/external/tensorflow/tensorflow/contrib/boosted_trees/python/ops/ |
D | stats_accumulator_ops.py | 44 (stamp_token, num_updates, partition_ids, feature_ids, gradients, 53 saver.BaseSaverBuilder.SaveSpec(feature_ids, slice_spec, 72 def deserialize(self, stamp_token, num_updates, partition_ids, feature_ids, argument 78 feature_ids, gradients, hessians) 82 feature_ids, gradients, hessians) 100 feature_ids=restored_tensors[3], 196 def add(self, stamp_token, partition_ids, feature_ids, gradients, hessians): argument 198 partition_ids, feature_ids, gradients, hessians = (self._make_summary( 199 partition_ids, feature_ids, gradients, hessians)) 202 [self.resource_handle], stamp_token, [partition_ids], [feature_ids], [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 42 feature_ids = [0, 2, 6] 72 feature_ids=feature_ids, 236 feature_ids = [0, 1, 0] 263 feature_ids=feature_ids, 429 feature_ids = [75] 443 feature_ids=feature_ids, 572 feature_ids = [0, 1, 0] 598 feature_ids=feature_ids, 738 feature_ids=[], 840 feature_ids = [0, 1, 0] [all …]
|
D | prediction_ops_test.py | 1304 feature_ids = [] 1309 feature_ids.append(example_debug_outputs.feature_ids) 1312 self.assertAllClose(feature_ids, expected_feature_ids) 1402 feature_ids = [] 1407 feature_ids.append(example_debug_outputs.feature_ids) 1410 self.assertAllClose(feature_ids, expected_feature_ids) 1544 feature_ids = [] 1549 feature_ids.append(example_debug_outputs.feature_ids) 1552 self.assertAllClose(feature_ids, expected_feature_ids)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/kernel_tests/ |
D | stats_accumulator_ops_test.py | 41 feature_ids=[[2, 0], [3, 0]], 69 feature_ids=[[2, 2], [3, 0], [2, 2]], 98 feature_ids=[[2, 0], [3, 0]], 104 feature_ids=[[2, 0]], 130 feature_ids=[[2, 0], [3, 0]], 172 feature_ids=[[2, 0], [3, 1]], 182 feature_ids=[[5, 0], [6, 2]], 206 feature_ids=[[2, 0], [3, 1], [2, 0]], 230 feature_ids=[[2, 0], [3, 0]], 239 feature_ids=[[2, 0]], [all …]
|
D | split_handler_ops_test.py | 528 feature_ids = array_ops.constant( 534 feature_ids=feature_ids, 625 feature_ids = array_ops.constant( 631 feature_ids=feature_ids, 664 feature_ids = [[]] 669 feature_ids=feature_ids,
|
/external/tensorflow/tensorflow/contrib/boosted_trees/lib/learner/batch/ |
D | categorical_split_handler.py | 171 feature_ids = array_ops.concat( 174 dimension_ids = array_ops.zeros_like(feature_ids, dtype=dtypes.int64) 176 [feature_ids, dimension_ids], axis=1) 180 partition_ids, feature_ids, gradients_out, hessians_out = ( 182 result = self._stats_accumulator.schedule_add(partition_ids, feature_ids, 190 num_minibatches, partition_ids, feature_ids, gradients, hessians = ( 202 feature_ids=feature_ids,
|
D | ordinal_split_handler.py | 250 feature_ids, gradients, hessians) = dense_make_stats_update( 259 example_partition_ids, feature_ids, gradients, hessians) 426 example_partition_ids, feature_ids, gradients, 439 example_partition_ids, feature_ids, gradients, hessians) 630 example_partition_ids, feature_ids, gradients, hessians = ( 636 return (quantile_values, quantile_weights, example_partition_ids, feature_ids, 728 example_partition_ids, feature_ids, gradients, hessians = ( 735 example_partition_ids, feature_ids, gradients, hessians)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/kernels/ |
