1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29 
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35 
36 #include "brw_context.h"
37 #include "brw_draw.h"
38 #include "brw_multisample_state.h"
39 #include "brw_state.h"
40 #include "brw_wm.h"
41 #include "brw_util.h"
42 
43 #include "intel_batchbuffer.h"
44 #include "intel_buffer_objects.h"
45 #include "intel_fbo.h"
46 
47 #include "main/enums.h"
48 #include "main/fbobject.h"
49 #include "main/framebuffer.h"
50 #include "main/glformats.h"
51 #include "main/samplerobj.h"
52 #include "main/shaderapi.h"
53 #include "main/stencil.h"
54 #include "main/transformfeedback.h"
55 #include "main/varray.h"
56 #include "main/viewport.h"
57 #include "util/half_float.h"
58 
59 UNUSED static void *
emit_dwords(struct brw_context * brw,unsigned n)60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62    intel_batchbuffer_begin(brw, n, RENDER_RING);
63    uint32_t *map = brw->batch.map_next;
64    brw->batch.map_next += n;
65    intel_batchbuffer_advance(brw);
66    return map;
67 }
68 
69 struct brw_address {
70    struct brw_bo *bo;
71    unsigned reloc_flags;
72    uint32_t offset;
73 };
74 
75 #define __gen_address_type struct brw_address
76 #define __gen_user_data struct brw_context
77 
78 static uint64_t
__gen_combine_address(struct brw_context * brw,void * location,struct brw_address address,uint32_t delta)79 __gen_combine_address(struct brw_context *brw, void *location,
80                       struct brw_address address, uint32_t delta)
81 {
82    struct intel_batchbuffer *batch = &brw->batch;
83    uint32_t offset;
84 
85    if (address.bo == NULL) {
86       return address.offset + delta;
87    } else {
88       if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
89          offset = (char *) location - (char *) brw->batch.state.map;
90          return brw_state_reloc(batch, offset, address.bo,
91                                 address.offset + delta,
92                                 address.reloc_flags);
93       }
94 
95       assert(!brw_ptr_in_state_buffer(batch, location));
96 
97       offset = (char *) location - (char *) brw->batch.batch.map;
98       return brw_batch_reloc(batch, offset, address.bo,
99                              address.offset + delta,
100                              address.reloc_flags);
101    }
102 }
103 
104 static struct brw_address
rw_bo(struct brw_bo * bo,uint32_t offset)105 rw_bo(struct brw_bo *bo, uint32_t offset)
106 {
107    return (struct brw_address) {
108             .bo = bo,
109             .offset = offset,
110             .reloc_flags = RELOC_WRITE,
111    };
112 }
113 
114 static struct brw_address
ro_bo(struct brw_bo * bo,uint32_t offset)115 ro_bo(struct brw_bo *bo, uint32_t offset)
116 {
117    return (struct brw_address) {
118             .bo = bo,
119             .offset = offset,
120    };
121 }
122 
123 UNUSED static struct brw_address
ggtt_bo(struct brw_bo * bo,uint32_t offset)124 ggtt_bo(struct brw_bo *bo, uint32_t offset)
125 {
126    return (struct brw_address) {
127             .bo = bo,
128             .offset = offset,
129             .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
130    };
131 }
132 
133 #if GEN_GEN == 4
134 static struct brw_address
KSP(struct brw_context * brw,uint32_t offset)135 KSP(struct brw_context *brw, uint32_t offset)
136 {
137    return ro_bo(brw->cache.bo, offset);
138 }
139 #else
140 static uint32_t
KSP(struct brw_context * brw,uint32_t offset)141 KSP(struct brw_context *brw, uint32_t offset)
142 {
143    return offset;
144 }
145 #endif
146 
147 #include "genxml/genX_pack.h"
148 
149 #define _brw_cmd_length(cmd) cmd ## _length
150 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
151 #define _brw_cmd_header(cmd) cmd ## _header
152 #define _brw_cmd_pack(cmd) cmd ## _pack
153 
154 #define brw_batch_emit(brw, cmd, name)                  \
155    for (struct cmd name = { _brw_cmd_header(cmd) },     \
156         *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
157         __builtin_expect(_dst != NULL, 1);              \
158         _brw_cmd_pack(cmd)(brw, (void *)_dst, &name),   \
159         _dst = NULL)
160 
161 #define brw_batch_emitn(brw, cmd, n, ...) ({           \
162       uint32_t *_dw = emit_dwords(brw, n);             \
163       struct cmd template = {                          \
164          _brw_cmd_header(cmd),                         \
165          .DWordLength = n - _brw_cmd_length_bias(cmd), \
166          __VA_ARGS__                                   \
167       };                                               \
168       _brw_cmd_pack(cmd)(brw, _dw, &template);         \
169       _dw + 1; /* Array starts at dw[1] */             \
170    })
171 
172 #define brw_state_emit(brw, cmd, align, offset, name)              \
173    for (struct cmd name = {},                                      \
174         *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4,     \
175                                 align, offset);                    \
176         __builtin_expect(_dst != NULL, 1);                         \
177         _brw_cmd_pack(cmd)(brw, (void *)_dst, &name),              \
178         _dst = NULL)
179 
180 /**
181  * Polygon stipple packet
182  */
183 static void
genX(upload_polygon_stipple)184 genX(upload_polygon_stipple)(struct brw_context *brw)
185 {
186    struct gl_context *ctx = &brw->ctx;
187 
188    /* _NEW_POLYGON */
189    if (!ctx->Polygon.StippleFlag)
190       return;
191 
192    brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
193       /* Polygon stipple is provided in OpenGL order, i.e. bottom
194        * row first.  If we're rendering to a window (i.e. the
195        * default frame buffer object, 0), then we need to invert
196        * it to match our pixel layout.  But if we're rendering
197        * to a FBO (i.e. any named frame buffer object), we *don't*
198        * need to invert - we already match the layout.
199        */
200       if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
201          for (unsigned i = 0; i < 32; i++)
202             poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
203       } else {
204          for (unsigned i = 0; i < 32; i++)
205             poly.PatternRow[i] = ctx->PolygonStipple[i];
206       }
207    }
208 }
209 
210 static const struct brw_tracked_state genX(polygon_stipple) = {
211    .dirty = {
212       .mesa = _NEW_POLYGON |
213               _NEW_POLYGONSTIPPLE,
214       .brw = BRW_NEW_CONTEXT,
215    },
216    .emit = genX(upload_polygon_stipple),
217 };
218 
219 /**
220  * Polygon stipple offset packet
221  */
222 static void
genX(upload_polygon_stipple_offset)223 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
224 {
225    struct gl_context *ctx = &brw->ctx;
226 
227    /* _NEW_POLYGON */
228    if (!ctx->Polygon.StippleFlag)
229       return;
230 
231    brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
232       /* _NEW_BUFFERS
233        *
234        * If we're drawing to a system window we have to invert the Y axis
235        * in order to match the OpenGL pixel coordinate system, and our
236        * offset must be matched to the window position.  If we're drawing
237        * to a user-created FBO then our native pixel coordinate system
238        * works just fine, and there's no window system to worry about.
239        */
240       if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
241          poly.PolygonStippleYOffset =
242             (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
243       }
244    }
245 }
246 
247 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
248    .dirty = {
249       .mesa = _NEW_BUFFERS |
250               _NEW_POLYGON,
251       .brw = BRW_NEW_CONTEXT,
252    },
253    .emit = genX(upload_polygon_stipple_offset),
254 };
255 
256 /**
257  * Line stipple packet
258  */
259 static void
genX(upload_line_stipple)260 genX(upload_line_stipple)(struct brw_context *brw)
261 {
262    struct gl_context *ctx = &brw->ctx;
263 
264    if (!ctx->Line.StippleFlag)
265       return;
266 
267    brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
268       line.LineStipplePattern = ctx->Line.StipplePattern;
269 
270       line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
271       line.LineStippleRepeatCount = ctx->Line.StippleFactor;
272    }
273 }
274 
275 static const struct brw_tracked_state genX(line_stipple) = {
276    .dirty = {
277       .mesa = _NEW_LINE,
278       .brw = BRW_NEW_CONTEXT,
279    },
280    .emit = genX(upload_line_stipple),
281 };
282 
283 /* Constant single cliprect for framebuffer object or DRI2 drawing */
284 static void
genX(upload_drawing_rect)285 genX(upload_drawing_rect)(struct brw_context *brw)
286 {
287    struct gl_context *ctx = &brw->ctx;
288    const struct gl_framebuffer *fb = ctx->DrawBuffer;
289    const unsigned int fb_width = _mesa_geometric_width(fb);
290    const unsigned int fb_height = _mesa_geometric_height(fb);
291 
292    brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
293       rect.ClippedDrawingRectangleXMax = fb_width - 1;
294       rect.ClippedDrawingRectangleYMax = fb_height - 1;
295    }
296 }
297 
298 static const struct brw_tracked_state genX(drawing_rect) = {
299    .dirty = {
300       .mesa = _NEW_BUFFERS,
301       .brw = BRW_NEW_BLORP |
302              BRW_NEW_CONTEXT,
303    },
304    .emit = genX(upload_drawing_rect),
305 };
306 
307 static uint32_t *
genX(emit_vertex_buffer_state)308 genX(emit_vertex_buffer_state)(struct brw_context *brw,
309                                uint32_t *dw,
310                                unsigned buffer_nr,
311                                struct brw_bo *bo,
312                                unsigned start_offset,
313                                unsigned end_offset,
314                                unsigned stride,
315                                unsigned step_rate)
316 {
317    struct GENX(VERTEX_BUFFER_STATE) buf_state = {
318       .VertexBufferIndex = buffer_nr,
319       .BufferPitch = stride,
320       .BufferStartingAddress = ro_bo(bo, start_offset),
321 #if GEN_GEN >= 8
322       .BufferSize = end_offset - start_offset,
323 #endif
324 
325 #if GEN_GEN >= 7
326       .AddressModifyEnable = true,
327 #endif
328 
329 #if GEN_GEN < 8
330       .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
331       .InstanceDataStepRate = step_rate,
332 #if GEN_GEN >= 5
333       .EndAddress = ro_bo(bo, end_offset - 1),
334 #endif
335 #endif
336 
337 #if GEN_GEN == 10
338       .VertexBufferMOCS = CNL_MOCS_WB,
339 #elif GEN_GEN == 9
340       .VertexBufferMOCS = SKL_MOCS_WB,
341 #elif GEN_GEN == 8
342       .VertexBufferMOCS = BDW_MOCS_WB,
343 #elif GEN_GEN == 7
344       .VertexBufferMOCS = GEN7_MOCS_L3,
345 #endif
346    };
347 
348    GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
349    return dw + GENX(VERTEX_BUFFER_STATE_length);
350 }
351 
352 UNUSED static bool
is_passthru_format(uint32_t format)353 is_passthru_format(uint32_t format)
354 {
355    switch (format) {
356    case ISL_FORMAT_R64_PASSTHRU:
357    case ISL_FORMAT_R64G64_PASSTHRU:
358    case ISL_FORMAT_R64G64B64_PASSTHRU:
359    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
360       return true;
361    default:
362       return false;
363    }
364 }
365 
366 UNUSED static int
uploads_needed(uint32_t format,bool is_dual_slot)367 uploads_needed(uint32_t format,
368 	       bool is_dual_slot)
369 {
370    if (!is_passthru_format(format))
371       return 1;
372 
373    if (is_dual_slot)
374       return 2;
375 
376    switch (format) {
377    case ISL_FORMAT_R64_PASSTHRU:
378    case ISL_FORMAT_R64G64_PASSTHRU:
379       return 1;
380    case ISL_FORMAT_R64G64B64_PASSTHRU:
381    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
382       return 2;
383    default:
384       unreachable("not reached");
385    }
386 }
387 
388 /*
389  * Returns the format that we are finally going to use when upload a vertex
390  * element. It will only change if we are using *64*PASSTHRU formats, as for
391  * gen < 8 they need to be splitted on two *32*FLOAT formats.
392  *
393  * @upload points in which upload we are. Valid values are [0,1]
394  */
395 static uint32_t
downsize_format_if_needed(uint32_t format,int upload)396 downsize_format_if_needed(uint32_t format,
397                           int upload)
398 {
399    assert(upload == 0 || upload == 1);
400 
401    if (!is_passthru_format(format))
402       return format;
403 
404    /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
405     * 1 means that we have been forced to do 2 uploads for a size <= 2. This
406     * happens with gen < 8 and dvec3 or dvec4 vertex shader input
407     * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
408     * flagging that we want to fill with zeroes this second forced upload.
409     */
410    switch (format) {
411    case ISL_FORMAT_R64_PASSTHRU:
412       return !upload ? ISL_FORMAT_R32G32_FLOAT
413                      : ISL_FORMAT_R32_FLOAT;
414    case ISL_FORMAT_R64G64_PASSTHRU:
415       return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
416                      : ISL_FORMAT_R32_FLOAT;
417    case ISL_FORMAT_R64G64B64_PASSTHRU:
418       return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
419                      : ISL_FORMAT_R32G32_FLOAT;
420    case ISL_FORMAT_R64G64B64A64_PASSTHRU:
421       return ISL_FORMAT_R32G32B32A32_FLOAT;
422    default:
423       unreachable("not reached");
424    }
425 }
426 
427 /*
428  * Returns the number of componentes associated with a format that is used on
429  * a 64 to 32 format split. See downsize_format()
430  */
431 static int
upload_format_size(uint32_t upload_format)432 upload_format_size(uint32_t upload_format)
433 {
434    switch (upload_format) {
435    case ISL_FORMAT_R32_FLOAT:
436 
437       /* downsized_format has returned this one in order to flag that we are
438        * performing a second upload which we want to have filled with
439        * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
440        * vertex shader input variables.
441        */
442 
443       return 0;
444    case ISL_FORMAT_R32G32_FLOAT:
445       return 2;
446    case ISL_FORMAT_R32G32B32A32_FLOAT:
447       return 4;
448    default:
449       unreachable("not reached");
450    }
451 }
452 
453 static void
genX(emit_vertices)454 genX(emit_vertices)(struct brw_context *brw)
455 {
456    const struct gen_device_info *devinfo = &brw->screen->devinfo;
457    uint32_t *dw;
458 
459    brw_prepare_vertices(brw);
460    brw_prepare_shader_draw_parameters(brw);
461 
462 #if GEN_GEN < 6
463    brw_emit_query_begin(brw);
464 #endif
465 
466    const struct brw_vs_prog_data *vs_prog_data =
467       brw_vs_prog_data(brw->vs.base.prog_data);
468 
469 #if GEN_GEN >= 8
470    struct gl_context *ctx = &brw->ctx;
471    const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
472                                 ctx->Polygon.BackMode != GL_FILL);
473 
474    if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
475       unsigned vue = brw->vb.nr_enabled;
476 
477       /* The element for the edge flags must always be last, so we have to
478        * insert the SGVS before it in that case.
479        */
480       if (uses_edge_flag) {
481          assert(vue > 0);
482          vue--;
483       }
484 
485       WARN_ONCE(vue >= 33,
486                 "Trying to insert VID/IID past 33rd vertex element, "
487                 "need to reorder the vertex attrbutes.");
488 
489       brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
490          if (vs_prog_data->uses_vertexid) {
491             vfs.VertexIDEnable = true;
492             vfs.VertexIDComponentNumber = 2;
493             vfs.VertexIDElementOffset = vue;
494          }
495 
496          if (vs_prog_data->uses_instanceid) {
497             vfs.InstanceIDEnable = true;
498             vfs.InstanceIDComponentNumber = 3;
499             vfs.InstanceIDElementOffset = vue;
500          }
501       }
502 
503       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
504          vfi.InstancingEnable = true;
505          vfi.VertexElementIndex = vue;
506       }
507    } else {
508       brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
509    }
510 
511    /* Normally we don't need an element for the SGVS attribute because the
512     * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
513     * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
514     * we're using draw parameters then we need an element for the those
515     * values.  Additionally if there is an edge flag element then the SGVS
516     * can't be inserted past that so we need a dummy element to ensure that
517     * the edge flag is the last one.
518     */
519    const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
520                                     vs_prog_data->uses_baseinstance ||
521                                     ((vs_prog_data->uses_instanceid ||
522                                       vs_prog_data->uses_vertexid)
523                                      && uses_edge_flag));
524 #else
525    const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
526                                     vs_prog_data->uses_baseinstance ||
527                                     vs_prog_data->uses_instanceid ||
528                                     vs_prog_data->uses_vertexid);
529 #endif
530    unsigned nr_elements =
531       brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
532 
533 #if GEN_GEN < 8
534    /* If any of the formats of vb.enabled needs more that one upload, we need
535     * to add it to nr_elements
536     */
537    for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
538       struct brw_vertex_element *input = brw->vb.enabled[i];
539       uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
540 
541       if (uploads_needed(format, input->is_dual_slot) > 1)
542          nr_elements++;
543    }
544 #endif
545 
546    /* If the VS doesn't read any inputs (calculating vertex position from
547     * a state variable for some reason, for example), emit a single pad
548     * VERTEX_ELEMENT struct and bail.
549     *
550     * The stale VB state stays in place, but they don't do anything unless
551     * a VE loads from them.
552     */
553    if (nr_elements == 0) {
554       dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
555                            1 + GENX(VERTEX_ELEMENT_STATE_length));
556       struct GENX(VERTEX_ELEMENT_STATE) elem = {
557          .Valid = true,
558          .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
559          .Component0Control = VFCOMP_STORE_0,
560          .Component1Control = VFCOMP_STORE_0,
561          .Component2Control = VFCOMP_STORE_0,
562          .Component3Control = VFCOMP_STORE_1_FP,
563       };
564       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
565       return;
566    }
567 
568    /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
569    const bool uses_draw_params =
570       vs_prog_data->uses_basevertex ||
571       vs_prog_data->uses_baseinstance;
572    const unsigned nr_buffers = brw->vb.nr_buffers +
573       uses_draw_params + vs_prog_data->uses_drawid;
574 
575    if (nr_buffers) {
576       assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
577 
578       dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
579                            1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
580 
581       for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
582          const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
583          /* Prior to Haswell and Bay Trail we have to use 4-component formats
584           * to fake 3-component ones.  In particular, we do this for
585           * half-float and 8 and 16-bit integer formats.  This means that the
586           * vertex element may poke over the end of the buffer by 2 bytes.
587           */
588          const unsigned padding =
589             (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
590          const unsigned end = buffer->offset + buffer->size + padding;
591          dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
592                                              buffer->offset,
593                                              end,
594                                              buffer->stride,
595                                              buffer->step_rate);
596       }
597 
598       if (uses_draw_params) {
599          dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
600                                              brw->draw.draw_params_bo,
601                                              brw->draw.draw_params_offset,
602                                              brw->draw.draw_params_bo->size,
603                                              0 /* stride */,
604                                              0 /* step rate */);
605       }
606 
607       if (vs_prog_data->uses_drawid) {
608          dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
609                                              brw->draw.draw_id_bo,
610                                              brw->draw.draw_id_offset,
611                                              brw->draw.draw_id_bo->size,
612                                              0 /* stride */,
613                                              0 /* step rate */);
614       }
615    }
616 
617    /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
618     * presumably for VertexID/InstanceID.
