/external/tensorflow/tensorflow/contrib/resampler/xla/ |
D | resampler_ops_xla_test.py | 47 grad_output = array_ops.placeholder(grad_output_np.dtype) 50 input_image, warp, grad_output) 55 grad_output: grad_output_np 75 grad_output = np.ones([1, 1], dtype=dtype) 82 self._assertBackwardOpMatchesExpected(input_np, warp_np, grad_output, 98 grad_output = np.ones([1, 3], dtype=dtype) 107 self._assertBackwardOpMatchesExpected(input_np, warp_np, grad_output, 149 grad_output = np.ones([2, 2, 3], dtype=dtype) 150 self._assertBackwardOpMatchesExpected(input_np, warp_np, grad_output, 171 grad_output = np.ones([1, 2, 1], dtype=dtype) [all …]
|
/external/tensorflow/tensorflow/contrib/resampler/python/ops/ |
D | resampler_ops.py | 65 def _resampler_grad(op, grad_output): argument 67 grad_output_tensor = ops.convert_to_tensor(grad_output, name="grad_output")
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | resampler_ops.cc | 248 XlaOp CalculateGradData(XlaOpKernelContext* ctx, XlaOp grad_output, XlaOp ratio, in CalculateGradData() argument 296 grad_output, weights_with_channels_dims, grad_output_indices); in CalculateGradData() 359 XlaOp CalculateGradWarp(XlaOpKernelContext* ctx, XlaOp grad_output, XlaOp ratio, in CalculateGradWarp() argument 452 grad_output * weight_y * bottom_right_minus_bottom_left + in CalculateGradWarp() 469 auto y_before_reduce = grad_output * weight_x * bottom_right_minus_top_right + in CalculateGradWarp() 645 XlaOp grad_output = ctx->Input("grad_output"); in Compile() local 659 ctx, grad_output, ratio, gather_indices, warp, warp_type, warp_shape, in Compile() 663 CalculateGradWarp(ctx, grad_output, ratio, gather_indices, data, in Compile()
|
/external/tensorflow/tensorflow/contrib/resampler/kernels/ |
D | resampler_ops_gpu.cu.cc | 146 const T* __restrict__ grad_output, T* __restrict__ grad_data, in ResamplerGrad2DKernel() argument 178 const T grad_output_value = grad_output[out_index]; in ResamplerGrad2DKernel() 245 const T* __restrict__ grad_output, T* __restrict__ grad_data, in operator ()() 271 warp, grad_output, grad_data, grad_warp, in operator ()()
|
D | resampler_ops.cc | 208 const T* __restrict__ grad_output, T* __restrict__ grad_data, in operator ()() 282 grad_output[batch_id * output_batch_stride + in operator ()() 338 const ::tensorflow::Tensor& grad_output = ctx->input(2); in Compute() local 364 const ::tensorflow::TensorShape& grad_output_shape = grad_output.shape(); in Compute() 383 warp.flat<T>().data(), grad_output.flat<T>().data(), in Compute()
|
D | resampler_ops.h | 45 const T* __restrict__ grad_output, T* __restrict__ grad_data,
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | bfloat16_test.cc | 133 auto grad_output = ConstantR4FromArray4D<bfloat16>( in XLA_TEST_F() local 140 BatchNormGrad(operand, scale, mean, var, grad_output, in XLA_TEST_F()
|
D | batch_normalization_test.cc | 355 auto grad_output = ConstantR4FromArray4D<float>( in XLA_TEST_P() local 359 BatchNormGrad(operand, scale, mean, var, grad_output, in XLA_TEST_P()
|
/external/tensorflow/tensorflow/c/ |
D | while_loop_test.cc | 433 TF_Output grad_output; in TEST_F() local 435 nullptr, s_, &grad_output); in TEST_F() 439 Run({grad_output}, {0}); in TEST_F()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | batchnorm_expander.cc | 468 HloInstruction* grad_output = batch_norm->mutable_operand(4); in HandleBatchNormGrad() local 521 add_binary(activation_shape, HloOpcode::kMultiply, grad_output, in HandleBatchNormGrad() 535 feature_shape, grad_output, zero, dimensions_without_feature, in HandleBatchNormGrad() 569 auto i1 = add_binary(activation_shape, HloOpcode::kMultiply, grad_output, in HandleBatchNormGrad()
|
D | hlo_parser_test.cc | 688 …4 (input: f32[2,2,2,2], scale: f32[2], mean: f32[2], variance: f32[2], grad_output: f32[2,2,2,2]) … in CreateTestCases() 693 %grad_output = f32[2,2,2,2]{3,2,1,0} parameter(4) in CreateTestCases() 694 …} %scale, f32[2]{0} %mean, f32[2]{0} %variance, f32[2,2,2,2]{3,2,1,0} %grad_output), epsilon=0.001… in CreateTestCases()
|
D | hlo_instruction.h | 651 HloInstruction* grad_output, float epsilon, int64 feature_index);
|
D | hlo_instructions.cc | 146 HloInstruction* mean, HloInstruction* variance, HloInstruction* grad_output, in HloBatchNormGradInstruction() argument 152 AppendOperand(grad_output); in HloBatchNormGradInstruction()
|
D | hlo_instructions.h | 93 HloInstruction* grad_output, float epsilon, int64 feature_index);
|
D | hlo_instruction.cc | 1084 HloInstruction* grad_output, float epsilon, in CreateBatchNormGrad() argument 1087 shape, operand, scale, mean, variance, grad_output, epsilon, in CreateBatchNormGrad()
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
D | cudnn_batchnorm_thunk.cc | 218 const BufferAllocation::Slice& grad_output, float epsilon, in CudnnBatchNormBackwardThunk() argument 228 grad_output_(grad_output), in CudnnBatchNormBackwardThunk()
|
D | cudnn_batchnorm_thunk.h | 116 const BufferAllocation::Slice& grad_output,
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | special_math_test.py | 281 output, grad_output = _value_and_gradient( 284 output_, grad_output_ = self.evaluate([output, grad_output])
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | while_v2_test.py | 366 grad_output = GetAccumulatorForInputAtIndex(grad_while_op, 368 _, val = list_ops.tensor_list_pop_back(grad_output,
|
/external/tensorflow/tensorflow/compiler/xla/client/ |
D | xla_builder.h | 580 const XlaOp& grad_output, float epsilon, 987 const XlaOp& grad_output, float epsilon, 1912 const XlaOp& grad_output, float epsilon,
|
D | xla_builder.cc | 2096 const XlaOp& grad_output, float epsilon, in BatchNormGrad() argument 2105 TF_ASSIGN_OR_RETURN(const Shape& grad_output_shape, GetShape(grad_output)); in BatchNormGrad() 2116 {operand, scale, batch_mean, batch_var, grad_output}); in BatchNormGrad() 3503 const XlaOp& grad_output, float epsilon, in BatchNormGrad() argument 3506 grad_output, epsilon, feature_index); in BatchNormGrad()
|
/external/tensorflow/tensorflow/compiler/xla/g3doc/ |
D | operation_semantics.md | 114 <b> `BatchNormGrad(operand, scale, mean, variance, grad_output, epsilon, feature_index)` </b> 125 | `grad_output` | `XlaOp` | Gradients passed to |
|