/external/tensorflow/tensorflow/python/data/util/ |
D | sparse_test.py | 53 "classes": (ops.Tensor, sparse_tensor.SparseTensor), 57 "classes": (sparse_tensor.SparseTensor, sparse_tensor.SparseTensor), 62 "classes": (sparse_tensor.SparseTensor, ops.Tensor), 66 "classes": (((sparse_tensor.SparseTensor))), 96 "classes": sparse_tensor.SparseTensor, 106 "classes": (sparse_tensor.SparseTensor), 121 "classes": (sparse_tensor.SparseTensor, ()), 126 "classes": ((), sparse_tensor.SparseTensor), 136 "classes": (sparse_tensor.SparseTensor, (), 137 sparse_tensor.SparseTensor), [all …]
|
D | structure_test.py | 47 (lambda: sparse_tensor.SparseTensor( 58 "b": (sparse_tensor.SparseTensor( 60 sparse_tensor.SparseTensor( 82 (lambda: sparse_tensor.SparseTensor( 85 sparse_tensor.SparseTensor( 93 sparse_tensor.SparseTensor( 97 sparse_tensor.SparseTensor( 116 sparse_tensor.SparseTensor( 138 (lambda: sparse_tensor.SparseTensor( 143 "b": (sparse_tensor.SparseTensor( [all …]
|
D | sparse.py | 37 return any(c is sparse_tensor.SparseTensor for c in nest.flatten(classes)) 53 tensor_shape.unknown_shape() if c is sparse_tensor.SparseTensor else shape 72 dtypes.variant if c is sparse_tensor.SparseTensor else ty 93 if c is sparse_tensor.SparseTensor else tensor 113 sparse_tensor.SparseTensor 114 if isinstance(tensor, sparse_tensor.SparseTensor) else ops.Tensor 149 if isinstance(tensor, sparse_tensor.SparseTensor) else tensor
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_DeserializeSparse.pbtxt | 6 The serialized `SparseTensor` objects. The last dimension 13 The `dtype` of the serialized `SparseTensor` objects. 16 summary: "Deserialize `SparseTensor` objects." 19 the last dimension stores serialized `SparseTensor` objects and the other N 21 `SparseTensor` objects must all match. When the final `SparseTensor` is 22 created, its rank is the rank of the incoming `SparseTensor` objects plus N; 26 The output `SparseTensor` object's shape values for the original dimensions 27 are the max across the input `SparseTensor` objects' shape values for the 30 The input `SparseTensor` objects' indices are assumed ordered in 35 original `SparseTensor` objects: [all …]
|
D | api_def_TakeManySparseFromTensorsMap.pbtxt | 6 1-D, The `N` serialized `SparseTensor` objects. 13 2-D. The `indices` of the minibatch `SparseTensor`. 19 1-D. The `values` of the minibatch `SparseTensor`. 25 1-D. The `shape` of the minibatch `SparseTensor`. 31 The `dtype` of the `SparseTensor` objects stored in the 54 original `SparseTensor` objects that went into the given input ops must all 55 match. When the final `SparseTensor` is created, it has rank one 56 higher than the ranks of the incoming `SparseTensor` objects 59 The output `SparseTensor` object's shape values for all dimensions but the 60 first are the max across the input `SparseTensor` objects' shape values [all …]
|
D | api_def_AddManySparseToTensorsMap.pbtxt | 6 2-D. The `indices` of the minibatch `SparseTensor`. 13 1-D. The `values` of the minibatch `SparseTensor`. 19 1-D. The `shape` of the minibatch `SparseTensor`. 26 1-D. The handles of the `SparseTensor` now stored in the 43 summary: "Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles." 45 A `SparseTensor` of rank `R` is represented by three tensors: `sparse_indices`, 50 An `N`-minibatch of `SparseTensor` objects is represented as a `SparseTensor` 54 The input `SparseTensor` must have rank `R` greater than 1, and the first 55 dimension is treated as the minibatch dimension. Elements of the `SparseTensor` 57 `SparseTensor` objects pointed to by each row of the output `sparse_handles` [all …]
|