619     */
620 #if GEN_GEN >= 6
621    assert(nr_elements <= 34);
622    const struct brw_vertex_element *gen6_edgeflag_input = NULL;
623 #else
624    assert(nr_elements <= 18);
625 #endif
626 
627    dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
628                         1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
629    unsigned i;
630    for (i = 0; i < brw->vb.nr_enabled; i++) {
631       const struct brw_vertex_element *input = brw->vb.enabled[i];
632       uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
633       uint32_t comp0 = VFCOMP_STORE_SRC;
634       uint32_t comp1 = VFCOMP_STORE_SRC;
635       uint32_t comp2 = VFCOMP_STORE_SRC;
636       uint32_t comp3 = VFCOMP_STORE_SRC;
637       const unsigned num_uploads = GEN_GEN < 8 ?
638 	 uploads_needed(format, input->is_dual_slot) : 1;
639 
640 #if GEN_GEN >= 8
641       /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
642        * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
643        * element which has edge flag enabled."
644        */
645       assert(!(is_passthru_format(format) && uses_edge_flag));
646 #endif
647 
648       /* The gen4 driver expects edgeflag to come in as a float, and passes
649        * that float on to the tests in the clipper.  Mesa's current vertex
650        * attribute value for EdgeFlag is stored as a float, which works out.
651        * glEdgeFlagPointer, on the other hand, gives us an unnormalized
652        * integer ubyte.  Just rewrite that to convert to a float.
653        *
654        * Gen6+ passes edgeflag as sideband along with the vertex, instead
655        * of in the VUE.  We have to upload it sideband as the last vertex
656        * element according to the B-Spec.
657        */
658 #if GEN_GEN >= 6
659       if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
660          gen6_edgeflag_input = input;
661          continue;
662       }
663 #endif
664 
665       for (unsigned c = 0; c < num_uploads; c++) {
666          const uint32_t upload_format = GEN_GEN >= 8 ? format :
667             downsize_format_if_needed(format, c);
668          /* If we need more that one upload, the offset stride would be 128
669           * bits (16 bytes), as for previous uploads we are using the full
670           * entry. */
671          const unsigned offset = input->offset + c * 16;
672 
673          const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
674             upload_format_size(upload_format) : input->glarray->Size;
675 
676          switch (size) {
677             case 0: comp0 = VFCOMP_STORE_0;
678             case 1: comp1 = VFCOMP_STORE_0;
679             case 2: comp2 = VFCOMP_STORE_0;
680             case 3:
681                if (GEN_GEN >= 8 && input->glarray->Doubles) {
682                   comp3 = VFCOMP_STORE_0;
683                } else if (input->glarray->Integer) {
684                   comp3 = VFCOMP_STORE_1_INT;
685                } else {
686                   comp3 = VFCOMP_STORE_1_FP;
687                }
688 
689                break;
690          }
691 
692 #if GEN_GEN >= 8
693          /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
694           *
695           *     "When SourceElementFormat is set to one of the *64*_PASSTHRU
696           *     formats, 64-bit components are stored in the URB without any
697           *     conversion. In this case, vertex elements must be written as 128
698           *     or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
699           *     required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
700           *     component into the URB, Component 1 must be specified as
701           *     VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
702           *     order to output a 128-bit vertex element, or Components 1-3 must
703           *     be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
704           *     element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
705           *     to be specified as VFCOMP_STORE_0 in order to output a 256-bit
706           *     vertex element."
707           */
708          if (input->glarray->Doubles && !input->is_dual_slot) {
709             /* Store vertex elements which correspond to double and dvec2 vertex
710              * shader inputs as 128-bit vertex elements, instead of 256-bits.
711              */
712             comp2 = VFCOMP_NOSTORE;
713             comp3 = VFCOMP_NOSTORE;
714          }
715 #endif
716 
717          struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
718             .VertexBufferIndex = input->buffer,
719             .Valid = true,
720             .SourceElementFormat = upload_format,
721             .SourceElementOffset = offset,
722             .Component0Control = comp0,
723             .Component1Control = comp1,
724             .Component2Control = comp2,
725             .Component3Control = comp3,
726 #if GEN_GEN < 5
727             .DestinationElementOffset = i * 4,
728 #endif
729          };
730 
731          GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
732          dw += GENX(VERTEX_ELEMENT_STATE_length);
733       }
734    }
735 
736    if (needs_sgvs_element) {
737       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
738          .Valid = true,
739          .Component0Control = VFCOMP_STORE_0,
740          .Component1Control = VFCOMP_STORE_0,
741          .Component2Control = VFCOMP_STORE_0,
742          .Component3Control = VFCOMP_STORE_0,
743 #if GEN_GEN < 5
744          .DestinationElementOffset = i * 4,
745 #endif
746       };
747 
748 #if GEN_GEN >= 8
749       if (vs_prog_data->uses_basevertex ||
750           vs_prog_data->uses_baseinstance) {
751          elem_state.VertexBufferIndex = brw->vb.nr_buffers;
752          elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
753          elem_state.Component0Control = VFCOMP_STORE_SRC;
754          elem_state.Component1Control = VFCOMP_STORE_SRC;
755       }
756 #else
757       elem_state.VertexBufferIndex = brw->vb.nr_buffers;
758       elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
759       if (vs_prog_data->uses_basevertex)
760          elem_state.Component0Control = VFCOMP_STORE_SRC;
761 
762       if (vs_prog_data->uses_baseinstance)
763          elem_state.Component1Control = VFCOMP_STORE_SRC;
764 
765       if (vs_prog_data->uses_vertexid)
766          elem_state.Component2Control = VFCOMP_STORE_VID;
767 
768       if (vs_prog_data->uses_instanceid)
769          elem_state.Component3Control = VFCOMP_STORE_IID;
770 #endif
771 
772       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
773       dw += GENX(VERTEX_ELEMENT_STATE_length);
774    }
775 
776    if (vs_prog_data->uses_drawid) {
777       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
778          .Valid = true,
779          .VertexBufferIndex = brw->vb.nr_buffers + 1,
780          .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
781          .Component0Control = VFCOMP_STORE_SRC,
782          .Component1Control = VFCOMP_STORE_0,
783          .Component2Control = VFCOMP_STORE_0,
784          .Component3Control = VFCOMP_STORE_0,
785 #if GEN_GEN < 5
786          .DestinationElementOffset = i * 4,
787 #endif
788       };
789 
790       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
791       dw += GENX(VERTEX_ELEMENT_STATE_length);
792    }
793 
794 #if GEN_GEN >= 6
795    if (gen6_edgeflag_input) {
796       const uint32_t format =
797          brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
798 
799       struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
800          .Valid = true,
801          .VertexBufferIndex = gen6_edgeflag_input->buffer,
802          .EdgeFlagEnable = true,
803          .SourceElementFormat = format,
804          .SourceElementOffset = gen6_edgeflag_input->offset,
805          .Component0Control = VFCOMP_STORE_SRC,
806          .Component1Control = VFCOMP_STORE_0,
807          .Component2Control = VFCOMP_STORE_0,
808          .Component3Control = VFCOMP_STORE_0,
809       };
810 
811       GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
812       dw += GENX(VERTEX_ELEMENT_STATE_length);
813    }
814 #endif
815 
816 #if GEN_GEN >= 8
817    for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
818       const struct brw_vertex_element *input = brw->vb.enabled[i];
819       const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
820       unsigned element_index;
821 
822       /* The edge flag element is reordered to be the last one in the code
823        * above so we need to compensate for that in the element indices used
824        * below.
825        */
826       if (input == gen6_edgeflag_input)
827          element_index = nr_elements - 1;
828       else
829          element_index = j++;
830 
831       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
832          vfi.VertexElementIndex = element_index;
833          vfi.InstancingEnable = buffer->step_rate != 0;
834          vfi.InstanceDataStepRate = buffer->step_rate;
835       }
836    }
837 
838    if (vs_prog_data->uses_drawid) {
839       const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
840 
841       brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
842          vfi.VertexElementIndex = element;
843       }
844    }
845 #endif
846 }
847 
848 static const struct brw_tracked_state genX(vertices) = {
849    .dirty = {
850       .mesa = _NEW_POLYGON,
851       .brw = BRW_NEW_BATCH |
852              BRW_NEW_BLORP |
853              BRW_NEW_VERTICES |
854              BRW_NEW_VS_PROG_DATA,
855    },
856    .emit = genX(emit_vertices),
857 };
858 
859 static void
genX(emit_index_buffer)860 genX(emit_index_buffer)(struct brw_context *brw)
861 {
862    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
863 
864    if (index_buffer == NULL)
865       return;
866 
867    brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
868 #if GEN_GEN < 8 && !GEN_IS_HASWELL
869       ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
870 #endif
871       ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
872       ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
873 #if GEN_GEN >= 8
874       ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
875       ib.BufferSize = brw->ib.size;
876 #else
877       ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
878 #endif
879    }
880 }
881 
882 static const struct brw_tracked_state genX(index_buffer) = {
883    .dirty = {
884       .mesa = 0,
885       .brw = BRW_NEW_BATCH |
886              BRW_NEW_BLORP |
887              BRW_NEW_INDEX_BUFFER,
888    },
889    .emit = genX(emit_index_buffer),
890 };
891 
892 #if GEN_IS_HASWELL || GEN_GEN >= 8
893 static void
genX(upload_cut_index)894 genX(upload_cut_index)(struct brw_context *brw)
895 {
896    const struct gl_context *ctx = &brw->ctx;
897 
898    brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
899       if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
900          vf.IndexedDrawCutIndexEnable = true;
901          vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
902       }
903    }
904 }
905 
906 const struct brw_tracked_state genX(cut_index) = {
907    .dirty = {
908       .mesa  = _NEW_TRANSFORM,
909       .brw   = BRW_NEW_INDEX_BUFFER,
910    },
911    .emit = genX(upload_cut_index),
912 };
913 #endif
914 
915 #if GEN_GEN >= 6
916 /**
917  * Determine the appropriate attribute override value to store into the
918  * 3DSTATE_SF structure for a given fragment shader attribute.  The attribute
919  * override value contains two pieces of information: the location of the
920  * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
921  * flag indicating whether to "swizzle" the attribute based on the direction
922  * the triangle is facing.
923  *
924  * If an attribute is "swizzled", then the given VUE location is used for
925  * front-facing triangles, and the VUE location that immediately follows is
926  * used for back-facing triangles.  We use this to implement the mapping from
927  * gl_FrontColor/gl_BackColor to gl_Color.
928  *
929  * urb_entry_read_offset is the offset into the VUE at which the SF unit is
930  * being instructed to begin reading attribute data.  It can be set to a
931  * nonzero value to prevent the SF unit from wasting time reading elements of
932  * the VUE that are not needed by the fragment shader.  It is measured in
933  * 256-bit increments.
934  */
935 static void
genX(get_attr_override)936 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
937                         const struct brw_vue_map *vue_map,
938                         int urb_entry_read_offset, int fs_attr,
939                         bool two_side_color, uint32_t *max_source_attr)
940 {
941    /* Find the VUE slot for this attribute. */
942    int slot = vue_map->varying_to_slot[fs_attr];
943 
944    /* Viewport and Layer are stored in the VUE header.  We need to override
945     * them to zero if earlier stages didn't write them, as GL requires that
946     * they read back as zero when not explicitly set.
947     */
948    if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
949       attr->ComponentOverrideX = true;
950       attr->ComponentOverrideW = true;
951       attr->ConstantSource = CONST_0000;
952 
953       if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
954          attr->ComponentOverrideY = true;
955       if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
956          attr->ComponentOverrideZ = true;
957 
958       return;
959    }
960 
961    /* If there was only a back color written but not front, use back
962     * as the color instead of undefined
963     */
964    if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
965       slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
966    if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
967       slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
968 
969    if (slot == -1) {
970       /* This attribute does not exist in the VUE--that means that the vertex
971        * shader did not write to it.  This means that either:
972        *
973        * (a) This attribute is a texture coordinate, and it is going to be
974        * replaced with point coordinates (as a consequence of a call to
975        * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
976        * hardware will ignore whatever attribute override we supply.
977        *
978        * (b) This attribute is read by the fragment shader but not written by
979        * the vertex shader, so its value is undefined.  Therefore the
980        * attribute override we supply doesn't matter.
981        *
982        * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
983        * previous shader stage.
984        *
985        * Note that we don't have to worry about the cases where the attribute
986        * is gl_PointCoord or is undergoing point sprite coordinate
987        * replacement, because in those cases, this function isn't called.
988        *
989        * In case (c), we need to program the attribute overrides so that the
990        * primitive ID will be stored in this slot.  In every other case, the
991        * attribute override we supply doesn't matter.  So just go ahead and
992        * program primitive ID in every case.
993        */
994       attr->ComponentOverrideW = true;
995       attr->ComponentOverrideX = true;
996       attr->ComponentOverrideY = true;
997       attr->ComponentOverrideZ = true;
998       attr->ConstantSource = PRIM_ID;
999       return;
1000    }
1001 
1002    /* Compute the location of the attribute relative to urb_entry_read_offset.
1003     * Each increment of urb_entry_read_offset represents a 256-bit value, so
1004     * it counts for two 128-bit VUE slots.
1005     */
1006    int source_attr = slot - 2 * urb_entry_read_offset;
1007    assert(source_attr >= 0 && source_attr < 32);
1008 
1009    /* If we are doing two-sided color, and the VUE slot following this one
1010     * represents a back-facing color, then we need to instruct the SF unit to
1011     * do back-facing swizzling.
1012     */
1013    bool swizzling = two_side_color &&
1014       ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1015         vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1016        (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1017         vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1018 
1019    /* Update max_source_attr.  If swizzling, the SF will read this slot + 1. */
1020    if (*max_source_attr < source_attr + swizzling)
1021       *max_source_attr = source_attr + swizzling;
1022 
1023    attr->SourceAttribute = source_attr;
1024    if (swizzling)
1025       attr->SwizzleSelect = INPUTATTR_FACING;
1026 }
1027 
1028 
1029 static void
genX(calculate_attr_overrides)1030 genX(calculate_attr_overrides)(const struct brw_context *brw,
1031                                struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1032                                uint32_t *point_sprite_enables,
1033                                uint32_t *urb_entry_read_length,
1034                                uint32_t *urb_entry_read_offset)
1035 {
1036    const struct gl_context *ctx = &brw->ctx;
1037 
1038    /* _NEW_POINT */
1039    const struct gl_point_attrib *point = &ctx->Point;
1040 
1041    /* BRW_NEW_FRAGMENT_PROGRAM */
1042    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1043 
1044    /* BRW_NEW_FS_PROG_DATA */
1045    const struct brw_wm_prog_data *wm_prog_data =
1046       brw_wm_prog_data(brw->wm.base.prog_data);
1047    uint32_t max_source_attr = 0;
1048 
1049    *point_sprite_enables = 0;
1050 
1051    int first_slot =
1052       brw_compute_first_urb_slot_required(fp->info.inputs_read,
1053                                           &brw->vue_map_geom_out);
1054 
1055    /* Each URB offset packs two varying slots */
1056    assert(first_slot % 2 == 0);
1057    *urb_entry_read_offset = first_slot / 2;
1058 
1059    /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1060     * description of dw10 Point Sprite Texture Coordinate Enable:
1061     *
1062     * "This field must be programmed to zero when non-point primitives
1063     * are rendered."
1064     *
1065     * The SandyBridge PRM doesn't explicitly say that point sprite enables
1066     * must be programmed to zero when rendering non-point primitives, but
1067     * the IvyBridge PRM does, and if we don't, we get garbage.
1068     *
1069     * This is not required on Haswell, as the hardware ignores this state
1070     * when drawing non-points -- although we do still need to be careful to
1071     * correctly set the attr overrides.
1072     *
1073     * _NEW_POLYGON
1074     * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1075     */
1076    bool drawing_points = brw_is_drawing_points(brw);
1077 
1078    for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1079       int input_index = wm_prog_data->urb_setup[attr];
1080 
1081       if (input_index < 0)
1082          continue;
1083 
1084       /* _NEW_POINT */
1085       bool point_sprite = false;
1086       if (drawing_points) {
1087          if (point->PointSprite &&
1088              (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1089              (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1090             point_sprite = true;
1091          }
1092 
1093          if (attr == VARYING_SLOT_PNTC)
1094             point_sprite = true;
1095 
1096          if (point_sprite)
1097             *point_sprite_enables |= (1 << input_index);
1098       }
1099 
1100       /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1101       struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1102 
1103       if (!point_sprite) {
1104          genX(get_attr_override)(&attribute,
1105                                  &brw->vue_map_geom_out,
1106                                  *urb_entry_read_offset, attr,
1107                                  _mesa_vertex_program_two_side_enabled(ctx),
1108                                  &max_source_attr);
1109       }
1110 
1111       /* The hardware can only do the overrides on 16 overrides at a
1112        * time, and the other up to 16 have to be lined up so that the
1113        * input index = the output index.  We'll need to do some
1114        * tweaking to make sure that's the case.
1115        */
1116       if (input_index < 16)
1117          attr_overrides[input_index] = attribute;
1118       else
1119          assert(attribute.SourceAttribute == input_index);
1120    }
1121 
1122    /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1123     * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1124     *
1125     * "This field should be set to the minimum length required to read the
1126     *  maximum source attribute.  The maximum source attribute is indicated
1127     *  by the maximum value of the enabled Attribute # Source Attribute if
1128     *  Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1129     *  enable is not set.
1130     *  read_length = ceiling((max_source_attr + 1) / 2)
1131     *
1132     *  [errata] Corruption/Hang possible if length programmed larger than
1133     *  recommended"
1134     *
1135     * Similar text exists for Ivy Bridge.
