Searched refs:dm1 (Results 1 – 10 of 10) sorted by relevance
/external/eigen/test/ |
D | bandmatrix.cpp | 25 DenseMatrixType dm1(rows,cols); in bandmatrix() local 26 dm1.setZero(); in bandmatrix() 29 dm1.diagonal().setConstant(123); in bandmatrix() 33 dm1.diagonal(i).setConstant(static_cast<RealScalar>(i)); in bandmatrix() 38 dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i)); in bandmatrix() 41 VERIFY_IS_APPROX(dm1,m.toDenseMatrix()); in bandmatrix() 46 dm1.col(i).setConstant(static_cast<RealScalar>(i+1)); in bandmatrix() 51 if(a>0) dm1.block(0,d+supers,rows,a).setZero(); in bandmatrix() 52 dm1.block(0,supers+1,cols-supers-1-a,cols-supers-1-a).template triangularView<Upper>().setZero(); in bandmatrix() 53 dm1.block(subs+1,0,rows-subs-1-b,rows-subs-1-b).template triangularView<Lower>().setZero(); in bandmatrix() [all …]
|
/external/skqp/tests/ |
D | DiscardableMemoryPoolTest.cpp | 20 std::unique_ptr<SkDiscardableMemory> dm1(pool->create(100)); in DEF_TEST() local 21 REPORTER_ASSERT(reporter, dm1->data() != nullptr); in DEF_TEST() 23 dm1->unlock(); in DEF_TEST() 25 REPORTER_ASSERT(reporter, !dm1->lock()); in DEF_TEST()
|
/external/skia/tests/ |
D | DiscardableMemoryPoolTest.cpp | 20 std::unique_ptr<SkDiscardableMemory> dm1(pool->create(100)); in DEF_TEST() local 21 REPORTER_ASSERT(reporter, dm1->data() != nullptr); in DEF_TEST() 23 dm1->unlock(); in DEF_TEST() 25 REPORTER_ASSERT(reporter, !dm1->lock()); in DEF_TEST()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | eigen_spatial_convolutions-inl.h | 845 const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); 865 const bool pad_col1 = dm1.padCol(c); 873 !dm1.padRow(start_row) && !dm1.padRow(max_row - 1) && // 891 const Index idx1 = dm1.baseIndex(start_row, c); 920 const bool pad1 = pad_col1 || dm1.padRow(r); 925 const Index idx1 = dm1.baseIndex(r, c); 964 kernel.packet[1] = dm1.loadPacketStandard(k); 981 block[1] = dm1.loadCoeffStandard(k); 989 block[1] = dm1(k); 1053 const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); [all …]
|
D | eigen_cuboid_convolution.h | 1044 const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); 1064 const bool pad_col1 = dm1.padCol(c); 1077 const bool pad_row1 = pad_col1 || dm1.padRow(r); 1085 const bool pad1 = pad_row1 || dm1.padPlane(p); 1090 const Index idx1 = dm1.baseIndex(p, r, c); 1133 kernel.packet[1] = dm1.loadPacketStandard(k); 1150 block[1] = dm1.loadCoeffStandard(k); 1158 block[1] = dm1(k); 1226 const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1); 1246 const bool pad_col1 = dm1.padCol(c); [all …]
|
/external/eigen/doc/ |
D | TutorialSparse.dox | 258 sm2 = sm1.cwiseProduct(dm1); 259 dm2 = sm1 + dm1; 260 dm2 = dm1 - sm1; 262 …tter performed in two steps. For instance, instead of doing <tt>dm2 = sm1 + dm1</tt>, better write: 264 dm2 = dm1; 284 dm2 = dm1 * sm1.adjoint(); 285 dm2 = 2. * sm1 * dm1; 289 dm2 = sm1.selfadjointView<>() * dm1; // if all coefficients of A are stored 290 dm2 = A.selfadjointView<Upper>() * dm1; // if only the upper part of A is stored 291 dm2 = A.selfadjointView<Lower>() * dm1; // if only the lower part of A is stored [all …]
|
D | SparseQuickReference.dox | 133 dm2 = sm1 * dm1;
|
/external/tensorflow/tensorflow/cc/framework/ |
D | gradients_test.cc | 424 auto dm1 = Const(scope_test_, {{0.5}, {0.5}}); in TEST_F() local 429 TF_ASSERT_OK(AddSymbolicGradients(scope_test_, {m1, m2}, {y}, {dm1, dm2}, in TEST_F() 450 auto dm1 = Const(scope_test_, {{0.5}, {0.5}}); in TEST_F() local 460 AddSymbolicGradients(scope_test_, {m1}, {z}, {dm1}, &grad_outputs); in TEST_F()
|
/external/eigen/Eigen/src/Core/products/ |
D | GeneralBlockPanelKernel.h | 1965 const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1); 1975 kernel.packet[1%PacketSize] = dm1.loadPacket(k); 1989 blockB[count+1] = cj(dm1(k));
|
/external/tremolo/Tremolo/ |
D | dpen.s | 283 dm1: label
|