D | api_def_SparseToSparseSetOperation.pbtxt | 6 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major 13 1D `Tensor`, values of a `SparseTensor`. Must be in row-major 20 1D `Tensor`, shape of a `SparseTensor`. `set1_shape[0...n-1]` must 28 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major 35 1D `Tensor`, values of a `SparseTensor`. Must be in row-major 42 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` must 50 2D indices of a `SparseTensor`. 56 1D values of a `SparseTensor`. 62 1D `Tensor` shape of a `SparseTensor`. `result_shape[0...n-1]` is 67 summary: "Applies set operation along last dimension of 2 `SparseTensor` inputs." [all …]
|
D | api_def_DeserializeManySparse.pbtxt | 6 2-D, The `N` serialized `SparseTensor` objects. 13 The `dtype` of the serialized `SparseTensor` objects. 20 `SerializeSparse`. The ranks of the original `SparseTensor` objects 21 must all match. When the final `SparseTensor` is created, it has rank one 22 higher than the ranks of the incoming `SparseTensor` objects 25 The output `SparseTensor` object's shape values for all dimensions but the 26 first are the max across the input `SparseTensor` objects' shape values 30 The input `SparseTensor` objects' indices are assumed ordered in 35 original `SparseTensor` objects: 50 then the final deserialized `SparseTensor` will be:
|
D | api_def_SparseAdd.pbtxt | 6 2-D. The `indices` of the first `SparseTensor`, size `[nnz, ndims]` Matrix. 12 1-D. The `values` of the first `SparseTensor`, size `[nnz]` Vector. 18 1-D. The `shape` of the first `SparseTensor`, size `[ndims]` Vector. 24 2-D. The `indices` of the second `SparseTensor`, size `[nnz, ndims]` Matrix. 30 1-D. The `values` of the second `SparseTensor`, size `[nnz]` Vector. 36 1-D. The `shape` of the second `SparseTensor`, size `[ndims]` Vector. 46 summary: "Adds two `SparseTensor` objects to produce another `SparseTensor`." 48 The input `SparseTensor` objects' indices are assumed ordered in standard 52 By default, if two values sum to zero at some index, the output `SparseTensor`
|
D | api_def_SparseCross.pbtxt | 6 2-D. Indices of each input `SparseTensor`. 12 1-D. values of each `SparseTensor`. 18 1-D. Shapes of each `SparseTensor`. 30 2-D. Indices of the concatenated `SparseTensor`. 37 `SparseTensor`. 43 1-D. Shape of the concatenated `SparseTensor`. 69 The op takes two lists, one of 2D `SparseTensor` and one of 2D `Tensor`, each 70 representing features of one feature column. It outputs a 2D `SparseTensor` with 75 inputs[0]: SparseTensor with shape = [2, 2] 80 inputs[1]: SparseTensor with shape = [2, 1]
|
D | api_def_SerializeManySparse.pbtxt | 6 2-D. The `indices` of the minibatch `SparseTensor`. 12 1-D. The `values` of the minibatch `SparseTensor`. 18 1-D. The `shape` of the minibatch `SparseTensor`. 28 summary: "Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object." 30 The `SparseTensor` must have rank `R` greater than 1, and the first dimension 31 is treated as the minibatch dimension. Elements of the `SparseTensor` 33 `SparseTensor` objects going into each row of `serialized_sparse` will have
|
D | api_def_AddSparseToTensorsMap.pbtxt | 6 2-D. The `indices` of the `SparseTensor`. 12 1-D. The `values` of the `SparseTensor`. 18 1-D. The `shape` of the `SparseTensor`. 24 0-D. The handle of the `SparseTensor` now stored in the 41 summary: "Add a `SparseTensor` to a `SparseTensorsMap` return its handle." 43 A `SparseTensor` is represented by three tensors: `sparse_indices`, 46 This operator takes the given `SparseTensor` and adds it to a container 50 The `SparseTensor` can then be read out as part of a minibatch by passing
|