1136     */
1137    *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1138 }
1139 #endif
1140 
1141 /* ---------------------------------------------------------------------- */
1142 
1143 #if GEN_GEN >= 8
1144 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1145 #elif GEN_GEN >= 6
1146 typedef struct GENX(DEPTH_STENCIL_STATE)      DEPTH_STENCIL_GENXML;
1147 #else
1148 typedef struct GENX(COLOR_CALC_STATE)         DEPTH_STENCIL_GENXML;
1149 #endif
1150 
1151 static inline void
set_depth_stencil_bits(struct brw_context * brw,DEPTH_STENCIL_GENXML * ds)1152 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1153 {
1154    struct gl_context *ctx = &brw->ctx;
1155 
1156    /* _NEW_BUFFERS */
1157    struct intel_renderbuffer *depth_irb =
1158       intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1159 
1160    /* _NEW_DEPTH */
1161    struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1162 
1163    /* _NEW_STENCIL */
1164    struct gl_stencil_attrib *stencil = &ctx->Stencil;
1165    const int b = stencil->_BackFace;
1166 
1167    if (depth->Test && depth_irb) {
1168       ds->DepthTestEnable = true;
1169       ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1170       ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1171    }
1172 
1173    if (brw->stencil_enabled) {
1174       ds->StencilTestEnable = true;
1175       ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1176       ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1177 
1178       ds->StencilTestFunction =
1179          intel_translate_compare_func(stencil->Function[0]);
1180       ds->StencilFailOp =
1181          intel_translate_stencil_op(stencil->FailFunc[0]);
1182       ds->StencilPassDepthPassOp =
1183          intel_translate_stencil_op(stencil->ZPassFunc[0]);
1184       ds->StencilPassDepthFailOp =
1185          intel_translate_stencil_op(stencil->ZFailFunc[0]);
1186 
1187       ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1188 
1189       if (brw->stencil_two_sided) {
1190          ds->DoubleSidedStencilEnable = true;
1191          ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1192          ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1193 
1194          ds->BackfaceStencilTestFunction =
1195             intel_translate_compare_func(stencil->Function[b]);
1196          ds->BackfaceStencilFailOp =
1197             intel_translate_stencil_op(stencil->FailFunc[b]);
1198          ds->BackfaceStencilPassDepthPassOp =
1199             intel_translate_stencil_op(stencil->ZPassFunc[b]);
1200          ds->BackfaceStencilPassDepthFailOp =
1201             intel_translate_stencil_op(stencil->ZFailFunc[b]);
1202       }
1203 
1204 #if GEN_GEN <= 5 || GEN_GEN >= 9
1205       ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1206       ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1207 #endif
1208    }
1209 }
1210 
1211 #if GEN_GEN >= 6
1212 static void
genX(upload_depth_stencil_state)1213 genX(upload_depth_stencil_state)(struct brw_context *brw)
1214 {
1215 #if GEN_GEN >= 8
1216    brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1217       set_depth_stencil_bits(brw, &wmds);
1218    }
1219 #else
1220    uint32_t ds_offset;
1221    brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1222       set_depth_stencil_bits(brw, &ds);
1223    }
1224 
1225    /* Now upload a pointer to the indirect state */
1226 #if GEN_GEN == 6
1227    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1228       ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1229       ptr.DEPTH_STENCIL_STATEChange = true;
1230    }
1231 #else
1232    brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1233       ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1234    }
1235 #endif
1236 #endif
1237 }
1238 
1239 static const struct brw_tracked_state genX(depth_stencil_state) = {
1240    .dirty = {
1241       .mesa = _NEW_BUFFERS |
1242               _NEW_DEPTH |
1243               _NEW_STENCIL,
1244       .brw  = BRW_NEW_BLORP |
1245               (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1246                             : BRW_NEW_BATCH |
1247                               BRW_NEW_STATE_BASE_ADDRESS),
1248    },
1249    .emit = genX(upload_depth_stencil_state),
1250 };
1251 #endif
1252 
1253 /* ---------------------------------------------------------------------- */
1254 
1255 #if GEN_GEN <= 5
1256 
1257 static void
genX(upload_clip_state)1258 genX(upload_clip_state)(struct brw_context *brw)
1259 {
1260    struct gl_context *ctx = &brw->ctx;
1261 
1262    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1263    brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1264       clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1265       clip.GRFRegisterCount =
1266          DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1267       clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1268       clip.SingleProgramFlow = true;
1269       clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1270       clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1271 
1272       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1273       clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1274       clip.DispatchGRFStartRegisterForURBData = 1;
1275       clip.VertexURBEntryReadOffset = 0;
1276 
1277       /* BRW_NEW_URB_FENCE */
1278       clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1279       clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1280 
1281       if (brw->urb.nr_clip_entries >= 10) {
1282          /* Half of the URB entries go to each thread, and it has to be an
1283           * even number.
1284           */
1285          assert(brw->urb.nr_clip_entries % 2 == 0);
1286 
1287          /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1288           * only 2 threads can output VUEs at a time.
1289           */
1290          clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1291       } else {
1292          assert(brw->urb.nr_clip_entries >= 5);
1293          clip.MaximumNumberofThreads = 1 - 1;
1294       }
1295 
1296       clip.VertexPositionSpace = VPOS_NDCSPACE;
1297       clip.UserClipFlagsMustClipEnable = true;
1298       clip.GuardbandClipTestEnable = true;
1299 
1300       clip.ClipperViewportStatePointer =
1301          ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1302 
1303       clip.ScreenSpaceViewportXMin = -1;
1304       clip.ScreenSpaceViewportXMax = 1;
1305       clip.ScreenSpaceViewportYMin = -1;
1306       clip.ScreenSpaceViewportYMax = 1;
1307 
1308       clip.ViewportXYClipTestEnable = true;
1309       clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1310 
1311       /* _NEW_TRANSFORM */
1312       if (GEN_GEN == 5 || GEN_IS_G4X) {
1313          clip.UserClipDistanceClipTestEnableBitmask =
1314             ctx->Transform.ClipPlanesEnabled;
1315       } else {
1316          /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1317           * workaround.
1318           */
1319          clip.UserClipDistanceClipTestEnableBitmask =
1320             (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1321       }
1322 
1323       if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1324          clip.APIMode = APIMODE_D3D;
1325       else
1326          clip.APIMode = APIMODE_OGL;
1327 
1328       clip.GuardbandClipTestEnable = true;
1329 
1330       clip.ClipMode = brw->clip.prog_data->clip_mode;
1331 
1332 #if GEN_IS_G4X
1333       clip.NegativeWClipTestEnable = true;
1334 #endif
1335    }
1336 }
1337 
1338 const struct brw_tracked_state genX(clip_state) = {
1339    .dirty = {
1340       .mesa  = _NEW_TRANSFORM |
1341                _NEW_VIEWPORT,
1342       .brw   = BRW_NEW_BATCH |
1343                BRW_NEW_BLORP |
1344                BRW_NEW_CLIP_PROG_DATA |
1345                BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1346                BRW_NEW_PROGRAM_CACHE |
1347                BRW_NEW_URB_FENCE,
1348    },
1349    .emit = genX(upload_clip_state),
1350 };
1351 
1352 #else
1353 
1354 static void
genX(upload_clip_state)1355 genX(upload_clip_state)(struct brw_context *brw)
1356 {
1357    struct gl_context *ctx = &brw->ctx;
1358 
1359    /* _NEW_BUFFERS */
1360    struct gl_framebuffer *fb = ctx->DrawBuffer;
1361 
1362    /* BRW_NEW_FS_PROG_DATA */
1363    struct brw_wm_prog_data *wm_prog_data =
1364       brw_wm_prog_data(brw->wm.base.prog_data);
1365 
1366    brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1367       clip.StatisticsEnable = !brw->meta_in_progress;
1368 
1369       if (wm_prog_data->barycentric_interp_modes &
1370           BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1371          clip.NonPerspectiveBarycentricEnable = true;
1372 
1373 #if GEN_GEN >= 7
1374       clip.EarlyCullEnable = true;
1375 #endif
1376 
1377 #if GEN_GEN == 7
1378       clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1379 
1380       if (ctx->Polygon.CullFlag) {
1381          switch (ctx->Polygon.CullFaceMode) {
1382          case GL_FRONT:
1383             clip.CullMode = CULLMODE_FRONT;
1384             break;
1385          case GL_BACK:
1386             clip.CullMode = CULLMODE_BACK;
1387             break;
1388          case GL_FRONT_AND_BACK:
1389             clip.CullMode = CULLMODE_BOTH;
1390             break;
1391          default:
1392             unreachable("Should not get here: invalid CullFlag");
1393          }
1394       } else {
1395          clip.CullMode = CULLMODE_NONE;
1396       }
1397 #endif
1398 
1399 #if GEN_GEN < 8
1400       clip.UserClipDistanceCullTestEnableBitmask =
1401          brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1402 
1403       clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1404 #endif
1405 
1406       /* _NEW_LIGHT */
1407       if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1408          clip.TriangleStripListProvokingVertexSelect = 0;
1409          clip.TriangleFanProvokingVertexSelect = 1;
1410          clip.LineStripListProvokingVertexSelect = 0;
1411       } else {
1412          clip.TriangleStripListProvokingVertexSelect = 2;
1413          clip.TriangleFanProvokingVertexSelect = 2;
1414          clip.LineStripListProvokingVertexSelect = 1;
1415       }
1416 
1417       /* _NEW_TRANSFORM */
1418       clip.UserClipDistanceClipTestEnableBitmask =
1419          ctx->Transform.ClipPlanesEnabled;
1420 
1421 #if GEN_GEN >= 8
1422       clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1423 #endif
1424 
1425       if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1426          clip.APIMode = APIMODE_D3D;
1427       else
1428          clip.APIMode = APIMODE_OGL;
1429 
1430       clip.GuardbandClipTestEnable = true;
1431 
1432       /* BRW_NEW_VIEWPORT_COUNT */
1433       const unsigned viewport_count = brw->clip.viewport_count;
1434 
1435       if (ctx->RasterDiscard) {
1436          clip.ClipMode = CLIPMODE_REJECT_ALL;
1437 #if GEN_GEN == 6
1438          perf_debug("Rasterizer discard is currently implemented via the "
1439                     "clipper; having the GS not write primitives would "
1440                     "likely be faster.\n");
1441 #endif
1442       } else {
1443          clip.ClipMode = CLIPMODE_NORMAL;
1444       }
1445 
1446       clip.ClipEnable = true;
1447 
1448       /* _NEW_POLYGON,
1449        * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1450        */
1451       if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1452          clip.ViewportXYClipTestEnable = true;
1453 
1454       clip.MinimumPointWidth = 0.125;
1455       clip.MaximumPointWidth = 255.875;
1456       clip.MaximumVPIndex = viewport_count - 1;
1457       if (_mesa_geometric_layers(fb) == 0)
1458          clip.ForceZeroRTAIndexEnable = true;
1459    }
1460 }
1461 
1462 static const struct brw_tracked_state genX(clip_state) = {
1463    .dirty = {
1464       .mesa  = _NEW_BUFFERS |
1465                _NEW_LIGHT |
1466                _NEW_POLYGON |
1467                _NEW_TRANSFORM,
1468       .brw   = BRW_NEW_BLORP |
1469                BRW_NEW_CONTEXT |
1470                BRW_NEW_FS_PROG_DATA |
1471                BRW_NEW_GS_PROG_DATA |
1472                BRW_NEW_VS_PROG_DATA |
1473                BRW_NEW_META_IN_PROGRESS |
1474                BRW_NEW_PRIMITIVE |
1475                BRW_NEW_RASTERIZER_DISCARD |
1476                BRW_NEW_TES_PROG_DATA |
1477                BRW_NEW_VIEWPORT_COUNT,
1478    },
1479    .emit = genX(upload_clip_state),
1480 };
1481 #endif
1482 
1483 /* ---------------------------------------------------------------------- */
1484 
1485 static void
genX(upload_sf)1486 genX(upload_sf)(struct brw_context *brw)
1487 {
1488    struct gl_context *ctx = &brw->ctx;
1489    float point_size;
1490 
1491 #if GEN_GEN <= 7
1492    /* _NEW_BUFFERS */
1493    bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1494    UNUSED const bool multisampled_fbo =
1495       _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1496 #endif
1497 
1498 #if GEN_GEN < 6
1499    const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1500 
1501    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1502 
1503    brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1504       sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1505       sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1506       sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1507       sf.DispatchGRFStartRegisterForURBData = 3;
1508       sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1509       sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1510       sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1511       sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1512 
1513       /* STATE_PREFETCH command description describes this state as being
1514        * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1515        * domain.
1516        */
1517       sf.SetupViewportStateOffset =
1518          ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1519 
1520       sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1521 
1522       /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1523       /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1524 
1525       sf.MaximumNumberofThreads =
1526          MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1527 
1528       sf.SpritePointEnable = ctx->Point.PointSprite;
1529 
1530       sf.DestinationOriginHorizontalBias = 0.5;
1531       sf.DestinationOriginVerticalBias = 0.5;
1532 #else
1533    brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1534       sf.StatisticsEnable = true;
1535 #endif
1536       sf.ViewportTransformEnable = true;
1537 
1538 #if GEN_GEN == 7
1539       /* _NEW_BUFFERS */
1540       sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1541 #endif
1542 
1543 #if GEN_GEN <= 7
1544       /* _NEW_POLYGON */
1545       sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1546 #if GEN_GEN >= 6
1547       sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1548       sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1549       sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1550 
1551       switch (ctx->Polygon.FrontMode) {
1552          case GL_FILL:
1553             sf.FrontFaceFillMode = FILL_MODE_SOLID;
1554             break;
1555          case GL_LINE:
1556             sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1557             break;
1558          case GL_POINT:
1559             sf.FrontFaceFillMode = FILL_MODE_POINT;
1560             break;
1561          default:
1562             unreachable("not reached");
1563       }
1564 
1565       switch (ctx->Polygon.BackMode) {
1566          case GL_FILL:
1567             sf.BackFaceFillMode = FILL_MODE_SOLID;
1568             break;
1569          case GL_LINE:
1570             sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1571             break;
1572          case GL_POINT:
1573             sf.BackFaceFillMode = FILL_MODE_POINT;
1574             break;
1575          default:
1576             unreachable("not reached");
1577       }
1578 
1579       if (multisampled_fbo && ctx->Multisample.Enabled)
1580          sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1581 
1582       sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1583       sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1584       sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1585 #endif
1586 
1587       sf.ScissorRectangleEnable = true;
1588 
1589       if (ctx->Polygon.CullFlag) {
1590          switch (ctx->Polygon.CullFaceMode) {
1591             case GL_FRONT:
1592                sf.CullMode = CULLMODE_FRONT;
1593                break;
1594             case GL_BACK:
1595                sf.CullMode = CULLMODE_BACK;
1596                break;
1597             case GL_FRONT_AND_BACK:
1598                sf.CullMode = CULLMODE_BOTH;
1599                break;
1600             default:
1601                unreachable("not reached");
1602          }
1603       } else {
1604          sf.CullMode = CULLMODE_NONE;
1605       }
1606 
1607 #if GEN_IS_HASWELL
1608       sf.LineStippleEnable = ctx->Line.StippleFlag;
1609 #endif
1610 
1611 #endif
1612 
1613       /* _NEW_LINE */
1614 #if GEN_GEN == 8
1615       const struct gen_device_info *devinfo = &brw->screen->devinfo;
1616 
1617       if (devinfo->is_cherryview)
1618          sf.CHVLineWidth = brw_get_line_width(brw);
1619       else
1620          sf.LineWidth = brw_get_line_width(brw);
1621 #else
1622       sf.LineWidth = brw_get_line_width(brw);
1623 #endif
1624 
1625       if (ctx->Line.SmoothFlag) {
1626          sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1627 #if GEN_GEN <= 7
1628          sf.AntiAliasingEnable = true;
1629 #endif
1630       }
1631 
1632       /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1633       point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1634       /* Clamp to the hardware limits */
1635       sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1636 
1637       /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1638       if (use_state_point_size(brw))
1639          sf.PointWidthSource = State;
1640 
1641 #if GEN_GEN >= 8
1642       /* _NEW_POINT | _NEW_MULTISAMPLE */
1643       if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1644           !ctx->Point.PointSprite)
1645          sf.SmoothPointEnable = true;
1646 #endif
1647 
1648 #if GEN_GEN == 10
1649       /* _NEW_BUFFERS
1650        * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1651        */
1652       const bool multisampled_fbo =
1653          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1654       if (multisampled_fbo)
1655          sf.SmoothPointEnable = false;
1656 #endif
1657 
1658 #if GEN_IS_G4X || GEN_GEN >= 5
1659       sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1660 #endif
1661 
1662       /* _NEW_LIGHT */
1663       if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1664          sf.TriangleStripListProvokingVertexSelect = 2;
1665          sf.TriangleFanProvokingVertexSelect = 2;
1666          sf.LineStripListProvokingVertexSelect = 1;
1667       } else {
1668          sf.TriangleFanProvokingVertexSelect = 1;
1669       }
1670 
1671 #if GEN_GEN == 6
1672       /* BRW_NEW_FS_PROG_DATA */
1673       const struct brw_wm_prog_data *wm_prog_data =
1674          brw_wm_prog_data(brw->wm.base.prog_data);
1675 
1676       sf.AttributeSwizzleEnable = true;
1677       sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1678 
1679       /*
1680        * Window coordinates in an FBO are inverted, which means point
1681        * sprite origin must be inverted, too.
1682        */
1683       if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1684          sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1685       } else {
1686          sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1687       }
1688 
1689       /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1690        * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1691        */
1692       uint32_t urb_entry_read_length;
1693       uint32_t urb_entry_read_offset;
1694       uint32_t point_sprite_enables;
1695       genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1696                                      &urb_entry_read_length,
1697                                      &urb_entry_read_offset);
1698       sf.VertexURBEntryReadLength = urb_entry_read_length;
1699       sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1700       sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1701       sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1702 #endif
1703    }
1704 }
1705 
1706 static const struct brw_tracked_state genX(sf_state) = {
1707    .dirty = {
1708       .mesa  = _NEW_LIGHT |
1709                _NEW_LINE |
1710                _NEW_POINT |
1711                _NEW_PROGRAM |
1712                (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1713                (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1714                (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1715       .brw   = BRW_NEW_BLORP |
1716                BRW_NEW_VUE_MAP_GEOM_OUT |
1717                (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1718                                BRW_NEW_PROGRAM_CACHE |
1719                                BRW_NEW_SF_PROG_DATA |
1720                                BRW_NEW_SF_VP |
1721                                BRW_NEW_URB_FENCE
1722                              : 0) |
1723                (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1724                (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1725                                BRW_NEW_GS_PROG_DATA |
1726                                BRW_NEW_PRIMITIVE |
1727                                BRW_NEW_TES_PROG_DATA
1728                              : 0) |
1729                (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1730                                BRW_NEW_FRAGMENT_PROGRAM
1731                              : 0),
1732    },
1733    .emit = genX(upload_sf),
1734 };
1735 
1736 /* ---------------------------------------------------------------------- */
1737 
1738 static bool
1739 brw_color_buffer_write_enabled(struct brw_context *brw)
1740 {
1741    struct gl_context *ctx = &brw->ctx;
1742    /* BRW_NEW_FRAGMENT_PROGRAM */
1743    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1744    unsigned i;
1745 
1746    /* _NEW_BUFFERS */
1747    for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1748       struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1749       uint64_t outputs_written = fp->info.outputs_written;
1750 
1751       /* _NEW_COLOR */
1752       if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1753                  outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1754           (ctx->Color.ColorMask[i][0] ||
1755            ctx->Color.ColorMask[i][1] ||
1756            ctx->Color.ColorMask[i][2] ||
1757            ctx->Color.ColorMask[i][3])) {
1758          return true;
1759       }
1760    }
1761 
1762    return false;
1763 }
1764 
1765 static void
1766 genX(upload_wm)(struct brw_context *brw)
1767 {
1768    struct gl_context *ctx = &brw->ctx;
1769 
1770    /* BRW_NEW_FS_PROG_DATA */
1771    const struct brw_wm_prog_data *wm_prog_data =
1772       brw_wm_prog_data(brw->wm.base.prog_data);
1773 
1774    UNUSED bool writes_depth =
1775       wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1776    UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1777    UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1778 
1779 #if GEN_GEN == 6
1780    /* We can't fold this into gen6_upload_wm_push_constants(), because
1781     * according to the SNB PRM, vol 2 part 1 section 7.2.2
1782     * (3DSTATE_CONSTANT_PS [DevSNB]):
1783     *
1784     *     "[DevSNB]: This packet must be followed by WM_STATE."
