/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | fold_batch_norms_test.py | 97 activation_fn = None if with_bypass else relu 107 activation_fn=None, 118 if activation_fn is not None: 119 node = activation_fn(node) 128 activation_fn=activation_fn, 197 activation_fn = relu 206 activation_fn=None, 212 layer1 = activation_fn(layer1) 219 activation_fn=activation_fn, 227 _ = activation_fn(layer2) [all …]
|
D | quantize_test.py | 57 activation_fn=None, scope='test') 79 activation_fn=None, scope='test/test') 119 activation_fn=None, scope='test/test') 160 activation_fn=None, 213 activation_fn=nn_ops.relu6, 240 activation_fn=None, 263 activation_fn=nn_ops.relu6, 273 activation_fn=nn_ops.relu6, 301 activation_fn=nn_ops.relu6, 312 activation_fn=None, [all …]
|
D | quantize_parameterized_test.py | 186 activation_fn = None if with_bypass else activation 196 activation_fn=activation_fn, 238 activation_fn = None if with_bypass else activation 246 activation_fn=activation_fn, 285 activation_fn = None if with_bypass else activation 297 activation_fn=activation_fn, 336 activation_fn = None if with_bypass else activation 348 activation_fn=activation_fn, 521 activation_fn=None, 575 activation_fn=None, [all …]
|
D | quantize_graph_test.py | 451 activation_fn=None) 474 activation_fn=None, 502 activation_fn=None,
|
/external/tensorflow/tensorflow/contrib/specs/python/ |
D | specs_ops.py | 81 Cs = Fun(layers.conv2d, activation_fn=math_ops.sigmoid) 82 Ct = Fun(layers.conv2d, activation_fn=math_ops.tanh) 83 Cr = Fun(layers.conv2d, activation_fn=nn_ops.relu) 84 Cm = Fun(layers.conv2d, activation_fn=nn_ops.softmax) 85 Cl = Fun(layers.conv2d, activation_fn=None) 90 Fs = Fun(layers.fully_connected, activation_fn=math_ops.sigmoid) 91 Ft = Fun(layers.fully_connected, activation_fn=math_ops.tanh) 92 Fr = Fun(layers.fully_connected, activation_fn=nn_ops.relu) 93 Fm = Fun(layers.fully_connected, activation_fn=nn_ops.softmax) 94 Fl = Fun(layers.fully_connected, activation_fn=None)
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | dnn.py | 72 def _get_activation_fn(activation_fn): argument 73 if not isinstance(activation_fn, six.string_types): 74 return activation_fn 75 if activation_fn not in _ACTIVATION_FUNCTIONS.keys(): 77 (", ".join(_ACTIVATION_FUNCTIONS.keys()), activation_fn)) 78 return _ACTIVATION_FUNCTIONS[activation_fn] 128 activation_fn = _get_activation_fn(params.get("activation_fn")) 175 activation_fn=activation_fn, 188 activation_fn=None, 308 activation_fn=nn.relu, argument [all …]
|
D | composable_model.py | 278 activation_fn=nn.relu, argument 315 self._activation_fn = activation_fn 384 activation_fn=self._activation_fn, 399 activation_fn=None,
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | layers.py | 180 activation_fn=None, argument 424 if activation_fn is not None: 425 outputs = activation_fn(outputs) 435 activation_fn=None, argument 586 activation_fn=activation_fn, 664 if activation_fn is not None: 665 outputs = activation_fn(outputs) 835 if activation_fn is not None: 836 outputs = activation_fn(outputs) 842 activation_fn=None, argument [all …]
|
D | normalization.py | 46 activation_fn=None, argument 160 if activation_fn is not None: 161 outputs = activation_fn(outputs) 173 activation_fn=None, argument 382 if activation_fn is not None: 383 outputs = activation_fn(outputs)
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/layers/ |
D | layers.py | 103 activation_fn=nn.relu, argument 249 if activation_fn is not None: 250 outputs = activation_fn(outputs) 262 activation_fn=nn.relu, argument 359 if activation_fn is not None: 360 outputs = activation_fn(outputs)
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | resnet_v2.py | 101 inputs, activation_fn=nn_ops.relu, scope='preact') 110 activation_fn=None, 122 activation_fn=None, 213 [layers_lib.conv2d], activation_fn=None, normalizer_fn=None): 221 net, activation_fn=nn_ops.relu, scope='postnorm') 229 activation_fn=None,
|
D | vgg.py | 67 activation_fn=nn_ops.relu, 125 activation_fn=None, 190 activation_fn=None, 255 activation_fn=None,
|
D | resnet_v1.py | 113 activation_fn=None, 121 residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3') 215 activation_fn=None,
|
D | alexnet.py | 55 activation_fn=nn_ops.relu, 125 activation_fn=None,
|
D | overfeat.py | 51 activation_fn=nn_ops.relu, 121 activation_fn=None,
|
D | resnet_utils.py | 259 activation_fn=nn_ops.relu,
|
D | inception_v3.py | 609 activation_fn=None, 634 activation_fn=None, 726 activation_fn=nn_ops.relu,
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/models/ |
D | hard_decisions_to_data_then_nn.py | 59 inference_result, output_size, activation_fn=nn_ops.softmax)
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.estimator.experimental.pbtxt | 21 …argspec: "args=[\'units\', \'hidden_units\', \'feature_columns\', \'activation_fn\', \'dropout\', …
|
D | tensorflow.estimator.-d-n-n-regressor.pbtxt | 24 …model_dir\', \'label_dimension\', \'weight_column\', \'optimizer\', \'activation_fn\', \'dropout\'…
|
D | tensorflow.estimator.-d-n-n-estimator.pbtxt | 24 …'hidden_units\', \'feature_columns\', \'model_dir\', \'optimizer\', \'activation_fn\', \'dropout\'…
|
D | tensorflow.estimator.-d-n-n-classifier.pbtxt | 24 …_classes\', \'weight_column\', \'label_vocabulary\', \'optimizer\', \'activation_fn\', \'dropout\'…
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.estimator.-d-n-n-regressor.pbtxt | 25 …model_dir\', \'label_dimension\', \'weight_column\', \'optimizer\', \'activation_fn\', \'dropout\'…
|
D | tensorflow.estimator.-d-n-n-estimator.pbtxt | 25 …'hidden_units\', \'feature_columns\', \'model_dir\', \'optimizer\', \'activation_fn\', \'dropout\'…
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/ |
D | hybrid_model.py | 85 inference_result, output_size, activation_fn=array_ops.identity)
|