D | api_def_SparseConcat.pbtxt | 6 2-D. Indices of each input `SparseTensor`. 12 1-D. Non-empty values of each `SparseTensor`. 18 1-D. Shapes of each `SparseTensor`. 24 2-D. Indices of the concatenated `SparseTensor`. 30 1-D. Non-empty values of the concatenated `SparseTensor`. 36 1-D. Shape of the concatenated `SparseTensor`. 43 where rank is the number of dimensions in each input `SparseTensor`. 46 summary: "Concatenates a list of `SparseTensor` along the specified dimension." 49 It is assumed that each input is a `SparseTensor` whose elements are ordered
|
D | api_def_DenseToSparseSetOperation.pbtxt | 13 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major 20 1D `Tensor`, values of a `SparseTensor`. Must be in row-major 27 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` must 35 2D indices of a `SparseTensor`. 41 1D values of a `SparseTensor`. 47 1D `Tensor` shape of a `SparseTensor`. `result_shape[0...n-1]` is 52 summary: "Applies set operation along last dimension of `Tensor` and `SparseTensor`." 56 Input `set2` is a `SparseTensor` represented by `set2_indices`, `set2_values`, 64 Output `result` is a `SparseTensor` represented by `result_indices`,
|
D | api_def_SparseSliceGrad.pbtxt | 7 the non-empty values of the sliced `SparseTensor`. 13 2-D. The `indices` of the input `SparseTensor`. 25 2-D. The `indices` of the sliced `SparseTensor`. 31 1-D. The gradient with respect to the non-empty values of input `SparseTensor`. 37 the sliced `SparseTensor`, and outputs the gradients w.r.t. 38 the non-empty values of input `SparseTensor`.
|
D | api_def_SparseSoftmax.pbtxt | 7 SparseTensor, in canonical ordering. 19 1-D. Shape of the input SparseTensor. 25 1-D. The `NNZ` values for the result `SparseTensor`. 28 summary: "Applies softmax to a batched N-D `SparseTensor`." 30 The inputs represent an N-D SparseTensor with logical shape `[..., B, C]` 43 Hence, the `SparseTensor` result has exactly the same non-zero indices and
|
/external/tensorflow/tensorflow/core/util/sparse/ |
D | sparse_tensor.h | 42 class SparseTensor { 48 const VarDimArray order, SparseTensor* result) { in Create() 77 *result = SparseTensor(ix, vals, shape, order); in Create() 82 SparseTensor* result) { in Create() 88 SparseTensor* result) { in Create() 93 const VarDimArray order, SparseTensor* result) { in Create() 97 SparseTensor() : dims_(0) {} in SparseTensor() function 100 SparseTensor(Tensor ix, Tensor vals, const TensorShape& shape) in SparseTensor() function 101 : SparseTensor(ix, vals, TensorShapeToVector(shape), in SparseTensor() 105 SparseTensor(Tensor ix, Tensor vals, const VarDimArray shape) in SparseTensor() function [all …]
|
D | sparse_tensor_test.cc | 97 SparseTensor result; in TEST() 99 EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, in TEST() 110 SparseTensor result; in TEST() 112 EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, in TEST() 123 SparseTensor result; in TEST() 125 EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, in TEST() 136 SparseTensor result; in TEST() 138 EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, in TEST() 149 SparseTensor result; in TEST() 152 SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1}, &result) in TEST() [all …]
|
D | README.md | 1 SparseTensor chapter 47 If the SparseTensor is constructed without a provided order, then a 51 Resorting the SparseTensor in-place (which resorts the underlying index and 87 order of the SparseTensor does not match the dimensions you wish to group by. 89 SparseTensor with 97 to sort the SparseTensor before grouping. 104 SparseTensor sp(indices, vals, shape); 131 SparseTensor sp(indices, vals, shape); 142 Concatenates multiple SparseTensors and returns a new SparseTensor. 204 SparseTensor st1(ix1, vals1, TensorShape({10, 20, 5}), {1, 0, 2}); [all …]