1785     */
1786    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1787       if (wm_prog_data->base.nr_params != 0) {
1788          wmcp.Buffer0Valid = true;
1789          /* Pointer to the WM constant buffer.  Covered by the set of
1790           * state flags from gen6_upload_wm_push_constants.
1791           */
1792          wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1793          wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1794       }
1795    }
1796 #endif
1797 
1798 #if GEN_GEN >= 6
1799    brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1800       wm.LineAntialiasingRegionWidth = _10pixels;
1801       wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1802 
1803       wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1804       wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1805 #else
1806    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1807    brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1808       if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
1809          /* These two fields should be the same pre-gen6, which is why we
1810           * only have one hardware field to program for both dispatch
1811           * widths.
1812           */
1813          assert(wm_prog_data->base.dispatch_grf_start_reg ==
1814                 wm_prog_data->dispatch_grf_start_reg_2);
1815       }
1816 
1817       if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
1818          wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
1819 
1820       if (stage_state->sampler_count)
1821          wm.SamplerStatePointer =
1822             ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1823 #if GEN_GEN == 5
1824       if (wm_prog_data->prog_offset_2)
1825          wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
1826 #endif
1827 
1828       wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1829       wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1830       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1831       wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1832       wm.EarlyDepthTestEnable = true;
1833       wm.LineAntialiasingRegionWidth = _05pixels;
1834       wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1835 
1836       /* _NEW_POLYGON */
1837       if (ctx->Polygon.OffsetFill) {
1838          wm.GlobalDepthOffsetEnable = true;
1839          /* Something weird going on with legacy_global_depth_bias,
1840           * offset_constant, scaling and MRD.  This value passes glean
1841           * but gives some odd results elsewere (eg. the
1842           * quad-offset-units test).
1843           */
1844          wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1845 
1846          /* This is the only value that passes glean:
1847          */
1848          wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1849       }
1850 
1851       wm.DepthCoefficientURBReadOffset = 1;
1852 #endif
1853 
1854       /* BRW_NEW_STATS_WM */
1855       wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1856 
1857 #if GEN_GEN < 7
1858       if (wm_prog_data->base.use_alt_mode)
1859          wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1860 
1861       wm.SamplerCount = GEN_GEN == 5 ?
1862          0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1863 
1864       wm.BindingTableEntryCount =
1865          wm_prog_data->base.binding_table.size_bytes / 4;
1866       wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1867       wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1868       wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1869       wm.DispatchGRFStartRegisterForConstantSetupData0 =
1870          wm_prog_data->base.dispatch_grf_start_reg;
1871       if (GEN_GEN == 6 ||
1872           wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
1873          wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1874       }
1875 
1876 #if GEN_GEN >= 5
1877       if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
1878          wm.KernelStartPointer2 =
1879             KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
1880       }
1881 #endif
1882 
1883 #if GEN_GEN == 6
1884       wm.DualSourceBlendEnable =
1885          wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1886          ctx->Color.Blend[0]._UsesDualSrc;
1887       wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1888       wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1889 
1890       /* From the SNB PRM, volume 2 part 1, page 281:
1891        * "If the PS kernel does not need the Position XY Offsets
1892        * to compute a Position XY value, then this field should be
1893        * programmed to POSOFFSET_NONE."
1894        *
1895        * "SW Recommendation: If the PS kernel needs the Position Offsets
1896        * to compute a Position XY value, this field should match Position
1897        * ZW Interpolation Mode to ensure a consistent position.xyzw
1898        * computation."
1899        * We only require XY sample offsets. So, this recommendation doesn't
1900        * look useful at the moment. We might need this in future.
1901        */
1902       if (wm_prog_data->uses_pos_offset)
1903          wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1904       else
1905          wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1906 
1907       wm.DispatchGRFStartRegisterForConstantSetupData2 =
1908          wm_prog_data->dispatch_grf_start_reg_2;
1909 #endif
1910 
1911       if (wm_prog_data->base.total_scratch) {
1912          wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
1913          wm.PerThreadScratchSpace =
1914             ffs(stage_state->per_thread_scratch) - 11;
1915       }
1916 
1917       wm.PixelShaderComputedDepth = writes_depth;
1918 #endif
1919 
1920       /* _NEW_LINE */
1921       wm.LineStippleEnable = ctx->Line.StippleFlag;
1922 
1923       /* _NEW_POLYGON */
1924       wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1925 
1926 #if GEN_GEN < 8
1927 
1928 #if GEN_GEN >= 6
1929       wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1930 
1931       /* _NEW_BUFFERS */
1932       const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1933 
1934       if (multisampled_fbo) {
1935          /* _NEW_MULTISAMPLE */
1936          if (ctx->Multisample.Enabled)
1937             wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1938          else
1939             wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1940 
1941          if (wm_prog_data->persample_dispatch)
1942             wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1943          else
1944             wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1945       } else {
1946          wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1947          wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1948       }
1949 #endif
1950       wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1951       if (wm_prog_data->uses_kill ||
1952           _mesa_is_alpha_test_enabled(ctx) ||
1953           _mesa_is_alpha_to_coverage_enabled(ctx) ||
1954           (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
1955          wm.PixelShaderKillsPixel = true;
1956       }
1957 
1958       /* _NEW_BUFFERS | _NEW_COLOR */
1959       if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1960           wm.PixelShaderKillsPixel ||
1961           (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
1962          wm.ThreadDispatchEnable = true;
1963       }
1964 
1965 #if GEN_GEN >= 7
1966       wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1967       wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1968 #endif
1969 
1970       /* The "UAV access enable" bits are unnecessary on HSW because they only
1971        * seem to have an effect on the HW-assisted coherency mechanism which we
1972        * don't need, and the rasterization-related UAV_ONLY flag and the
1973        * DISPATCH_ENABLE bit can be set independently from it.
1974        * C.f. gen8_upload_ps_extra().
1975        *
1976        * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1977        * _NEW_COLOR
1978        */
1979 #if GEN_IS_HASWELL
1980       if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1981           wm_prog_data->has_side_effects)
1982          wm.PSUAVonly = ON;
1983 #endif
1984 #endif
1985 
1986 #if GEN_GEN >= 7
1987       /* BRW_NEW_FS_PROG_DATA */
1988       if (wm_prog_data->early_fragment_tests)
1989          wm.EarlyDepthStencilControl = EDSC_PREPS;
1990       else if (wm_prog_data->has_side_effects)
1991          wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1992 #endif
1993    }
1994 
1995 #if GEN_GEN <= 5
1996    if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
1997       brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
1998          clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1999       }
2000 
2001       brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
2002    }
2003 #endif
2004 }
2005 
2006 static const struct brw_tracked_state genX(wm_state) = {
2007    .dirty = {
2008       .mesa  = _NEW_LINE |
2009                _NEW_POLYGON |
2010                (GEN_GEN < 8 ? _NEW_BUFFERS |
2011                               _NEW_COLOR :
2012                               0) |
2013                (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2014                (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2015                (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2016       .brw   = BRW_NEW_BLORP |
2017                BRW_NEW_FS_PROG_DATA |
2018                (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2019                               BRW_NEW_FRAGMENT_PROGRAM |
2020                               BRW_NEW_PROGRAM_CACHE |
2021                               BRW_NEW_SAMPLER_STATE_TABLE |
2022                               BRW_NEW_STATS_WM
2023                             : 0) |
2024                (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2025    },
2026    .emit = genX(upload_wm),
2027 };
2028 
2029 /* ---------------------------------------------------------------------- */
2030 
2031 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2032    pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset);           \
2033    pkt.SamplerCount       =                                               \
2034       DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);          \
2035    pkt.BindingTableEntryCount =                                           \
2036       stage_prog_data->binding_table.size_bytes / 4;                      \
2037    pkt.FloatingPointMode  = stage_prog_data->use_alt_mode;                \
2038                                                                           \
2039    if (stage_prog_data->total_scratch) {                                  \
2040       pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);    \
2041       pkt.PerThreadScratchSpace =                                         \
2042          ffs(stage_state->per_thread_scratch) - 11;                       \
2043    }                                                                      \
2044                                                                           \
2045    pkt.DispatchGRFStartRegisterForURBData =                               \
2046       stage_prog_data->dispatch_grf_start_reg;                            \
2047    pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length;       \
2048    pkt.prefix##URBEntryReadOffset = 0;                                    \
2049                                                                           \
2050    pkt.StatisticsEnable = true;                                           \
2051    pkt.Enable           = true;
2052 
2053 static void
2054 genX(upload_vs_state)(struct brw_context *brw)
2055 {
2056    UNUSED struct gl_context *ctx = &brw->ctx;
2057    const struct gen_device_info *devinfo = &brw->screen->devinfo;
2058    struct brw_stage_state *stage_state = &brw->vs.base;
2059 
2060    /* BRW_NEW_VS_PROG_DATA */
2061    const struct brw_vue_prog_data *vue_prog_data =
2062       brw_vue_prog_data(brw->vs.base.prog_data);
2063    const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2064 
2065    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2066           vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2067 
2068 #if GEN_GEN == 6
2069    /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2070     * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2071     *
2072     *   [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2073     *   command that causes the VS Function Enable to toggle. Pipeline
2074     *   flush can be executed by sending a PIPE_CONTROL command with CS
2075     *   stall bit set and a post sync operation.
2076     *
2077     * We've already done such a flush at the start of state upload, so we
2078     * don't need to do another one here.
2079     */
2080    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2081       if (stage_state->push_const_size != 0) {
2082          cvs.Buffer0Valid = true;
2083          cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
2084          cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2085       }
2086    }
2087 #endif
2088 
2089    if (GEN_GEN == 7 && devinfo->is_ivybridge)
2090       gen7_emit_vs_workaround_flush(brw);
2091 
2092 #if GEN_GEN >= 6
2093    brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2094 #else
2095    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2096    brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2097 #endif
2098       INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2099 
2100       vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2101 
2102 #if GEN_GEN < 6
2103       vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2104       vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2105       vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2106 
2107       vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2108       vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2109 
2110       vs.MaximumNumberofThreads =
2111          CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2112 
2113       vs.StatisticsEnable = false;
2114       vs.SamplerStatePointer =
2115          ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2116 #endif
2117 
2118 #if GEN_GEN == 5
2119       /* Force single program flow on Ironlake.  We cannot reliably get
2120        * all applications working without it.  See:
2121        * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2122        *
2123        * The most notable and reliably failing application is the Humus
2124        * demo "CelShading"
2125        */
2126       vs.SingleProgramFlow = true;
2127       vs.SamplerCount = 0; /* hardware requirement */
2128 #endif
2129 
2130 #if GEN_GEN >= 8
2131       vs.SIMD8DispatchEnable =
2132          vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2133 
2134       vs.UserClipDistanceCullTestEnableBitmask =
2135          vue_prog_data->cull_distance_mask;
2136 #endif
2137    }
2138 
2139 #if GEN_GEN == 6
2140    /* Based on my reading of the simulator, the VS constants don't get
2141     * pulled into the VS FF unit until an appropriate pipeline flush
2142     * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2143     * references to them into a little FIFO.  The flushes are common,
2144     * but don't reliably happen between this and a 3DPRIMITIVE, causing
2145     * the primitive to use the wrong constants.  Then the FIFO
2146     * containing the constant setup gets added to again on the next
2147     * constants change, and eventually when a flush does happen the
2148     * unit is overwhelmed by constant changes and dies.
2149     *
2150     * To avoid this, send a PIPE_CONTROL down the line that will
2151     * update the unit immediately loading the constants.  The flush
2152     * type bits here were those set by the STATE_BASE_ADDRESS whose
2153     * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2154     * bug reports that led to this workaround, and may be more than
2155     * what is strictly required to avoid the issue.
2156     */
2157    brw_emit_pipe_control_flush(brw,
2158                                PIPE_CONTROL_DEPTH_STALL |
2159                                PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2160                                PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2161 #endif
2162 }
2163 
2164 static const struct brw_tracked_state genX(vs_state) = {
2165    .dirty = {
2166       .mesa  = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2167       .brw   = BRW_NEW_BATCH |
2168                BRW_NEW_BLORP |
2169                BRW_NEW_CONTEXT |
2170                BRW_NEW_VS_PROG_DATA |
2171                (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2172                (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2173                                BRW_NEW_PROGRAM_CACHE |
2174                                BRW_NEW_SAMPLER_STATE_TABLE |
2175                                BRW_NEW_URB_FENCE
2176                              : 0),
2177    },
2178    .emit = genX(upload_vs_state),
2179 };
2180 
2181 /* ---------------------------------------------------------------------- */
2182 
2183 static void
2184 genX(upload_cc_viewport)(struct brw_context *brw)
2185 {
2186    struct gl_context *ctx = &brw->ctx;
2187 
2188    /* BRW_NEW_VIEWPORT_COUNT */
2189    const unsigned viewport_count = brw->clip.viewport_count;
2190 
2191    struct GENX(CC_VIEWPORT) ccv;
2192    uint32_t cc_vp_offset;
2193    uint32_t *cc_map =
2194       brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2195                       32, &cc_vp_offset);
2196 
2197    for (unsigned i = 0; i < viewport_count; i++) {
2198       /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2199       const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2200       if (ctx->Transform.DepthClamp) {
2201          ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2202          ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2203       } else {
2204          ccv.MinimumDepth = 0.0;
2205          ccv.MaximumDepth = 1.0;
2206       }
2207       GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2208       cc_map += GENX(CC_VIEWPORT_length);
2209    }
2210 
2211 #if GEN_GEN >= 7
2212    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2213       ptr.CCViewportPointer = cc_vp_offset;
2214    }
2215 #elif GEN_GEN == 6
2216    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2217       vp.CCViewportStateChange = 1;
2218       vp.PointertoCC_VIEWPORT = cc_vp_offset;
2219    }
2220 #else
2221    brw->cc.vp_offset = cc_vp_offset;
2222    ctx->NewDriverState |= BRW_NEW_CC_VP;
2223 #endif
2224 }
2225 
2226 const struct brw_tracked_state genX(cc_vp) = {
2227    .dirty = {
2228       .mesa = _NEW_TRANSFORM |
2229               _NEW_VIEWPORT,
2230       .brw = BRW_NEW_BATCH |
2231              BRW_NEW_BLORP |
2232              BRW_NEW_VIEWPORT_COUNT,
2233    },
2234    .emit = genX(upload_cc_viewport)
2235 };
2236 
2237 /* ---------------------------------------------------------------------- */
2238 
2239 static void
2240 set_scissor_bits(const struct gl_context *ctx, int i,
2241                  bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2242                  struct GENX(SCISSOR_RECT) *sc)
2243 {
2244    int bbox[4];
2245 
2246    bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2247    bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2248    bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2249    bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2250    _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2251 
2252    if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2253       /* If the scissor was out of bounds and got clamped to 0 width/height
2254        * at the bounds, the subtraction of 1 from maximums could produce a
2255        * negative number and thus not clip anything.  Instead, just provide
2256        * a min > max scissor inside the bounds, which produces the expected
2257        * no rendering.
2258        */
2259       sc->ScissorRectangleXMin = 1;
2260       sc->ScissorRectangleXMax = 0;
2261       sc->ScissorRectangleYMin = 1;
2262       sc->ScissorRectangleYMax = 0;
2263    } else if (render_to_fbo) {
2264       /* texmemory: Y=0=bottom */
2265       sc->ScissorRectangleXMin = bbox[0];
2266       sc->ScissorRectangleXMax = bbox[1] - 1;
2267       sc->ScissorRectangleYMin = bbox[2];
2268       sc->ScissorRectangleYMax = bbox[3] - 1;
2269    } else {
2270       /* memory: Y=0=top */
2271       sc->ScissorRectangleXMin = bbox[0];
2272       sc->ScissorRectangleXMax = bbox[1] - 1;
2273       sc->ScissorRectangleYMin = fb_height - bbox[3];
2274       sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2275    }
2276 }
2277 
2278 #if GEN_GEN >= 6
2279 static void
2280 genX(upload_scissor_state)(struct brw_context *brw)
2281 {
2282    struct gl_context *ctx = &brw->ctx;
2283    const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2284    struct GENX(SCISSOR_RECT) scissor;
2285    uint32_t scissor_state_offset;
2286    const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2287    const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2288    uint32_t *scissor_map;
2289 
2290    /* BRW_NEW_VIEWPORT_COUNT */
2291    const unsigned viewport_count = brw->clip.viewport_count;
2292 
2293    scissor_map = brw_state_batch(
2294       brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2295       32, &scissor_state_offset);
2296 
2297    /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2298 
2299    /* The scissor only needs to handle the intersection of drawable and
2300     * scissor rect.  Clipping to the boundaries of static shared buffers
2301     * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2302     *
2303     * Note that the hardware's coordinates are inclusive, while Mesa's min is
2304     * inclusive but max is exclusive.
2305     */
2306    for (unsigned i = 0; i < viewport_count; i++) {
2307       set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2308       GENX(SCISSOR_RECT_pack)(
2309          NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2310    }
2311 
2312    brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2313       ptr.ScissorRectPointer = scissor_state_offset;
2314    }
2315 }
2316 
2317 static const struct brw_tracked_state genX(scissor_state) = {
2318    .dirty = {
2319       .mesa = _NEW_BUFFERS |
2320               _NEW_SCISSOR |
2321               _NEW_VIEWPORT,
2322       .brw = BRW_NEW_BATCH |
2323              BRW_NEW_BLORP |
2324              BRW_NEW_VIEWPORT_COUNT,
2325    },
2326    .emit = genX(upload_scissor_state),
2327 };
2328 #endif
2329 
2330 /* ---------------------------------------------------------------------- */
2331 
2332 static void
2333 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2334                              float m00, float m11, float m30, float m31,
2335                              float *xmin, float *xmax,
2336                              float *ymin, float *ymax)
2337 {
2338    /* According to the "Vertex X,Y Clamping and Quantization" section of the
2339     * Strips and Fans documentation:
2340     *
2341     * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2342     *  fixed-point "guardband" range supported by the rasterization hardware"
2343     *
2344     * and
2345     *
2346     * "In almost all circumstances, if an object’s vertices are actually
2347     *  modified by this clamping (i.e., had X or Y coordinates outside of
2348     *  the guardband extent the rendered object will not match the intended
2349     *  result.  Therefore software should take steps to ensure that this does
2350     *  not happen - e.g., by clipping objects such that they do not exceed
2351     *  these limits after the Drawing Rectangle is applied."
