint speed)
312 {
313 	struct tegra_spi_platdata *plat = bus->platdata;
314 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
315 
316 	if (speed > plat->frequency)
317 		speed = plat->frequency;
318 	priv->freq = speed;
319 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
320 
321 	return 0;
322 }
323 
tegra30_spi_set_mode(struct udevice * bus,uint mode)324 static int tegra30_spi_set_mode(struct udevice *bus, uint mode)
325 {
326 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
327 	struct spi_regs *regs = priv->regs;
328 	u32 reg;
329 
330 	reg = readl(&regs->command);
331 
332 	/* Set CPOL and CPHA */
333 	reg &= ~(SLINK_CMD_IDLE_SCLK_MASK | SLINK_CMD_CK_SDA);
334 	if (mode & SPI_CPHA)
335 		reg |= SLINK_CMD_CK_SDA;
336 
337 	if (mode & SPI_CPOL)
338 		reg |= SLINK_CMD_IDLE_SCLK_DRIVE_HIGH;
339 	else
340 		reg |= SLINK_CMD_IDLE_SCLK_DRIVE_LOW;
341 
342 	writel(reg, &regs->command);
343 
344 	priv->mode = mode;
345 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
346 
347 	return 0;
348 }
349 
350 static const struct dm_spi_ops tegra30_spi_ops = {
351 	.claim_bus	= tegra30_spi_claim_bus,
352 	.xfer		= tegra30_spi_xfer,
353 	.set_speed	= tegra30_spi_set_speed,
354 	.set_mode	= tegra30_spi_set_mode,
355 	/*
356 	 * cs_info is not needed, since we require all chip selects to be
357 	 * in the device tree explicitly
358 	 */
359 };
360 
361 static const struct udevice_id tegra30_spi_ids[] = {
362 	{ .compatible = "nvidia,tegra20-slink" },
363 	{ }
364 };
365 
366 U_BOOT_DRIVER(tegra30_spi) = {
367 	.name	= "tegra20_slink",
368 	.id	= UCLASS_SPI,
369 	.of_match = tegra30_spi_ids,
370 	.ops	= &tegra30_spi_ops,
371 	.ofdata_to_platdata = tegra30_spi_ofdata_to_platdata,
372 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
373 	.priv_auto_alloc_size = sizeof(struct tegra30_spi_priv),
374 	.probe	= tegra30_spi_probe,
375 };
376