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_from_sparse_op_test.py | 36 st = sparse_tensor.SparseTensor( 45 st = sparse_tensor.SparseTensor( 54 st1 = sparse_tensor.SparseTensor(indices=[[0]], values=[0], dense_shape=[3]) 58 st2 = sparse_tensor.SparseTensor( 64 st3 = sparse_tensor.SparseTensor( 73 st1 = sparse_tensor.SparseTensor( 77 st2 = sparse_tensor.SparseTensor( 93 st1 = sparse_tensor.SparseTensor( 99 st2 = sparse_tensor.SparseTensor( 105 st3 = sparse_tensor.SparseTensor(
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | feature_column_ops_test.py | 58 rating_tensor = sparse_tensor.SparseTensor( 76 rating_tensor = sparse_tensor.SparseTensor( 131 wire_tensor = sparse_tensor.SparseTensor( 154 wire_tensor = sparse_tensor.SparseTensor( 182 self.assertIsInstance(output, sparse_tensor.SparseTensor) 190 wire_tensor = sparse_tensor.SparseTensor( 216 wire_tensor = sparse_tensor.SparseTensor( 247 self.assertIsInstance(output, sparse_tensor.SparseTensor) 257 wire_tensor = sparse_tensor.SparseTensor( 287 self.assertIsInstance(output, sparse_tensor.SparseTensor) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | sparse_ops.py | 66 return sparse_tensor.SparseTensor.from_value(sp_input) 67 if not isinstance(sp_input, sparse_tensor.SparseTensor): 153 return sparse_tensor.SparseTensor( 185 return sparse_tensor.SparseTensor( 334 return sparse_tensor.SparseTensor(output_ind, output_val, output_shape) 458 sparse_classes = (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue) 480 return sparse_tensor.SparseTensor(output_ind, output_val, output_shape) 581 isinstance(i, sparse_tensor.SparseTensor) or isinstance(i, ops.Tensor) 586 i for i in inputs if isinstance(i, sparse_tensor.SparseTensor) 589 i for i in inputs if not isinstance(i, sparse_tensor.SparseTensor) [all …]
|
D | sets_impl.py | 52 if not isinstance(a, sparse_tensor.SparseTensor): 87 if (isinstance(a, sparse_tensor.SparseTensor) and 88 not isinstance(b, sparse_tensor.SparseTensor)): 118 if isinstance(a, sparse_tensor.SparseTensor): 119 if isinstance(b, sparse_tensor.SparseTensor): 127 elif isinstance(b, sparse_tensor.SparseTensor): 133 return sparse_tensor.SparseTensor(indices, values, shape)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | sparse_tensors_map_ops.cc | 40 using sparse::SparseTensor; 54 Status AddSparseTensor(OpKernelContext* ctx, const SparseTensor& sp, in AddSparseTensor() 81 std::vector<SparseTensor>* sparse_tensors) { in RetrieveAndClearSparseTensors() 96 SparseTensor tensor; in RetrieveAndClearSparseTensors() 97 TF_RETURN_IF_ERROR(SparseTensor::Create(*ix, *values, shape, &tensor)); in RetrieveAndClearSparseTensors() 199 SparseTensor st; in Compute() 200 OP_REQUIRES_OK(context, SparseTensor::Create(*input_indices, *input_values, in Compute() 259 SparseTensor input_st; in Compute() 260 OP_REQUIRES_OK(context, SparseTensor::Create(*input_indices, *input_values, in Compute() 308 SparseTensor st_i; in Compute() [all …]
|
/external/tensorflow/tensorflow/python/framework/ |
D | sparse_tensor_test.py | 40 sparse_tensor.SparseTensor(indices, values, shape), 41 sparse_tensor.SparseTensor.from_value(sp_value), 42 sparse_tensor.SparseTensor.from_value( 43 sparse_tensor.SparseTensor(indices, values, shape))]: 64 sparse_tensor.is_sparse(sparse_tensor.SparseTensor([[0]], [0], [1]))) 71 sp = sparse_tensor.SparseTensor([[0, 0], [1, 2]], [1.0, 3.0], [3, 4]) 100 st = sparse_tensor.SparseTensor.from_value(sparse_tensor_value)
|