2352     *
2353     * I believe the fundamental restriction is that the rasterizer (in
2354     * the SF/WM stages) have a limit on the number of pixels that can be
2355     * rasterized.  We need to ensure any coordinates beyond the rasterizer
2356     * limit are handled by the clipper.  So effectively that limit becomes
2357     * the clipper's guardband size.
2358     *
2359     * It goes on to say:
2360     *
2361     * "In addition, in order to be correctly rendered, objects must have a
2362     *  screenspace bounding box not exceeding 8K in the X or Y direction.
2363     *  This additional restriction must also be comprehended by software,
2364     *  i.e., enforced by use of clipping."
2365     *
2366     * This makes no sense.  Gen7+ hardware supports 16K render targets,
2367     * and you definitely need to be able to draw polygons that fill the
2368     * surface.  Our assumption is that the rasterizer was limited to 8K
2369     * on Sandybridge, which only supports 8K surfaces, and it was actually
2370     * increased to 16K on Ivybridge and later.
2371     *
2372     * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2373     */
2374    const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2375 
2376    if (m00 != 0 && m11 != 0) {
2377       /* First, we compute the screen-space render area */
2378       const float ss_ra_xmin = MIN3(        0, m30 + m00, m30 - m00);
2379       const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2380       const float ss_ra_ymin = MIN3(        0, m31 + m11, m31 - m11);
2381       const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2382 
2383       /* We want the guardband to be centered on that */
2384       const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2385       const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2386       const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2387       const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2388 
2389       /* Now we need it in native device coordinates */
2390       const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2391       const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2392       const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2393       const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2394 
2395       /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2396        * flipped upside-down.  X should be fine though.
2397        */
2398       assert(ndc_gb_xmin <= ndc_gb_xmax);
2399       *xmin = ndc_gb_xmin;
2400       *xmax = ndc_gb_xmax;
2401       *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2402       *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2403    } else {
2404       /* The viewport scales to 0, so nothing will be rendered. */
2405       *xmin = 0.0f;
2406       *xmax = 0.0f;
2407       *ymin = 0.0f;
2408       *ymax = 0.0f;
2409    }
2410 }
2411 
2412 static void
2413 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2414 {
2415    struct gl_context *ctx = &brw->ctx;
2416    float y_scale, y_bias;
2417 
2418    /* BRW_NEW_VIEWPORT_COUNT */
2419    const unsigned viewport_count = brw->clip.viewport_count;
2420 
2421    /* _NEW_BUFFERS */
2422    const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2423    const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2424    const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2425 
2426 #if GEN_GEN >= 7
2427 #define clv sfv
2428    struct GENX(SF_CLIP_VIEWPORT) sfv;
2429    uint32_t sf_clip_vp_offset;
2430    uint32_t *sf_clip_map =
2431       brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2432                       64, &sf_clip_vp_offset);
2433 #else
2434    struct GENX(SF_VIEWPORT) sfv;
2435    struct GENX(CLIP_VIEWPORT) clv;
2436    uint32_t sf_vp_offset, clip_vp_offset;
2437    uint32_t *sf_map =
2438       brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2439                       32, &sf_vp_offset);
2440    uint32_t *clip_map =
2441       brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2442                       32, &clip_vp_offset);
2443 #endif
2444 
2445    /* _NEW_BUFFERS */
2446    if (render_to_fbo) {
2447       y_scale = 1.0;
2448       y_bias = 0;
2449    } else {
2450       y_scale = -1.0;
2451       y_bias = (float)fb_height;
2452    }
2453 
2454    for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2455       /* _NEW_VIEWPORT: Guardband Clipping */
2456       float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2457       _mesa_get_viewport_xform(ctx, i, scale, translate);
2458 
2459       sfv.ViewportMatrixElementm00 = scale[0];
2460       sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2461       sfv.ViewportMatrixElementm22 = scale[2],
2462       sfv.ViewportMatrixElementm30 = translate[0],
2463       sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2464       sfv.ViewportMatrixElementm32 = translate[2],
2465       brw_calculate_guardband_size(fb_width, fb_height,
2466                                    sfv.ViewportMatrixElementm00,
2467                                    sfv.ViewportMatrixElementm11,
2468                                    sfv.ViewportMatrixElementm30,
2469                                    sfv.ViewportMatrixElementm31,
2470                                    &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2471 
2472 
2473       clv.XMinClipGuardband = gb_xmin;
2474       clv.XMaxClipGuardband = gb_xmax;
2475       clv.YMinClipGuardband = gb_ymin;
2476       clv.YMaxClipGuardband = gb_ymax;
2477 
2478 #if GEN_GEN < 6
2479       set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2480                        &sfv.ScissorRectangle);
2481 #elif GEN_GEN >= 8
2482       /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2483        * The hardware will take the intersection of the drawing rectangle,
2484        * scissor rectangle, and the viewport extents. We don't need to be
2485        * smart, and can therefore just program the viewport extents.
2486        */
2487       const float viewport_Xmax =
2488          ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2489       const float viewport_Ymax =
2490          ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2491 
2492       if (render_to_fbo) {
2493          sfv.XMinViewPort = ctx->ViewportArray[i].X;
2494          sfv.XMaxViewPort = viewport_Xmax - 1;
2495          sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2496          sfv.YMaxViewPort = viewport_Ymax - 1;
2497       } else {
2498          sfv.XMinViewPort = ctx->ViewportArray[i].X;
2499          sfv.XMaxViewPort = viewport_Xmax - 1;
2500          sfv.YMinViewPort = fb_height - viewport_Ymax;
2501          sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2502       }
2503 #endif
2504 
2505 #if GEN_GEN >= 7
2506       GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2507       sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2508 #else
2509       GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2510       GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2511       sf_map += GENX(SF_VIEWPORT_length);
2512       clip_map += GENX(CLIP_VIEWPORT_length);
2513 #endif
2514    }
2515 
2516 #if GEN_GEN >= 7
2517    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2518       ptr.SFClipViewportPointer = sf_clip_vp_offset;
2519    }
2520 #elif GEN_GEN == 6
2521    brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2522       vp.SFViewportStateChange = 1;
2523       vp.CLIPViewportStateChange = 1;
2524       vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2525       vp.PointertoSF_VIEWPORT = sf_vp_offset;
2526    }
2527 #else
2528    brw->sf.vp_offset = sf_vp_offset;
2529    brw->clip.vp_offset = clip_vp_offset;
2530    brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2531 #endif
2532 }
2533 
2534 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2535    .dirty = {
2536       .mesa = _NEW_BUFFERS |
2537               _NEW_VIEWPORT |
2538               (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2539       .brw = BRW_NEW_BATCH |
2540              BRW_NEW_BLORP |
2541              BRW_NEW_VIEWPORT_COUNT,
2542    },
2543    .emit = genX(upload_sf_clip_viewport),
2544 };
2545 
2546 /* ---------------------------------------------------------------------- */
2547 
2548 static void
2549 genX(upload_gs_state)(struct brw_context *brw)
2550 {
2551    UNUSED struct gl_context *ctx = &brw->ctx;
2552    UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2553    const struct brw_stage_state *stage_state = &brw->gs.base;
2554    const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2555    /* BRW_NEW_GEOMETRY_PROGRAM */
2556    bool active = GEN_GEN >= 6 && gs_prog;
2557 
2558    /* BRW_NEW_GS_PROG_DATA */
2559    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2560    UNUSED const struct brw_vue_prog_data *vue_prog_data =
2561       brw_vue_prog_data(stage_prog_data);
2562 #if GEN_GEN >= 7
2563    const struct brw_gs_prog_data *gs_prog_data =
2564       brw_gs_prog_data(stage_prog_data);
2565 #endif
2566 
2567 #if GEN_GEN == 6
2568    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2569       if (active && stage_state->push_const_size != 0) {
2570          cgs.Buffer0Valid = true;
2571          cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2572          cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2573       }
2574    }
2575 #endif
2576 
2577 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2578    /**
2579     * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2580     * Geometry > Geometry Shader > State:
2581     *
2582     *     "Note: Because of corruption in IVB:GT2, software needs to flush the
2583     *     whole fixed function pipeline when the GS enable changes value in
2584     *     the 3DSTATE_GS."
2585     *
2586     * The hardware architects have clarified that in this context "flush the
2587     * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2588     * Stall" bit set.
2589     */
2590    if (devinfo->gt == 2 && brw->gs.enabled != active)
2591       gen7_emit_cs_stall_flush(brw);
2592 #endif
2593 
2594 #if GEN_GEN >= 6
2595    brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2596 #else
2597    ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2598    brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2599 #endif
2600 
2601 #if GEN_GEN >= 6
2602       if (active) {
2603          INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2604 
2605 #if GEN_GEN >= 7
2606          gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2607          gs.OutputTopology = gs_prog_data->output_topology;
2608          gs.ControlDataHeaderSize =
2609             gs_prog_data->control_data_header_size_hwords;
2610 
2611          gs.InstanceControl = gs_prog_data->invocations - 1;
2612          gs.DispatchMode = vue_prog_data->dispatch_mode;
2613 
2614          gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2615 
2616          gs.ControlDataFormat = gs_prog_data->control_data_format;
2617 #endif
2618 
2619          /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2620           * Ivy Bridge and Haswell.
2621           *
2622           * On Ivy Bridge, setting this bit causes the vertices of a triangle
2623           * strip to be delivered to the geometry shader in an order that does
2624           * not strictly follow the OpenGL spec, but preserves triangle
2625           * orientation.  For example, if the vertices are (1, 2, 3, 4, 5), then
2626           * the geometry shader sees triangles:
2627           *
2628           * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2629           *
2630           * (Clearing the bit is even worse, because it fails to preserve
2631           * orientation).
2632           *
2633           * Triangle strips with adjacency always ordered in a way that preserves
2634           * triangle orientation but does not strictly follow the OpenGL spec,
2635           * regardless of the setting of this bit.
2636           *
2637           * On Haswell, both triangle strips and triangle strips with adjacency
2638           * are always ordered in a way that preserves triangle orientation.
2639           * Setting this bit causes the ordering to strictly follow the OpenGL
2640           * spec.
2641           *
2642           * So in either case we want to set the bit.  Unfortunately on Ivy
2643           * Bridge this will get the order close to correct but not perfect.
2644           */
2645          gs.ReorderMode = TRAILING;
2646          gs.MaximumNumberofThreads =
2647             GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2648                          : (devinfo->max_gs_threads - 1);
2649 
2650 #if GEN_GEN < 7
2651          gs.SOStatisticsEnable = true;
2652          if (gs_prog->info.has_transform_feedback_varyings)
2653             gs.SVBIPayloadEnable = true;
2654 
2655          /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2656           * was previously done for gen6.
2657           *
2658           * TODO: test with both disabled to see if the HW is behaving
2659           * as expected, like in gen7.
2660           */
2661          gs.SingleProgramFlow = true;
2662          gs.VectorMaskEnable = true;
2663 #endif
2664 
2665 #if GEN_GEN >= 8
2666          gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2667 
2668          if (gs_prog_data->static_vertex_count != -1) {
2669             gs.StaticOutput = true;
2670             gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2671          }
2672          gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2673 
2674          gs.UserClipDistanceCullTestEnableBitmask =
2675             vue_prog_data->cull_distance_mask;
2676 
2677          const int urb_entry_write_offset = 1;
2678          const uint32_t urb_entry_output_length =
2679             DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2680             urb_entry_write_offset;
2681 
2682          gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2683          gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2684 #endif
2685       }
2686 #endif
2687 
2688 #if GEN_GEN <= 6
2689       if (!active && brw->ff_gs.prog_active) {
2690          /* In gen6, transform feedback for the VS stage is done with an
2691           * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2692           * for this.
2693           */
2694          gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2695          gs.SingleProgramFlow = true;
2696          gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2697          gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2698 
2699 #if GEN_GEN <= 5
2700          gs.GRFRegisterCount =
2701             DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2702          /* BRW_NEW_URB_FENCE */
2703          gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2704          gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2705          gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2706          gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2707 #else
2708          gs.Enable = true;
2709          gs.VectorMaskEnable = true;
2710          gs.SVBIPayloadEnable = true;
2711          gs.SVBIPostIncrementEnable = true;
2712          gs.SVBIPostIncrementValue =
2713             brw->ff_gs.prog_data->svbi_postincrement_value;
2714          gs.SOStatisticsEnable = true;
2715          gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2716 #endif
2717       }
2718 #endif
2719       if (!active && !brw->ff_gs.prog_active) {
2720 #if GEN_GEN < 8
2721          gs.DispatchGRFStartRegisterForURBData = 1;
2722 #if GEN_GEN >= 7
2723          gs.IncludeVertexHandles = true;
2724 #endif
2725 #endif
2726       }
2727 
2728 #if GEN_GEN >= 6
2729       gs.StatisticsEnable = true;
2730 #endif
2731 #if GEN_GEN == 5 || GEN_GEN == 6
2732       gs.RenderingEnabled = true;
2733 #endif
2734 #if GEN_GEN <= 5
2735       gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2736 #endif
2737    }
2738 
2739 #if GEN_GEN == 6
2740    brw->gs.enabled = active;
2741 #endif
2742 }
2743 
2744 static const struct brw_tracked_state genX(gs_state) = {
2745    .dirty = {
2746       .mesa  = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2747       .brw   = BRW_NEW_BATCH |
2748                BRW_NEW_BLORP |
2749                (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2750                                BRW_NEW_PROGRAM_CACHE |
2751                                BRW_NEW_URB_FENCE |
2752                                BRW_NEW_VIEWPORT_COUNT
2753                              : 0) |
2754                (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2755                                BRW_NEW_GEOMETRY_PROGRAM |
2756                                BRW_NEW_GS_PROG_DATA
2757                              : 0) |
2758                (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2759    },
2760    .emit = genX(upload_gs_state),
2761 };
2762 
2763 /* ---------------------------------------------------------------------- */
2764 
2765 UNUSED static GLenum
2766 fix_dual_blend_alpha_to_one(GLenum function)
2767 {
2768    switch (function) {
2769    case GL_SRC1_ALPHA:
2770       return GL_ONE;
2771 
2772    case GL_ONE_MINUS_SRC1_ALPHA:
2773       return GL_ZERO;
2774    }
2775 
2776    return function;
2777 }
2778 
2779 #define blend_factor(x) brw_translate_blend_factor(x)
2780 #define blend_eqn(x) brw_translate_blend_equation(x)
2781 
2782 /**
2783  * Modify blend function to force destination alpha to 1.0
2784  *
2785  * If \c function specifies a blend function that uses destination alpha,
2786  * replace it with a function that hard-wires destination alpha to 1.0.  This
2787  * is used when rendering to xRGB targets.
2788  */
2789 static GLenum
2790 brw_fix_xRGB_alpha(GLenum function)
2791 {
2792    switch (function) {
2793    case GL_DST_ALPHA:
2794       return GL_ONE;
2795 
2796    case GL_ONE_MINUS_DST_ALPHA:
2797    case GL_SRC_ALPHA_SATURATE:
2798       return GL_ZERO;
2799    }
2800 
2801    return function;
2802 }
2803 
2804 #if GEN_GEN >= 6
2805 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2806 #else
2807 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2808 #endif
2809 
2810 UNUSED static bool
2811 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2812                      bool alpha_to_one)
2813 {
2814    struct gl_context *ctx = &brw->ctx;
2815 
2816    /* _NEW_BUFFERS */
2817    const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2818 
2819    bool independent_alpha_blend = false;
2820 
2821    /* Used for implementing the following bit of GL_EXT_texture_integer:
2822     * "Per-fragment operations that require floating-point color
2823     *  components, including multisample alpha operations, alpha test,
2824     *  blending, and dithering, have no effect when the corresponding
2825     *  colors are written to an integer color buffer."
2826     */
2827    const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2828 
2829    const unsigned blend_enabled = GEN_GEN >= 6 ?
2830       ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2831 
2832    /* _NEW_COLOR */
2833    if (ctx->Color.ColorLogicOpEnabled) {
2834       GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2835          : GL_UNSIGNED_NORMALIZED;
2836       WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2837                 rb_type != GL_UNSIGNED_NORMALIZED &&
2838                 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2839                 "renderbuffer\n",
2840                 _mesa_enum_to_string(ctx->Color.LogicOp),
2841                 _mesa_enum_to_string(rb_type));
2842       if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2843          entry->LogicOpEnable = true;
2844          entry->LogicOpFunction =
2845             intel_translate_logic_op(ctx->Color.LogicOp);
2846       }
2847    } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2848               && (GEN_GEN <= 5 || !integer)) {
2849       GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2850       GLenum eqA = ctx->Color.Blend[i].EquationA;
2851       GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2852       GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2853       GLenum srcA = ctx->Color.Blend[i].SrcA;
2854       GLenum dstA = ctx->Color.Blend[i].DstA;
2855 
2856       if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2857          srcRGB = dstRGB = GL_ONE;
2858 
2859       if (eqA == GL_MIN || eqA == GL_MAX)
2860          srcA = dstA = GL_ONE;
2861 
2862       /* Due to hardware limitations, the destination may have information
2863        * in an alpha channel even when the format specifies no alpha
2864        * channel. In order to avoid getting any incorrect blending due to
2865        * that alpha channel, coerce the blend factors to values that will
2866        * not read the alpha channel, but will instead use the correct
2867        * implicit value for alpha.
2868        */
2869       if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2870                                                GL_TEXTURE_ALPHA_TYPE)) {
2871          srcRGB = brw_fix_xRGB_alpha(srcRGB);
2872          srcA = brw_fix_xRGB_alpha(srcA);
2873          dstRGB = brw_fix_xRGB_alpha(dstRGB);
2874          dstA = brw_fix_xRGB_alpha(dstA);
2875       }
2876 
2877       /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2878        * "If Dual Source Blending is enabled, this bit must be disabled."
2879        *
2880        * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2881        * and leave it enabled anyway.
2882        */
2883       if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2884          srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2885          srcA = fix_dual_blend_alpha_to_one(srcA);
2886          dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2887          dstA = fix_dual_blend_alpha_to_one(dstA);
2888       }
2889 
2890       entry->ColorBufferBlendEnable = true;
2891       entry->DestinationBlendFactor = blend_factor(dstRGB);
2892       entry->SourceBlendFactor = blend_factor(srcRGB);
2893       entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2894       entry->SourceAlphaBlendFactor = blend_factor(srcA);
2895       entry->ColorBlendFunction = blend_eqn(eqRGB);
2896       entry->AlphaBlendFunction = blend_eqn(eqA);
2897 
2898       if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2899          independent_alpha_blend = true;
2900    }
2901 
2902    return independent_alpha_blend;
2903 }
2904 
2905 #if GEN_GEN >= 6
2906 static void
2907 genX(upload_blend_state)(struct brw_context *brw)
2908 {
2909    struct gl_context *ctx = &brw->ctx;
2910    int size;
2911 
2912    /* We need at least one BLEND_STATE written, because we might do
2913     * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2914     * for computed depth or alpha test), which will do an FB write
2915     * with render target 0, which will reference BLEND_STATE[0] for
2916     * alpha test enable.
