/external/v8/tools/heap-stats/ |
D | global-timeline.js | 77 const data_set = gc_data[this.selection.data_set].field_data; 80 const total = data_set.tagged_fields + 81 data_set.embedder_fields + 82 data_set.other_raw_fields + 83 data_set.unboxed_double_fields; 84 const ptr_compr_benefit = data_set.tagged_fields / 2; 94 data.push(data_set.embedder_fields / KB); 95 data.push(data_set.tagged_fields / KB); 96 data.push(data_set.other_raw_fields / KB); 97 data.push(data_set.unboxed_double_fields / KB); [all …]
|
D | model.js | 48 finalizeDataSet(data_set) { argument 51 let data = data_set.instance_type_data; 53 [...data_set.non_empty_instance_types].sort((a, b) => { 63 data_set.instance_type_data = data; 64 data_set.singleInstancePeakMemory = max; 66 Object.entries(data_set.instance_type_data).forEach(([name, entry]) => { 68 name, entry, data_set.bucket_sizes, 'histogram', ' overall'); 70 name, entry, data_set.bucket_sizes, 'over_allocated_histogram',
|
D | trace-file-reader.js | 127 createDatasetIfNeeded(data, entry, data_set) { argument 128 if (!(data_set in data[entry.isolate].gcs[entry.id])) { 129 data[entry.isolate].gcs[entry.id][data_set] = { 134 data[entry.isolate].data_sets.add(data_set); 138 addFieldTypeData(data, isolate, gc_id, data_set, tagged_fields, argument 140 data[isolate].gcs[gc_id][data_set].field_data = { 148 addInstanceTypeData(data, isolate, gc_id, data_set, instance_type, entry) { argument 149 data[isolate].gcs[gc_id][data_set].instance_type_data[instance_type] = { 156 data[isolate].gcs[gc_id][data_set].overall += entry.overall; 158 data[isolate].gcs[gc_id][data_set].non_empty_instance_types.add( [all …]
|
D | details-selection.js | 58 return this.selectedIsolate.gcs[this.selection.gc][this.selection.data_set]; 199 this.selection.data_set = this.datasetSelect.value; 383 this.selectedIsolate.gcs[this.selection.gc][this.selection.data_set]
|
D | histogram-viewer.js | 81 .gcs[this.selection.gc][this.selection.data_set];
|
/external/tensorflow/tensorflow/examples/how_tos/reading_data/ |
D | convert_to_records.py | 40 def convert_to(data_set, name): argument 42 images = data_set.images 43 labels = data_set.labels 44 num_examples = data_set.num_examples
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | fully_connected_feed.py | 59 def fill_feed_dict(data_set, images_pl, labels_pl): argument 78 images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size, 91 data_set): argument 104 steps_per_epoch = data_set.num_examples // FLAGS.batch_size 107 feed_dict = fill_feed_dict(data_set,
|
/external/tensorflow/tensorflow/contrib/tensor_forest/kernels/ |
D | model_ops.cc | 181 std::unique_ptr<TensorDataSet> data_set(new TensorDataSet(input_spec_, 0)); in Compute() local 182 data_set->set_input_tensors(input_data, sparse_input_indices, in Compute() 191 const int num_data = data_set->NumItems(); in Compute() 208 auto traverse = [this, &out, &data_set, decision_tree_resource, num_data, in Compute() 212 TraverseTree(decision_tree_resource, data_set, static_cast<int32>(start), in Compute() 282 std::unique_ptr<TensorDataSet> data_set(new TensorDataSet(input_spec_, 0)); in Compute() local 283 data_set->set_input_tensors(input_data, sparse_input_indices, in Compute() 292 const int num_data = data_set->NumItems(); in Compute() 307 auto traverse = [&set_leaf_ids, &data_set, decision_tree_resource, in Compute() 311 TraverseTree(decision_tree_resource, data_set, static_cast<int32>(start), in Compute()
|
D | stats_ops.cc | 249 std::unique_ptr<TensorDataSet> data_set( in Compute() local 251 data_set->set_input_tensors(input_data, sparse_input_indices, in Compute() 266 const int32 num_data = data_set->NumItems(); in Compute() 310 auto update = [&target, &leaf_ids_tensor, &num_targets, &data_set, in Compute() 315 UpdateStats(fertile_stats_resource, data_set, target, num_targets, in Compute() 322 &ready_to_split, &data_set, in Compute() 326 UpdateStatsCollated(fertile_stats_resource, tree_resource, data_set, in Compute()
|
/external/tensorflow/tensorflow/contrib/factorization/examples/ |
D | mnist.py | 65 def fill_feed_dict(data_set, images_pl, labels_pl, batch_size): argument 79 images_feed, labels_feed = data_set.next_batch(batch_size, FLAGS.fake_data) 91 data_set): argument 106 batch_size = min(FLAGS.batch_size, data_set.num_examples) 107 steps_per_epoch = data_set.num_examples // batch_size 110 feed_dict = fill_feed_dict(data_set,
|
/external/u-boot/drivers/gpio/ |
D | adi_gpio2.c | 373 gpio_array[gpio_bank(gpio)]->data_set = gpio_bit(gpio); in gpio_set_value()
|