Home
last modified time | relevance | path

Searched refs:cumsum (Results 1 – 25 of 65) sorted by relevance

123

/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_Cumsum.pbtxt21 If `True`, perform exclusive cumsum.
32 By default, this op performs an inclusive cumsum, which means that the first
36 tf.cumsum([a, b, c]) # => [a, a + b, a + b + c]
39 By setting the `exclusive` kwarg to `True`, an exclusive cumsum is
43 tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b]
46 By setting the `reverse` kwarg to `True`, the cumsum is performed in the
50 tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c]
58 tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0]
/external/eigen/unsupported/test/
Dcxx11_tensor_scan.cpp23 Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive); in test_1d_scan()
60 result = tensor.cumsum(0); in test_4d_scan()
66 result = tensor.cumsum(1); in test_4d_scan()
72 result = tensor.cumsum(2); in test_4d_scan()
78 result = tensor.cumsum(3); in test_4d_scan()
92 Tensor<int, 1, DataLayout> result = tensor_map.cumsum(0); in test_tensor_maps()
Dcxx11_tensor_scan_cuda.cu54 gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1); in test_cuda_cumsum()
55 t_result = t_input.cumsum(1); in test_cuda_cumsum()
/external/tensorflow/tensorflow/compiler/tests/
Dscan_ops_test.py57 if func == np.cumsum:
80 np_out = handle_options(np.cumsum, x, axis, exclusive, reverse)
83 tf_out = math_ops.cumsum(p, axis, exclusive, reverse).eval(
106 math_ops.cumsum(p, axis).eval(feed_dict={p: x})
139 math_ops.cumsum(input_tensor, -3).eval()
143 math_ops.cumsum(input_tensor, 2).eval()
147 math_ops.cumsum(input_tensor, [0]).eval()
/external/tensorflow/tensorflow/python/kernel_tests/
Dscan_ops_test.py58 if func == np.cumsum:
81 np_out = handle_options(np.cumsum, x, axis, exclusive, reverse)
83 tf_out = math_ops.cumsum(x, axis, exclusive, reverse).eval()
106 tf_out = math_ops.cumsum(x, axis).eval()
150 math_ops.cumsum(input_tensor, -3).eval()
154 math_ops.cumsum(input_tensor, 2).eval()
158 math_ops.cumsum(input_tensor, [0]).eval()
164 result = math_ops.cumsum(t, axis, exclusive, reverse)
Darray_ops_test.py1417 cdf = np.cumsum(
1437 cdf = np.cumsum(
1464 cdf = np.cumsum(
1484 cdf = np.cumsum(
1510 cdf = np.cumsum(
1532 cdf = np.cumsum(
1560 cdf = np.cumsum(
1582 cdf = np.cumsum(
Dweights_broadcast_test.py33 return np.reshape(np.cumsum(np.ones(shape), dtype=np.int32), newshape=shape)
/external/tensorflow/tensorflow/core/lib/histogram/
Dhistogram.cc132 double cumsum = cumsum_prev + buckets_[i]; in Percentile() local
135 if (cumsum >= threshold) { in Percentile()
138 if (cumsum == cumsum_prev) { in Percentile()
150 double weight = Remap(threshold, cumsum_prev, cumsum, lhs, rhs); in Percentile()
154 cumsum_prev = cumsum; in Percentile()
/external/tensorflow/tensorflow/contrib/coder/python/ops/
Dcoder_ops_test.py39 cdf = math_ops.cumsum(histogram, exclusive=False)
/external/eigen/bench/
Dsparse_setter.cpp317 for(int i = 0, cumsum = 0; i < n_row; i++){ in coo_tocsr() local
319 Bp[i] = cumsum; in coo_tocsr()
320 cumsum += temp; in coo_tocsr()
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/
Ddask_io.py50 divisions = np.cumsum(lengths).tolist()
/external/tensorflow/tensorflow/python/ops/ragged/
Dsegment_id_ops.py102 splits = array_ops.concat([[0], math_ops.cumsum(row_lengths)], axis=0)
Dragged_tensor.py351 row_splits = array_ops.concat([[0], math_ops.cumsum(row_lengths)], axis=0)
439 row_limits = math_ops.cumsum(row_lengths)
1205 limits = math_ops.cumsum(lengths)
Dragged_util.py237 return array_ops.concat([[0], math_ops.cumsum(lengths)], axis=-1)
/external/tensorflow/tensorflow/contrib/sparsemax/python/ops/
Dsparsemax.py65 z_cumsum = math_ops.cumsum(z_sorted, axis=1)
/external/tensorflow/tensorflow/contrib/metrics/python/ops/
Dmetric_ops.py1096 array_ops.pad(math_ops.cumsum(counts), paddings=[[1, 0]]), dtypes.int32)
1101 math_ops.cumsum(
1113 math_ops.cumsum(
1127 array_ops.pad(math_ops.cumsum(ordered_weights), paddings=[[1, 0]]),
1311 cum_weight_totals_for_true = math_ops.cumsum(weight_totals_for_true,
1313 cum_weight_totals_for_false = math_ops.cumsum(weight_totals_for_false,
1677 tp = math_ops.cumsum(tp_buckets_v, reverse=True, name='tp')
1678 fp = math_ops.cumsum(fp_buckets_v, reverse=True, name='fp')
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/
Dordered.py109 return math_ops.cumsum(x, axis=-1)
/external/tensorflow/tensorflow/contrib/coder/kernels/
Drange_coder_ops_test.cc200 histogram_tensor.flat_inner_dims<int32, 2>().cumsum(1); in BuildCdf()
422 cdf.flat<int32>() = h.cumsum(0); in CreateRangeEncodeFullBroadcastGraph()
462 cdf = h.cumsum(0); in CreateRangeDecodeFullBroadcastGraph()
/external/tensorflow/tensorflow/contrib/layers/python/ops/
Dsparse_ops.py166 math_ops.cumsum(binary_indicators, axis=-1), "row_index_indicators")
/external/tensorflow/tensorflow/contrib/image/python/kernel_tests/
Dsegmentation_test.py178 positive_id_start_per_image = np.cumsum(num_ids_per_image)
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/
Dclassifier_metrics_impl.py1079 inds_r = array_ops.concat([zero, math_ops.cumsum(sizes_r)], 0)
1080 inds_g = array_ops.concat([zero, math_ops.cumsum(sizes_g)], 0)
Dclassifier_metrics_test.py100 inds_r = np.r_[0, np.cumsum(sizes_r)]
107 inds_g = np.r_[0, np.cumsum(sizes_g)]
/external/toolchain-utils/cros_utils/
Dstats.py323 cumhist = cumsum(hist) # make cumulative histogram
485 cumhist = cumsum(copy.deepcopy(h))
503 cumhist = cumsum(copy.deepcopy(h))
561 cumhist = cumsum(copy.deepcopy(h))
1991 cumsum = Dispatch((lcumsum, (ListType, TupleType)),) variable
2179 cumhist = N.cumsum(hist) # make cumulative histogram
2609 cumhist = cumsum(h * 1)
2626 cumhist = cumsum(h * 1)
2680 cumhist = cumsum(h * 1)
4499 cumsum = Dispatch((lcumsum, (ListType, TupleType)), (acumsum, (N.ndarray,))) variable
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/
Dperiodic.py535 math_ops.cumsum(powers_above_zero), [(1, 0), (0, 0), (0, 0)])
/external/tensorflow/tensorflow/contrib/sparsemax/python/kernel_tests/
Dsparsemax_loss_test.py42 z_cumsum = np.cumsum(z_sorted, axis=1)

123