D | split_handler_ops.cc | 718 const auto& feature_ids = feature_ids_t->matrix<int64>(); in Compute() local 794 partition_ids, feature_ids, gradients_t, hessians_t, in Compute() 802 partition_ids, feature_ids, gradients_t, hessians_t, in Compute() 817 const tensorflow::TTypes<int64>::ConstMatrix& feature_ids, in ComputeNormalDecisionTree() argument 827 OP_REQUIRES(context, feature_ids(start_index, 0) == bias_feature_id, in ComputeNormalDecisionTree() 862 CHECK(feature_ids(best_feature_idx, 0) != bias_feature_id) in ComputeNormalDecisionTree() 865 << feature_ids(start_index, 0) << ", " << feature_ids(start_index, 1) in ComputeNormalDecisionTree() 867 << feature_ids(best_feature_idx, 0) << ", " in ComputeNormalDecisionTree() 868 << feature_ids(best_feature_idx, 1) in ComputeNormalDecisionTree() 871 equality_split->set_feature_id(feature_ids(best_feature_idx, 0)); in ComputeNormalDecisionTree() [all …]
|
D | stats_accumulator_ops.cc | 147 auto feature_ids = feature_ids_t->matrix<int64>(); in SerializeScalarAccumulatorToOutput() local 164 feature_ids(i, 0) = iter.first.feature_id; in SerializeScalarAccumulatorToOutput() 165 feature_ids(i, 1) = iter.first.dimension; in SerializeScalarAccumulatorToOutput() 187 auto feature_ids = feature_ids_t->matrix<int64>(); in SerializeTensorAccumulatorToOutput() local 209 feature_ids(i, 0) = iter.first.feature_id; in SerializeTensorAccumulatorToOutput() 210 feature_ids(i, 1) = iter.first.dimension; in SerializeTensorAccumulatorToOutput()
|
/external/tensorflow/tensorflow/core/kernels/boosted_trees/ |
D | training_ops.cc | 82 const auto feature_ids = feature_ids_t->vec<int32>(); in Compute() local 94 FindBestSplitsPerNode(context, node_ids_list, gains_list, feature_ids, in Compute() 121 const int32 feature_id = feature_ids(feature_idx); in Compute() 199 const TTypes<const int32>::Vec& feature_ids, in FindBestSplitsPerNode() argument 221 const int32 best_feature_id = feature_ids(best_candidate.feature_idx); in FindBestSplitsPerNode() 222 const int32 feature_id = feature_ids(candidate.feature_idx); in FindBestSplitsPerNode()
|
D | boosted_trees.proto | 166 repeated int32 feature_ids = 1; field
|
/external/tensorflow/tensorflow/contrib/boosted_trees/lib/trees/ |
D | decision_tree.cc | 97 if (std::binary_search(split.feature_ids().begin(), in Traverse() 98 split.feature_ids().end(), feature_id)) { in Traverse()
|
/external/tensorflow/tensorflow/contrib/boosted_trees/proto/ |
D | tree_config.proto | 98 // the rule feature ∈ feature_ids. 101 repeated int64 feature_ids = 2; field
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BoostedTreesUpdateEnsemble.pbtxt | 11 name: "feature_ids"
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/training/functions/ |
D | gbdt_batch.py | 1322 feature_ids = array_ops.zeros( 1326 ensemble_stamp, partition_ids, feature_ids, grads_sum, hess_sum)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.raw_ops.pbtxt | 505 …argspec: "args=[\'tree_ensemble_handle\', \'feature_ids\', \'node_ids\', \'gains\', \'thresholds\'…
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.raw_ops.pbtxt | 505 …argspec: "args=[\'tree_ensemble_handle\', \'feature_ids\', \'node_ids\', \'gains\', \'thresholds\'…
|
/external/tensorflow/tensorflow/go/op/ |
D | wrappers.go | 30588 func BoostedTreesUpdateEnsemble(scope *Scope, tree_ensemble_handle tf.Output, feature_ids tf.Output… 30596 …tree_ensemble_handle, feature_ids, tf.OutputList(node_ids), tf.OutputList(gains), tf.OutputList(th…
|
/external/tensorflow/tensorflow/core/ops/ |
D | ops.pbtxt | 4872 name: "feature_ids"
|
/external/tensorflow/tensorflow/core/ops/compat/ |
D | ops_history.v1.pbtxt | 12086 name: "feature_ids"
|
D | ops_history.v2.pbtxt | 12086 name: "feature_ids"
|