2917     */
2918    int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2919    if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2920       nr_draw_buffers = 1;
2921 
2922    size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2923 #if GEN_GEN >= 8
2924    size += GENX(BLEND_STATE_length) * 4;
2925 #endif
2926 
2927    uint32_t *blend_map;
2928    blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2929 
2930 #if GEN_GEN >= 8
2931    struct GENX(BLEND_STATE) blend = { 0 };
2932    {
2933 #else
2934    for (int i = 0; i < nr_draw_buffers; i++) {
2935       struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2936 #define blend entry
2937 #endif
2938       /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2939        * "If drawbuffer zero is not NONE and the buffer it references has an
2940        * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2941        * operations are skipped."
2942        */
2943       if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2944          /* _NEW_MULTISAMPLE */
2945          if (_mesa_is_multisample_enabled(ctx)) {
2946             if (ctx->Multisample.SampleAlphaToCoverage) {
2947                blend.AlphaToCoverageEnable = true;
2948                blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2949             }
2950             if (ctx->Multisample.SampleAlphaToOne)
2951                blend.AlphaToOneEnable = true;
2952          }
2953 
2954          /* _NEW_COLOR */
2955          if (ctx->Color.AlphaEnabled) {
2956             blend.AlphaTestEnable = true;
2957             blend.AlphaTestFunction =
2958                intel_translate_compare_func(ctx->Color.AlphaFunc);
2959          }
2960 
2961          if (ctx->Color.DitherFlag) {
2962             blend.ColorDitherEnable = true;
2963          }
2964       }
2965 
2966 #if GEN_GEN >= 8
2967       for (int i = 0; i < nr_draw_buffers; i++) {
2968          struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2969 #else
2970       {
2971 #endif
2972          blend.IndependentAlphaBlendEnable =
2973             set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2974             blend.IndependentAlphaBlendEnable;
2975 
2976          /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2977           * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2978           *
2979           * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2980           * clamping in the fragment shader.  For its clamping of
2981           * blending, the spec says:
2982           *
2983           *     "RESOLVED: For fixed-point color buffers, the inputs and
2984           *      the result of the blending equation are clamped.  For
2985           *      floating-point color buffers, no clamping occurs."
2986           *
2987           * So, generally, we want clamping to the render target's range.
2988           * And, good news, the hardware tables for both pre- and
2989           * post-blend color clamping are either ignored, or any are
2990           * allowed, or clamping is required but RT range clamping is a
2991           * valid option.
2992           */
2993          entry.PreBlendColorClampEnable = true;
2994          entry.PostBlendColorClampEnable = true;
2995          entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2996 
2997          entry.WriteDisableRed   = !ctx->Color.ColorMask[i][0];
2998          entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2999          entry.WriteDisableBlue  = !ctx->Color.ColorMask[i][2];
3000          entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
3001 
3002 #if GEN_GEN >= 8
3003          GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3004 #else
3005          GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3006 #endif
3007       }
3008    }
3009 
3010 #if GEN_GEN >= 8
3011    GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3012 #endif
3013 
3014 #if GEN_GEN < 7
3015    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3016       ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3017       ptr.BLEND_STATEChange = true;
3018    }
3019 #else
3020    brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3021       ptr.BlendStatePointer = brw->cc.blend_state_offset;
3022 #if GEN_GEN >= 8
3023       ptr.BlendStatePointerValid = true;
3024 #endif
3025    }
3026 #endif
3027 }
3028 
3029 static const struct brw_tracked_state genX(blend_state) = {
3030    .dirty = {
3031       .mesa = _NEW_BUFFERS |
3032               _NEW_COLOR |
3033               _NEW_MULTISAMPLE,
3034       .brw = BRW_NEW_BATCH |
3035              BRW_NEW_BLORP |
3036              BRW_NEW_STATE_BASE_ADDRESS,
3037    },
3038    .emit = genX(upload_blend_state),
3039 };
3040 #endif
3041 
3042 /* ---------------------------------------------------------------------- */
3043 
3044 #if GEN_GEN >= 7
3045 UNUSED static const uint32_t push_constant_opcodes[] = {
3046    [MESA_SHADER_VERTEX]                      = 21,
3047    [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
3048    [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
3049    [MESA_SHADER_GEOMETRY]                    = 22,
3050    [MESA_SHADER_FRAGMENT]                    = 23,
3051    [MESA_SHADER_COMPUTE]                     = 0,
3052 };
3053 
3054 static void
3055 genX(upload_push_constant_packets)(struct brw_context *brw)
3056 {
3057    const struct gen_device_info *devinfo = &brw->screen->devinfo;
3058    struct gl_context *ctx = &brw->ctx;
3059 
3060    UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3061 
3062    struct brw_stage_state *stage_states[] = {
3063       &brw->vs.base,
3064       &brw->tcs.base,
3065       &brw->tes.base,
3066       &brw->gs.base,
3067       &brw->wm.base,
3068    };
3069 
3070    if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3071        stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3072       gen7_emit_vs_workaround_flush(brw);
3073 
3074    for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3075       struct brw_stage_state *stage_state = stage_states[stage];
3076       UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3077 
3078       if (!stage_state->push_constants_dirty)
3079          continue;
3080 
3081       brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3082          pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3083          if (stage_state->prog_data) {
3084 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3085             /* The Skylake PRM contains the following restriction:
3086              *
3087              *    "The driver must ensure The following case does not occur
3088              *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3089              *     buffer 3 read length equal to zero committed followed by a
3090              *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3091              *     zero committed."
3092              *
3093              * To avoid this, we program the buffers in the highest slots.
3094              * This way, slot 0 is only used if slot 3 is also used.
3095              */
3096             int n = 3;
3097 
3098             for (int i = 3; i >= 0; i--) {
3099                const struct brw_ubo_range *range =
3100                   &stage_state->prog_data->ubo_ranges[i];
3101 
3102                if (range->length == 0)
3103                   continue;
3104 
3105                const struct gl_uniform_block *block =
3106                   prog->sh.UniformBlocks[range->block];
3107                const struct gl_buffer_binding *binding =
3108                   &ctx->UniformBufferBindings[block->Binding];
3109 
3110                if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3111                   static unsigned msg_id = 0;
3112                   _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3113                                  MESA_DEBUG_TYPE_UNDEFINED,
3114                                  MESA_DEBUG_SEVERITY_HIGH,
3115                                  "UBO %d unbound, %s shader uniform data "
3116                                  "will be undefined.",
3117                                  range->block,
3118                                  _mesa_shader_stage_to_string(stage));
3119                   continue;
3120                }
3121 
3122                assert(binding->Offset % 32 == 0);
3123 
3124                struct brw_bo *bo = intel_bufferobj_buffer(brw,
3125                   intel_buffer_object(binding->BufferObject),
3126                   binding->Offset, range->length * 32, false);
3127 
3128                pkt.ConstantBody.ReadLength[n] = range->length;
3129                pkt.ConstantBody.Buffer[n] =
3130                   ro_bo(bo, range->start * 32 + binding->Offset);
3131                n--;
3132             }
3133 
3134             if (stage_state->push_const_size > 0) {
3135                assert(n >= 0);
3136                pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3137                pkt.ConstantBody.Buffer[n] =
3138                   ro_bo(stage_state->push_const_bo,
3139                         stage_state->push_const_offset);
3140             }
3141 #else
3142             pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3143             pkt.ConstantBody.Buffer[0].offset =
3144                stage_state->push_const_offset | mocs;
3145 #endif
3146          }
3147       }
3148 
3149       stage_state->push_constants_dirty = false;
3150       brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3151    }
3152 }
3153 
3154 const struct brw_tracked_state genX(push_constant_packets) = {
3155    .dirty = {
3156       .mesa  = 0,
3157       .brw   = BRW_NEW_DRAW_CALL,
3158    },
3159    .emit = genX(upload_push_constant_packets),
3160 };
3161 #endif
3162 
3163 #if GEN_GEN >= 6
3164 static void
3165 genX(upload_vs_push_constants)(struct brw_context *brw)
3166 {
3167    struct brw_stage_state *stage_state = &brw->vs.base;
3168 
3169    /* BRW_NEW_VERTEX_PROGRAM */
3170    const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3171    /* BRW_NEW_VS_PROG_DATA */
3172    const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3173 
3174    gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3175 }
3176 
3177 static const struct brw_tracked_state genX(vs_push_constants) = {
3178    .dirty = {
3179       .mesa  = _NEW_PROGRAM_CONSTANTS |
3180                _NEW_TRANSFORM,
3181       .brw   = BRW_NEW_BATCH |
3182                BRW_NEW_BLORP |
3183                BRW_NEW_VERTEX_PROGRAM |
3184                BRW_NEW_VS_PROG_DATA,
3185    },
3186    .emit = genX(upload_vs_push_constants),
3187 };
3188 
3189 static void
3190 genX(upload_gs_push_constants)(struct brw_context *brw)
3191 {
3192    struct brw_stage_state *stage_state = &brw->gs.base;
3193 
3194    /* BRW_NEW_GEOMETRY_PROGRAM */
3195    const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3196 
3197    /* BRW_NEW_GS_PROG_DATA */
3198    struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3199 
3200    gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3201 }
3202 
3203 static const struct brw_tracked_state genX(gs_push_constants) = {
3204    .dirty = {
3205       .mesa  = _NEW_PROGRAM_CONSTANTS |
3206                _NEW_TRANSFORM,
3207       .brw   = BRW_NEW_BATCH |
3208                BRW_NEW_BLORP |
3209                BRW_NEW_GEOMETRY_PROGRAM |
3210                BRW_NEW_GS_PROG_DATA,
3211    },
3212    .emit = genX(upload_gs_push_constants),
3213 };
3214 
3215 static void
3216 genX(upload_wm_push_constants)(struct brw_context *brw)
3217 {
3218    struct brw_stage_state *stage_state = &brw->wm.base;
3219    /* BRW_NEW_FRAGMENT_PROGRAM */
3220    const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3221    /* BRW_NEW_FS_PROG_DATA */
3222    const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3223 
3224    gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3225 }
3226 
3227 static const struct brw_tracked_state genX(wm_push_constants) = {
3228    .dirty = {
3229       .mesa  = _NEW_PROGRAM_CONSTANTS,
3230       .brw   = BRW_NEW_BATCH |
3231                BRW_NEW_BLORP |
3232                BRW_NEW_FRAGMENT_PROGRAM |
3233                BRW_NEW_FS_PROG_DATA,
3234    },
3235    .emit = genX(upload_wm_push_constants),
3236 };
3237 #endif
3238 
3239 /* ---------------------------------------------------------------------- */
3240 
3241 #if GEN_GEN >= 6
3242 static unsigned
3243 genX(determine_sample_mask)(struct brw_context *brw)
3244 {
3245    struct gl_context *ctx = &brw->ctx;
3246    float coverage = 1.0f;
3247    float coverage_invert = false;
3248    unsigned sample_mask = ~0u;
3249 
3250    /* BRW_NEW_NUM_SAMPLES */
3251    unsigned num_samples = brw->num_samples;
3252 
3253    if (_mesa_is_multisample_enabled(ctx)) {
3254       if (ctx->Multisample.SampleCoverage) {
3255          coverage = ctx->Multisample.SampleCoverageValue;
3256          coverage_invert = ctx->Multisample.SampleCoverageInvert;
3257       }
3258       if (ctx->Multisample.SampleMask) {
3259          sample_mask = ctx->Multisample.SampleMaskValue;
3260       }
3261    }
3262 
3263    if (num_samples > 1) {
3264       int coverage_int = (int) (num_samples * coverage + 0.5f);
3265       uint32_t coverage_bits = (1 << coverage_int) - 1;
3266       if (coverage_invert)
3267          coverage_bits ^= (1 << num_samples) - 1;
3268       return coverage_bits & sample_mask;
3269    } else {
3270       return 1;
3271    }
3272 }
3273 
3274 static void
3275 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3276                                 unsigned num_samples)
3277 {
3278    unsigned log2_samples = ffs(num_samples) - 1;
3279 
3280    brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3281       multi.PixelLocation = CENTER;
3282       multi.NumberofMultisamples = log2_samples;
3283 #if GEN_GEN == 6
3284       GEN_SAMPLE_POS_4X(multi.Sample);
3285 #elif GEN_GEN == 7
3286       switch (num_samples) {
3287       case 1:
3288          GEN_SAMPLE_POS_1X(multi.Sample);
3289          break;
3290       case 2:
3291          GEN_SAMPLE_POS_2X(multi.Sample);
3292          break;
3293       case 4:
3294          GEN_SAMPLE_POS_4X(multi.Sample);
3295          break;
3296       case 8:
3297          GEN_SAMPLE_POS_8X(multi.Sample);
3298          break;
3299       default:
3300          break;
3301       }
3302 #endif
3303    }
3304 }
3305 
3306 static void
3307 genX(upload_multisample_state)(struct brw_context *brw)
3308 {
3309    assert(brw->num_samples > 0 && brw->num_samples <= 16);
3310 
3311    genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3312 
3313    brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3314       sm.SampleMask = genX(determine_sample_mask)(brw);
3315    }
3316 }
3317 
3318 static const struct brw_tracked_state genX(multisample_state) = {
3319    .dirty = {
3320       .mesa = _NEW_MULTISAMPLE |
3321               (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3322       .brw = BRW_NEW_BLORP |
3323              BRW_NEW_CONTEXT |
3324              BRW_NEW_NUM_SAMPLES,
3325    },
3326    .emit = genX(upload_multisample_state)
3327 };
3328 #endif
3329 
3330 /* ---------------------------------------------------------------------- */
3331 
3332 static void
3333 genX(upload_color_calc_state)(struct brw_context *brw)
3334 {
3335    struct gl_context *ctx = &brw->ctx;
3336 
3337    brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3338 #if GEN_GEN <= 5
3339       cc.IndependentAlphaBlendEnable =
3340          set_blend_entry_bits(brw, &cc, 0, false);
3341       set_depth_stencil_bits(brw, &cc);
3342 
3343       if (ctx->Color.AlphaEnabled &&
3344           ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3345          cc.AlphaTestEnable = true;
3346          cc.AlphaTestFunction =
3347             intel_translate_compare_func(ctx->Color.AlphaFunc);
3348       }
3349 
3350       cc.ColorDitherEnable = ctx->Color.DitherFlag;
3351 
3352       cc.StatisticsEnable = brw->stats_wm;
3353 
3354       cc.CCViewportStatePointer =
3355          ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3356 #else
3357       /* _NEW_COLOR */
3358       cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3359       cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3360       cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3361       cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3362 
3363 #if GEN_GEN < 9
3364       /* _NEW_STENCIL */
3365       cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3366       cc.BackfaceStencilReferenceValue =
3367          _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3368 #endif
3369 
3370 #endif
3371 
3372       /* _NEW_COLOR */
3373       UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3374                                ctx->Color.AlphaRef);
3375    }
3376 
3377 #if GEN_GEN >= 6
3378    brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3379       ptr.ColorCalcStatePointer = brw->cc.state_offset;
3380 #if GEN_GEN != 7
3381       ptr.ColorCalcStatePointerValid = true;
3382 #endif
3383    }
3384 #else
3385    brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3386 #endif
3387 }
3388 
3389 static const struct brw_tracked_state genX(color_calc_state) = {
3390    .dirty = {
3391       .mesa = _NEW_COLOR |
3392               _NEW_STENCIL |
3393               (GEN_GEN <= 5 ? _NEW_BUFFERS |
3394                               _NEW_DEPTH
3395                             : 0),
3396       .brw = BRW_NEW_BATCH |
3397              BRW_NEW_BLORP |
3398              (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3399                              BRW_NEW_STATS_WM
3400                            : BRW_NEW_CC_STATE |
3401                              BRW_NEW_STATE_BASE_ADDRESS),
3402    },
3403    .emit = genX(upload_color_calc_state),
3404 };
3405 
3406 
3407 /* ---------------------------------------------------------------------- */
3408 
3409 #if GEN_GEN >= 7
3410 static void
3411 genX(upload_sbe)(struct brw_context *brw)
3412 {
3413    struct gl_context *ctx = &brw->ctx;
3414    /* BRW_NEW_FRAGMENT_PROGRAM */
3415    UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3416    /* BRW_NEW_FS_PROG_DATA */
3417    const struct brw_wm_prog_data *wm_prog_data =
3418       brw_wm_prog_data(brw->wm.base.prog_data);
3419 #if GEN_GEN >= 8
3420    struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3421 #else
3422 #define attr_overrides sbe.Attribute
3423 #endif
3424    uint32_t urb_entry_read_length;
3425    uint32_t urb_entry_read_offset;
3426    uint32_t point_sprite_enables;
3427 
3428    brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3429       sbe.AttributeSwizzleEnable = true;
3430       sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3431 
3432       /* _NEW_BUFFERS */
3433       bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3434 
3435       /* _NEW_POINT
3436        *
3437        * Window coordinates in an FBO are inverted, which means point
3438        * sprite origin must be inverted.
3439        */
3440       if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3441          sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3442       else
3443          sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3444 
3445       /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3446        * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3447        * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3448        * BRW_NEW_VUE_MAP_GEOM_OUT
3449        */
3450       genX(calculate_attr_overrides)(brw,
3451                                      attr_overrides,
3452                                      &point_sprite_enables,
3453                                      &urb_entry_read_length,
3454                                      &urb_entry_read_offset);
3455 
3456       /* Typically, the URB entry read length and offset should be programmed
3457        * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3458        * stage which produces geometry.  However, we don't know the proper
3459        * value until we call calculate_attr_overrides().
3460        *
3461        * To fit with our existing code, we override the inherited values and
3462        * specify it here directly, as we did on previous generations.
3463        */
3464       sbe.VertexURBEntryReadLength = urb_entry_read_length;
3465       sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3466       sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3467       sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3468 
3469 #if GEN_GEN >= 8
3470       sbe.ForceVertexURBEntryReadLength = true;
3471       sbe.ForceVertexURBEntryReadOffset = true;
3472 #endif
3473 
3474 #if GEN_GEN >= 9
3475       /* prepare the active component dwords */
3476       for (int i = 0; i < 32; i++)
3477          sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3478 #endif
3479    }
3480 
3481 #if GEN_GEN >= 8
3482    brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3483       for (int i = 0; i < 16; i++)
3484          sbes.Attribute[i] = attr_overrides[i];
3485    }
3486 #endif
3487 
3488 #undef attr_overrides
3489 }
3490 
3491 static const struct brw_tracked_state genX(sbe_state) = {
3492    .dirty = {
3493       .mesa  = _NEW_BUFFERS |
3494                _NEW_LIGHT |
3495                _NEW_POINT |
3496                _NEW_POLYGON |
3497                _NEW_PROGRAM,
3498       .brw   = BRW_NEW_BLORP |
3499                BRW_NEW_CONTEXT |
3500                BRW_NEW_FRAGMENT_PROGRAM |
3501                BRW_NEW_FS_PROG_DATA |
3502                BRW_NEW_GS_PROG_DATA |
3503                BRW_NEW_TES_PROG_DATA |
3504                BRW_NEW_VUE_MAP_GEOM_OUT |
3505                (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3506                              : 0),
3507    },
3508    .emit = genX(upload_sbe),
3509 };
3510 #endif
3511 
3512 /* ---------------------------------------------------------------------- */
3513 
3514 #if GEN_GEN >= 7
3515 /**
3516  * Outputs the 3DSTATE_SO_DECL_LIST command.
3517  *
3518  * The data output is a series of 64-bit entries containing a SO_DECL per
3519  * stream.  We only have one stream of rendering coming out of the GS unit, so
3520  * we only emit stream 0 (low 16 bits) SO_DECLs.
3521  */
3522 static void
3523 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3524                                   const struct brw_vue_map *vue_map)
3525 {
3526    struct gl_context *ctx = &brw->ctx;
3527    /* BRW_NEW_TRANSFORM_FEEDBACK */
3528    struct gl_transform_feedback_object *xfb_obj =
3529       ctx->TransformFeedback.CurrentObject;
3530    const struct gl_transform_feedback_info *linked_xfb_info =
3531       xfb_obj->program->sh.LinkedTransformFeedback;
3532    struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3533    int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3534    int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3535    int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3536    int max_decls = 0;
3537    STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3538 
3539    memset(so_decl, 0, sizeof(so_decl));
3540 
3541    /* Construct the list of SO_DECLs to be emitted.  The formatting of the
3542     * command feels strange -- each dword pair contains a SO_DECL per stream.
3543     */
3544    for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3545       const struct gl_transform_feedback_output *output =
3546          &linked_xfb_info->Outputs[i];
3547       const int buffer = output->OutputBuffer;
3548       const int varying = output->OutputRegister;
3549       const unsigned stream_id = output->StreamId;
3550       assert(stream_id < MAX_VERTEX_STREAMS);
3551 
3552       buffer_mask[stream_id] |= 1 << buffer;
3553 
3554       assert(vue_map->varying_to_slot[varying] >= 0);
3555 
3556       /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3557        * array.  Instead, it simply increments DstOffset for the following
3558        * input by the number of components that should be skipped.
3559        *
3560        * Our hardware is unusual in that it requires us to program SO_DECLs
3561        * for fake "hole" components, rather than simply taking the offset
3562        * for each real varying.  Each hole can have size 1, 2, 3, or 4; we
3563        * program as many size = 4 holes as we can, then a final hole to
3564        * accommodate the final 1, 2, or 3 remaining.
3565        */
3566       int skip_components = output->DstOffset - next_offset[buffer];
3567 
3568       while (skip_components > 0) {
3569          so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3570             .HoleFlag = 1,
3571             .OutputBufferSlot = output->OutputBuffer,
3572             .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3573          };
3574          skip_components -= 4;
3575       }
3576 
3577       next_offset[buffer] = output->DstOffset + output->NumComponents;
3578 
3579       so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3580          .OutputBufferSlot = output->OutputBuffer,
3581          .RegisterIndex = vue_map->varying_to_slot[varying],
3582          .ComponentMask =
3583             ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3584       };
3585 
3586       if (decls[stream_id] > max_decls)
3587          max_decls = decls[stream_id];
3588    }
3589 
3590    uint32_t *dw;
3591    dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3592                         .StreamtoBufferSelects0 = buffer_mask[0],
3593                         .StreamtoBufferSelects1 = buffer_mask[1],
3594                         .StreamtoBufferSelects2 = buffer_mask[2],
3595                         .StreamtoBufferSelects3 = buffer_mask[3],
3596                         .NumEntries0 = decls[0],
3597                         .NumEntries1 = decls[1],
3598                         .NumEntries2 = decls[2],
3599                         .NumEntries3 = decls[3]);
3600 
3601    for (int i = 0; i < max_decls; i++) {
3602       GENX(SO_DECL_ENTRY_pack)(
3603          brw, dw + 2 + i * 2,
3604          &(struct GENX(SO_DECL_ENTRY)) {
3605             .Stream0Decl = so_decl[0][i],
3606             .Stream1Decl = so_decl[1][i],
3607             .Stream2Decl = so_decl[2][i],
3608             .Stream3Decl = so_decl[3][i],
3609          });
3610    }
3611 }
3612 
3613 static void
3614 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3615 {
3616    struct gl_context *ctx = &brw->ctx;
3617    /* BRW_NEW_TRANSFORM_FEEDBACK */
3618    struct gl_transform_feedback_object *xfb_obj =
3619       ctx->TransformFeedback.CurrentObject;
3620 #if GEN_GEN < 8
3621    const struct gl_transform_feedback_info *linked_xfb_info =
3622       xfb_obj->program->sh.LinkedTransformFeedback;
3623 #else
3624    struct brw_transform_feedback_object *brw_obj =
3625       (struct brw_transform_feedback_object *) xfb_obj;
3626    uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3627 #endif
3628 
3629    /* Set up the up to 4 output buffers.  These are the ranges defined in the
3630     * gl_transform_feedback_object.
3631     */
3632    for (int i = 0; i < 4; i++) {
3633       struct intel_buffer_object *bufferobj =
3634          intel_buffer_object(xfb_obj->Buffers[i]);
3635 
3636       if (!bufferobj) {
3637          brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3638             sob.SOBufferIndex = i;
3639          }
3640          continue;
3641       }
3642 
3643       uint32_t start = xfb_obj->Offset[i];
3644       assert(start % 4 == 0);
3645       uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3646       struct brw_bo *bo =
3647          intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3648       assert(end <= bo->size);
3649 
3650       brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3651          sob.SOBufferIndex = i;
3652 
3653          sob.SurfaceBaseAddress = rw_bo(bo, start);
3654 #if GEN_GEN < 8
3655          sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3656          sob.SurfaceEndAddress = rw_bo(bo, end);
3657 #else
3658          sob.SOBufferEnable = true;
3659          sob.StreamOffsetWriteEnable = true;
3660          sob.StreamOutputBufferOffsetAddressEnable = true;
3661          sob.SOBufferMOCS = mocs_wb;
3662 
3663          sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3664          sob.StreamOutputBufferOffsetAddress =
3665             rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3666 
3667          if (brw_obj->zero_offsets) {
3668             /* Zero out the offset and write that to offset_bo */
3669             sob.StreamOffset = 0;
3670          } else {
3671             /* Use offset_bo as the "Stream Offset." */
3672             sob.StreamOffset = 0xFFFFFFFF;
3673          }
3674 #endif
3675       }
3676    }
3677 
3678 #if GEN_GEN >= 8
3679    brw_obj->zero_offsets = false;
3680 #endif
3681 }
3682 
3683 static bool
3684 query_active(struct gl_query_object *q)
3685 {
3686    return q && q->Active;
3687 }
3688 
3689 static void
3690 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3691                                const struct brw_vue_map *vue_map)
3692 {
3693    struct gl_context *ctx = &brw->ctx;
3694    /* BRW_NEW_TRANSFORM_FEEDBACK */
3695    struct gl_transform_feedback_object *xfb_obj =
3696       ctx->TransformFeedback.CurrentObject;
3697 
3698    brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3699       if (active) {
3700          int urb_entry_read_offset = 0;
3701          int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3702             urb_entry_read_offset;
3703 
3704          sos.SOFunctionEnable = true;
3705          sos.SOStatisticsEnable = true;
3706 
3707          /* BRW_NEW_RASTERIZER_DISCARD */
3708          if (ctx->RasterDiscard) {
3709             if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3710                sos.RenderingDisable = true;
3711             } else {
3712                perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3713                           "query active relies on the clipper.\n");
3714             }
3715          }
3716 
3717          /* _NEW_LIGHT */
3718          if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3719             sos.ReorderMode = TRAILING;
3720 
3721 #if GEN_GEN < 8
3722          sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3723          sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3724          sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3725          sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3726 #else
3727          const struct gl_transform_feedback_info *linked_xfb_info =
3728             xfb_obj->program->sh.LinkedTransformFeedback;
3729          /* Set buffer pitches; 0 means unbound. */
3730          if (xfb_obj->Buffers[0])
3731             sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3732          if (xfb_obj->Buffers[1])
3733             sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3734          if (xfb_obj->Buffers[2])
3735             sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3736          if (xfb_obj->Buffers[3])
3737             sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3738 #endif
3739 
3740          /* We always read the whole vertex.  This could be reduced at some
3741           * point by reading less and offsetting the register index in the
3742           * SO_DECLs.
3743           */
3744          sos.Stream0VertexReadOffset = urb_entry_read_offset;
3745          sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3746          sos.Stream1VertexReadOffset = urb_entry_read_offset;
3747          sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3748          sos.Stream2VertexReadOffset = urb_entry_read_offset;
3749          sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3750          sos.Stream3VertexReadOffset = urb_entry_read_offset;
3751          sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3752       }
3753    }
3754 }
3755 
3756 static void
3757 genX(upload_sol)(struct brw_context *brw)
3758 {
3759    struct gl_context *ctx = &brw->ctx;
3760    /* BRW_NEW_TRANSFORM_FEEDBACK */
3761    bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3762 
3763    if (active) {
3764       genX(upload_3dstate_so_buffers)(brw);
3765 
3766       /* BRW_NEW_VUE_MAP_GEOM_OUT */
3767       genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3768    }
3769 
3770    /* Finally, set up the SOL stage.  This command must always follow updates to
3771     * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3772     * MMIO register updates (current performed by the kernel at each batch
3773     * emit).
3774     */
3775    genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3776 }
3777 
3778 static const struct brw_tracked_state genX(sol_state) = {
3779    .dirty = {
3780       .mesa  = _NEW_LIGHT,
3781       .brw   = BRW_NEW_BATCH |
3782                BRW_NEW_BLORP |
3783                BRW_NEW_RASTERIZER_DISCARD |
3784                BRW_NEW_VUE_MAP_GEOM_OUT |
3785                BRW_NEW_TRANSFORM_FEEDBACK,
3786    },
3787    .emit = genX(upload_sol),
3788 };
3789 #endif
3790 
3791 /* ---------------------------------------------------------------------- */
3792 
3793 #if GEN_GEN >= 7
3794 static void
3795 genX(upload_ps)(struct brw_context *brw)
3796 {
3797    UNUSED const struct gl_context *ctx = &brw->ctx;
3798    UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3799 
3800    /* BRW_NEW_FS_PROG_DATA */
3801    const struct brw_wm_prog_data *prog_data =
3802       brw_wm_prog_data(brw->wm.base.prog_data);
3803    const struct brw_stage_state *stage_state = &brw->wm.base;
3804 
3805 #if GEN_GEN < 8
3806 #endif
3807 
3808    brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3809       /* Initialize the execution mask with VMask.  Otherwise, derivatives are
3810        * incorrect for subspans where some of the pixels are unlit.  We believe
3811        * the bit just didn't take effect in previous generations.
3812        */
3813       ps.VectorMaskEnable = GEN_GEN >= 8;
3814 
3815       ps.SamplerCount =
3816          DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3817 
3818       /* BRW_NEW_FS_PROG_DATA */
3819       ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3820 
3821       if (prog_data->base.use_alt_mode)
3822          ps.FloatingPointMode = Alternate;
3823 
3824       /* Haswell requires the sample mask to be set in this packet as well as
3825        * in 3DSTATE_SAMPLE_MASK; the values should match.
3826        */
3827 
3828       /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3829 #if GEN_IS_HASWELL
3830       ps.SampleMask = genX(determine_sample_mask(brw));
3831 #endif
3832 
3833       /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3834        * it implicitly scales for different GT levels (which have some # of
3835        * PSDs).
3836        *
3837        * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3838        */
3839 #if GEN_GEN >= 9
3840       ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3841 #elif GEN_GEN >= 8
3842       ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3843 #else
3844       ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3845 #endif
3846 
3847       if (prog_data->base.nr_params > 0 ||
3848           prog_data->base.ubo_ranges[0].length > 0)
3849          ps.PushConstantEnable = true;
3850 
3851 #if GEN_GEN < 8
3852       /* From the IVB PRM, volume 2 part 1, page 287:
3853        * "This bit is inserted in the PS payload header and made available to
3854        * the DataPort (either via the message header or via header bypass) to
3855        * indicate that oMask data (one or two phases) is included in Render
3856        * Target Write messages. If present, the oMask data is used to mask off
3857        * samples."
3858        */
3859       ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3860 
3861       /* The hardware wedges if you have this bit set but don't turn on any
3862        * dual source blend factors.
3863        *
3864        * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3865        */
3866       ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3867                                  (ctx->Color.BlendEnabled & 1) &&
3868                                  ctx->Color.Blend[0]._UsesDualSrc;
3869 
3870       /* BRW_NEW_FS_PROG_DATA */
3871       ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3872 #endif
3873 
3874       /* From the documentation for this packet:
3875        * "If the PS kernel does not need the Position XY Offsets to
3876        *  compute a Position Value, then this field should be programmed
3877        *  to POSOFFSET_NONE."
3878        *
3879        * "SW Recommendation: If the PS kernel needs the Position Offsets
3880        *  to compute a Position XY value, this field should match Position
3881        *  ZW Interpolation Mode to ensure a consistent position.xyzw
3882        *  computation."
3883        *
3884        * We only require XY sample offsets. So, this recommendation doesn't
3885        * look useful at the moment. We might need this in future.
3886        */
3887       if (prog_data->uses_pos_offset)
3888          ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3889       else
3890          ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3891 
3892       ps._8PixelDispatchEnable = prog_data->dispatch_8;
3893       ps._16PixelDispatchEnable = prog_data->dispatch_16;
3894       ps.DispatchGRFStartRegisterForConstantSetupData0 =
3895          prog_data->base.dispatch_grf_start_reg;
3896       ps.DispatchGRFStartRegisterForConstantSetupData2 =
3897          prog_data->dispatch_grf_start_reg_2;
3898 
3899       ps.KernelStartPointer0 = stage_state->prog_offset;
3900       ps.KernelStartPointer2 = stage_state->prog_offset +
3901          prog_data->prog_offset_2;
3902 
3903       if (prog_data->base.total_scratch) {
3904          ps.ScratchSpaceBasePointer =
3905             rw_bo(stage_state->scratch_bo,
3906                   ffs(stage_state->per_thread_scratch) - 11);
3907       }
3908    }
3909 }
3910 
3911 static const struct brw_tracked_state genX(ps_state) = {
3912    .dirty = {
3913       .mesa  = _NEW_MULTISAMPLE |
3914                (GEN_GEN < 8 ? _NEW_BUFFERS |
3915                               _NEW_COLOR
3916                             : 0),
3917       .brw   = BRW_NEW_BATCH |
3918                BRW_NEW_BLORP |
3919                BRW_NEW_FS_PROG_DATA,
3920    },
3921    .emit = genX(upload_ps),
3922 };
3923 #endif
3924 
3925 /* ---------------------------------------------------------------------- */
3926 
3927 #if GEN_GEN >= 7
3928 static void
3929 genX(upload_hs_state)(struct brw_context *brw)
3930 {
3931    const struct gen_device_info *devinfo = &brw->screen->devinfo;
3932    struct brw_stage_state *stage_state = &brw->tcs.base;
3933    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3934    const struct brw_vue_prog_data *vue_prog_data =
3935       brw_vue_prog_data(stage_prog_data);
3936 
3937    /* BRW_NEW_TES_PROG_DATA */
3938    struct brw_tcs_prog_data *tcs_prog_data =
3939       brw_tcs_prog_data(stage_prog_data);
3940 
3941    if (!tcs_prog_data) {
3942       brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3943    } else {
3944       brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3945          INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3946 
3947          hs.InstanceCount = tcs_prog_data->instances - 1;
3948          hs.IncludeVertexHandles = true;
3949 
3950          hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3951       }
3952    }
3953 }
3954 
3955 static const struct brw_tracked_state genX(hs_state) = {
3956    .dirty = {
3957       .mesa  = 0,
3958       .brw   = BRW_NEW_BATCH |
3959                BRW_NEW_BLORP |
3960                BRW_NEW_TCS_PROG_DATA |
3961                BRW_NEW_TESS_PROGRAMS,
3962    },
3963    .emit = genX(upload_hs_state),
3964 };
3965 
3966 static void
3967 genX(upload_ds_state)(struct brw_context *brw)
3968 {
3969    const struct gen_device_info *devinfo = &brw->screen->devinfo;
3970    const struct brw_stage_state *stage_state = &brw->tes.base;
3971    struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3972 
3973    /* BRW_NEW_TES_PROG_DATA */
3974    const struct brw_tes_prog_data *tes_prog_data =
3975       brw_tes_prog_data(stage_prog_data);
3976    const struct brw_vue_prog_data *vue_prog_data =
3977       brw_vue_prog_data(stage_prog_data);
3978 
3979    if (!tes_prog_data) {
3980       brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3981    } else {
3982       brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3983          INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3984 
3985         ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3986         ds.ComputeWCoordinateEnable =
3987            tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3988 
3989 #if GEN_GEN >= 8
3990         if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3991            ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3992         ds.UserClipDistanceCullTestEnableBitmask =
3993             vue_prog_data->cull_distance_mask;
3994 #endif
3995       }
3996    }
3997 }
3998 
3999 static const struct brw_tracked_state genX(ds_state) = {
4000    .dirty = {
4001       .mesa  = 0,
4002       .brw   = BRW_NEW_BATCH |
4003                BRW_NEW_BLORP |
4004                BRW_NEW_TESS_PROGRAMS |
4005                BRW_NEW_TES_PROG_DATA,
4006    },
4007    .emit = genX(upload_ds_state),
4008 };
4009 
4010 /* ---------------------------------------------------------------------- */
4011 
4012 static void
4013 upload_te_state(struct brw_context *brw)
4014 {
4015    /* BRW_NEW_TESS_PROGRAMS */
4016    bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4017 
4018    /* BRW_NEW_TES_PROG_DATA */
4019    const struct brw_tes_prog_data *tes_prog_data =
4020       brw_tes_prog_data(brw->tes.base.prog_data);
4021 
4022    if (active) {
4023       brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4024          te.Partitioning = tes_prog_data->partitioning;
4025          te.OutputTopology = tes_prog_data->output_topology;
4026          te.TEDomain = tes_prog_data->domain;
4027          te.TEEnable = true;
4028          te.MaximumTessellationFactorOdd = 63.0;
4029          te.MaximumTessellationFactorNotOdd = 64.0;
4030       }
4031    } else {
4032       brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4033    }
4034 }
4035 
4036 static const struct brw_tracked_state genX(te_state) = {
4037    .dirty = {
4038       .mesa  = 0,
4039       .brw   = BRW_NEW_BLORP |
4040                BRW_NEW_CONTEXT |
4041                BRW_NEW_TES_PROG_DATA |
4042                BRW_NEW_TESS_PROGRAMS,
4043    },
4044    .emit = upload_te_state,
4045 };
4046 
4047 /* ---------------------------------------------------------------------- */
4048 
4049 static void
4050 genX(upload_tes_push_constants)(struct brw_context *brw)
4051 {
4052    struct brw_stage_state *stage_state = &brw->tes.base;
4053    /* BRW_NEW_TESS_PROGRAMS */
4054    const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4055 
4056    /* BRW_NEW_TES_PROG_DATA */
4057    const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4058    gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4059 }
4060 
4061 static const struct brw_tracked_state genX(tes_push_constants) = {
4062    .dirty = {
4063       .mesa  = _NEW_PROGRAM_CONSTANTS,
4064       .brw   = BRW_NEW_BATCH |
4065                BRW_NEW_BLORP |
4066                BRW_NEW_TESS_PROGRAMS |
4067                BRW_NEW_TES_PROG_DATA,
4068    },
4069    .emit = genX(upload_tes_push_constants),
4070 };
4071 
4072 static void
4073 genX(upload_tcs_push_constants)(struct brw_context *brw)
4074 {
4075    struct brw_stage_state *stage_state = &brw->tcs.base;
4076    /* BRW_NEW_TESS_PROGRAMS */
4077    const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4078 
4079    /* BRW_NEW_TCS_PROG_DATA */
4080    const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4081 
4082    gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4083 }
4084 
4085 static const struct brw_tracked_state genX(tcs_push_constants) = {
4086    .dirty = {
4087       .mesa  = _NEW_PROGRAM_CONSTANTS,
4088       .brw   = BRW_NEW_BATCH |
4089                BRW_NEW_BLORP |
4090                BRW_NEW_DEFAULT_TESS_LEVELS |
4091                BRW_NEW_TESS_PROGRAMS |
4092                BRW_NEW_TCS_PROG_DATA,
4093    },
4094    .emit = genX(upload_tcs_push_constants),
4095 };
4096 
4097 #endif
4098 
4099 /* ---------------------------------------------------------------------- */
4100 
4101 #if GEN_GEN >= 7
4102 static void
4103 genX(upload_cs_push_constants)(struct brw_context *brw)
4104 {
4105    struct brw_stage_state *stage_state = &brw->cs.base;
4106 
4107    /* BRW_NEW_COMPUTE_PROGRAM */
4108    const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4109 
4110    if (cp) {
4111       /* BRW_NEW_CS_PROG_DATA */
4112       struct brw_cs_prog_data *cs_prog_data =
4113          brw_cs_prog_data(brw->cs.base.prog_data);
4114 
4115       _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4116       brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4117    }
4118 }
4119 
4120 const struct brw_tracked_state genX(cs_push_constants) = {
4121    .dirty = {
4122       .mesa = _NEW_PROGRAM_CONSTANTS,
4123       .brw = BRW_NEW_BATCH |
4124              BRW_NEW_BLORP |
4125              BRW_NEW_COMPUTE_PROGRAM |
4126              BRW_NEW_CS_PROG_DATA,
4127    },
4128    .emit = genX(upload_cs_push_constants),
4129 };
4130 
4131 /**
4132  * Creates a new CS constant buffer reflecting the current CS program's
4133  * constants, if needed by the CS program.
4134  */
4135 static void
4136 genX(upload_cs_pull_constants)(struct brw_context *brw)
4137 {
4138    struct brw_stage_state *stage_state = &brw->cs.base;
4139 
4140    /* BRW_NEW_COMPUTE_PROGRAM */
4141    struct brw_program *cp =
4142       (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4143 
4144    /* BRW_NEW_CS_PROG_DATA */
4145    const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4146 
4147    _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4148    /* _NEW_PROGRAM_CONSTANTS */
4149    brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4150                              stage_state, prog_data);
4151 }
4152 
4153 const struct brw_tracked_state genX(cs_pull_constants) = {
4154    .dirty = {
4155       .mesa = _NEW_PROGRAM_CONSTANTS,
4156       .brw = BRW_NEW_BATCH |
4157              BRW_NEW_BLORP |
4158              BRW_NEW_COMPUTE_PROGRAM |
4159              BRW_NEW_CS_PROG_DATA,
4160    },
4161    .emit = genX(upload_cs_pull_constants),
4162 };
4163 
4164 static void
4165 genX(upload_cs_state)(struct brw_context *brw)
4166 {
4167    if (!brw->cs.base.prog_data)
4168       return;
4169 
4170    uint32_t offset;
4171    uint32_t *desc = (uint32_t*) brw_state_batch(
4172       brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4173       &offset);
4174 
4175    struct brw_stage_state *stage_state = &brw->cs.base;
4176    struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4177    struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4178    const struct gen_device_info *devinfo = &brw->screen->devinfo;
4179 
4180    if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4181       brw_emit_buffer_surface_state(
4182          brw, &stage_state->surf_offset[
4183                  prog_data->binding_table.shader_time_start],
4184          brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4185          brw->shader_time.bo->size, 1,
4186          RELOC_WRITE);
4187    }
4188 
4189    uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4190                                     32, &stage_state->bind_bo_offset);
4191 
4192    /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4193     *
4194     * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4195     *  the only bits that are changed are scoreboard related: Scoreboard
4196     *  Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4197     *  these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4198     *
4199     * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4200     * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4201     */
4202    brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4203 
4204    brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4205       if (prog_data->total_scratch) {
4206          uint32_t per_thread_scratch_value;
4207 
4208          if (GEN_GEN >= 8) {
4209             /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4210              * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4211              */
4212             per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4213          } else if (GEN_IS_HASWELL) {
4214             /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4215              * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4216              */
4217             per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4218          } else {
4219             /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4220              * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4221              */
4222             per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4223          }
4224          vfe.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
4225          vfe.PerThreadScratchSpace = per_thread_scratch_value;
4226       }
4227 
4228       /* If brw->screen->subslice_total is greater than one, then
4229        * devinfo->max_cs_threads stores number of threads per sub-slice;
4230        * thus we need to multiply by that number by subslices to get
4231        * the actual maximum number of threads; the -1 is because the HW
4232        * has a bias of 1 (would not make sense to say the maximum number
4233        * of threads is 0).
4234        */
4235       const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4236       vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4237       vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4238       vfe.ResetGatewayTimer =
4239          Resettingrelativetimerandlatchingtheglobaltimestamp;
4240 #if GEN_GEN < 9
4241       vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4242 #endif
4243 #if GEN_GEN == 7
4244       vfe.GPGPUMode = 1;
4245 #endif
4246 
4247       /* We are uploading duplicated copies of push constant uniforms for each
4248        * thread. Although the local id data needs to vary per thread, it won't
4249        * change for other uniform data. Unfortunately this duplication is
4250        * required for gen7. As of Haswell, this duplication can be avoided,
4251        * but this older mechanism with duplicated data continues to work.
4252        *
4253        * FINISHME: As of Haswell, we could make use of the
4254        * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4255        * field to only store one copy of uniform data.
4256        *
4257        * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4258        * which is described in the GPGPU_WALKER command and in the Broadwell
4259        * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4260        * Operations => GPGPU Mode => Indirect Payload Storage.
4261        *
4262        * Note: The constant data is built in brw_upload_cs_push_constants
4263        * below.
4264        */
4265       vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4266 
4267       const uint32_t vfe_curbe_allocation =
4268          ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4269                cs_prog_data->push.cross_thread.regs, 2);
4270       vfe.CURBEAllocationSize = vfe_curbe_allocation;
4271    }
4272 
4273    if (cs_prog_data->push.total.size > 0) {
4274       brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4275          curbe.CURBETotalDataLength =
4276             ALIGN(cs_prog_data->push.total.size, 64);
4277          curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4278       }
4279    }
4280 
4281    /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4282    memcpy(bind, stage_state->surf_offset,
4283           prog_data->binding_table.size_bytes);
4284    const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4285       .KernelStartPointer = brw->cs.base.prog_offset,
4286       .SamplerStatePointer = stage_state->sampler_offset,
4287       .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4288       .BindingTablePointer = stage_state->bind_bo_offset,
4289       .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4290       .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4291       .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4292                                                prog_data->total_shared),
4293       .BarrierEnable = cs_prog_data->uses_barrier,
4294 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4295       .CrossThreadConstantDataReadLength =
4296          cs_prog_data->push.cross_thread.regs,
4297 #endif
4298    };
4299 
4300    GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4301 
4302    brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4303       load.InterfaceDescriptorTotalLength =
4304          GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4305       load.InterfaceDescriptorDataStartAddress = offset;
4306    }
4307 }
4308 
4309 static const struct brw_tracked_state genX(cs_state) = {
4310    .dirty = {
4311       .mesa = _NEW_PROGRAM_CONSTANTS,
4312       .brw = BRW_NEW_BATCH |
4313              BRW_NEW_BLORP |
4314              BRW_NEW_CS_PROG_DATA |
4315              BRW_NEW_SAMPLER_STATE_TABLE |
4316              BRW_NEW_SURFACES,
4317    },
4318    .emit = genX(upload_cs_state)
4319 };
4320 
4321 #endif
4322 
4323 /* ---------------------------------------------------------------------- */
4324 
4325 #if GEN_GEN >= 8
4326 static void
4327 genX(upload_raster)(struct brw_context *brw)
4328 {
4329    const struct gl_context *ctx = &brw->ctx;
4330 
4331    /* _NEW_BUFFERS */
4332    const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4333 
4334    /* _NEW_POLYGON */
4335    const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4336 
4337    /* _NEW_POINT */
4338    const struct gl_point_attrib *point = &ctx->Point;
4339 
4340    brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4341       if (brw->polygon_front_bit == render_to_fbo)
4342          raster.FrontWinding = CounterClockwise;
4343 
4344       if (polygon->CullFlag) {
4345          switch (polygon->CullFaceMode) {
4346          case GL_FRONT:
4347             raster.CullMode = CULLMODE_FRONT;
4348             break;
4349          case GL_BACK:
4350             raster.CullMode = CULLMODE_BACK;
4351             break;
4352          case GL_FRONT_AND_BACK:
4353             raster.CullMode = CULLMODE_BOTH;
4354             break;
4355          default:
4356             unreachable("not reached");
4357          }
4358       } else {
4359          raster.CullMode = CULLMODE_NONE;
4360       }
4361 
4362       raster.SmoothPointEnable = point->SmoothFlag;
4363 
4364       raster.DXMultisampleRasterizationEnable =
4365          _mesa_is_multisample_enabled(ctx);
4366 
4367       raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4368       raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4369       raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4370 
4371       switch (polygon->FrontMode) {
4372       case GL_FILL:
4373          raster.FrontFaceFillMode = FILL_MODE_SOLID;
4374          break;
4375       case GL_LINE:
4376          raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4377          break;
4378       case GL_POINT:
4379          raster.FrontFaceFillMode = FILL_MODE_POINT;
4380          break;
4381       default:
4382          unreachable("not reached");
4383       }
4384 
4385       switch (polygon->BackMode) {
4386       case GL_FILL:
4387          raster.BackFaceFillMode = FILL_MODE_SOLID;
4388          break;
4389       case GL_LINE:
4390          raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4391          break;
4392       case GL_POINT:
4393          raster.BackFaceFillMode = FILL_MODE_POINT;
4394          break;
4395       default:
4396          unreachable("not reached");
4397       }
4398 
4399       /* _NEW_LINE */
4400       raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4401 
4402 #if GEN_GEN == 10
4403       /* _NEW_BUFFERS
4404        * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4405        */
4406       const bool multisampled_fbo =
4407          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4408       if (multisampled_fbo)
4409          raster.AntialiasingEnable = false;
4410 #endif
4411 
4412       /* _NEW_SCISSOR */
4413       raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4414 
4415       /* _NEW_TRANSFORM */
4416       if (!ctx->Transform.DepthClamp) {
4417 #if GEN_GEN >= 9
4418          raster.ViewportZFarClipTestEnable = true;
4419          raster.ViewportZNearClipTestEnable = true;
4420 #else
4421          raster.ViewportZClipTestEnable = true;
4422 #endif
4423       }
4424 
4425       /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4426 #if GEN_GEN >= 9
4427       raster.ConservativeRasterizationEnable =
4428          ctx->IntelConservativeRasterization;
4429 #endif
4430 
4431       raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4432       raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4433 
4434       raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4435    }
4436 }
4437 
4438 static const struct brw_tracked_state genX(raster_state) = {
4439    .dirty = {
4440       .mesa  = _NEW_BUFFERS |
4441                _NEW_LINE |
4442                _NEW_MULTISAMPLE |
4443                _NEW_POINT |
4444                _NEW_POLYGON |
4445                _NEW_SCISSOR |
4446                _NEW_TRANSFORM,
4447       .brw   = BRW_NEW_BLORP |
4448                BRW_NEW_CONTEXT |
4449                BRW_NEW_CONSERVATIVE_RASTERIZATION,
4450    },
4451    .emit = genX(upload_raster),
4452 };
4453 #endif
4454 
4455 /* ---------------------------------------------------------------------- */
4456 
4457 #if GEN_GEN >= 8
4458 static void
4459 genX(upload_ps_extra)(struct brw_context *brw)
4460 {
4461    UNUSED struct gl_context *ctx = &brw->ctx;
4462 
4463    const struct brw_wm_prog_data *prog_data =
4464       brw_wm_prog_data(brw->wm.base.prog_data);
4465 
4466    brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4467       psx.PixelShaderValid = true;
4468       psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4469       psx.PixelShaderKillsPixel = prog_data->uses_kill;
4470       psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4471       psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4472       psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4473       psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4474 
4475       /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4476       if (prog_data->uses_sample_mask) {
4477 #if GEN_GEN >= 9
4478          if (prog_data->post_depth_coverage)
4479             psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4480          else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4481             psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4482          else
4483             psx.InputCoverageMaskState = ICMS_NORMAL;
4484 #else
4485          psx.PixelShaderUsesInputCoverageMask = true;
4486 #endif
4487       }
4488 
4489       psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4490 #if GEN_GEN >= 9
4491       psx.PixelShaderPullsBary = prog_data->pulls_bary;
4492       psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4493 #endif
4494 
4495       /* The stricter cross-primitive coherency guarantees that the hardware
4496        * gives us with the "Accesses UAV" bit set for at least one shader stage
4497        * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4498        * are redundant within the current image, atomic counter and SSBO GL
4499        * APIs, which all have very loose ordering and coherency requirements
4500        * and generally rely on the application to insert explicit barriers when
4501        * a shader invocation is expected to see the memory writes performed by
4502        * the invocations of some previous primitive.  Regardless of the value
4503        * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4504        * cause an in most cases useless DC flush when the lowermost stage with
4505        * the bit set finishes execution.
4506        *
4507        * It would be nice to disable it, but in some cases we can't because on
4508        * Gen8+ it also has an influence on rasterization via the PS UAV-only
4509        * signal (which could be set independently from the coherency mechanism
4510        * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4511        * determine whether the hardware skips execution of the fragment shader
4512        * or not via the ThreadDispatchEnable signal.  However if we know that
4513        * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4514        * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4515        * difference so we may just disable it here.
4516        *
4517        * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4518        * take into account KillPixels when no depth or stencil writes are
4519        * enabled.  In order for occlusion queries to work correctly with no
4520        * attachments, we need to force-enable here.
4521        *
4522        * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4523        * _NEW_COLOR
4524        */
4525       if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4526           !brw_color_buffer_write_enabled(brw))
4527          psx.PixelShaderHasUAV = true;
4528    }
4529 }
4530 
4531 const struct brw_tracked_state genX(ps_extra) = {
4532    .dirty = {
4533       .mesa  = _NEW_BUFFERS | _NEW_COLOR,
4534       .brw   = BRW_NEW_BLORP |
4535                BRW_NEW_CONTEXT |
4536                BRW_NEW_FRAGMENT_PROGRAM |
4537                BRW_NEW_FS_PROG_DATA |
4538                BRW_NEW_CONSERVATIVE_RASTERIZATION,
4539    },
4540    .emit = genX(upload_ps_extra),
4541 };
4542 #endif
4543 
4544 /* ---------------------------------------------------------------------- */
4545 
4546 #if GEN_GEN >= 8
4547 static void
4548 genX(upload_ps_blend)(struct brw_context *brw)
4549 {
4550    struct gl_context *ctx = &brw->ctx;
4551 
4552    /* _NEW_BUFFERS */
4553    struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4554    const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4555 
4556    /* _NEW_COLOR */
4557    struct gl_colorbuffer_attrib *color = &ctx->Color;
4558 
4559    brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4560       /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4561       pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4562 
4563       bool alpha_to_one = false;
4564 
4565       if (!buffer0_is_integer) {
4566          /* _NEW_MULTISAMPLE */
4567 
4568          if (_mesa_is_multisample_enabled(ctx)) {
4569             pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4570             alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4571          }
4572 
4573          pb.AlphaTestEnable = color->AlphaEnabled;
4574       }
4575 
4576       /* Used for implementing the following bit of GL_EXT_texture_integer:
4577        * "Per-fragment operations that require floating-point color
4578        *  components, including multisample alpha operations, alpha test,
4579        *  blending, and dithering, have no effect when the corresponding
4580        *  colors are written to an integer color buffer."
4581        *
4582        * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4583        * "If drawbuffer zero is not NONE and the buffer it references has an
4584        *  integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4585        *  operations are skipped."
4586        */
4587       if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4588          GLenum eqRGB = color->Blend[0].EquationRGB;
4589          GLenum eqA = color->Blend[0].EquationA;
4590          GLenum srcRGB = color->Blend[0].SrcRGB;
4591          GLenum dstRGB = color->Blend[0].DstRGB;
4592          GLenum srcA = color->Blend[0].SrcA;
4593          GLenum dstA = color->Blend[0].DstA;
4594 
4595          if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4596             srcRGB = dstRGB = GL_ONE;
4597 
4598          if (eqA == GL_MIN || eqA == GL_MAX)
4599             srcA = dstA = GL_ONE;
4600 
4601          /* Due to hardware limitations, the destination may have information
4602           * in an alpha channel even when the format specifies no alpha
4603           * channel. In order to avoid getting any incorrect blending due to
4604           * that alpha channel, coerce the blend factors to values that will
4605           * not read the alpha channel, but will instead use the correct
4606           * implicit value for alpha.
4607           */
4608          if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4609                                             GL_TEXTURE_ALPHA_TYPE)) {
4610             srcRGB = brw_fix_xRGB_alpha(srcRGB);
4611             srcA = brw_fix_xRGB_alpha(srcA);
4612             dstRGB = brw_fix_xRGB_alpha(dstRGB);
4613             dstA = brw_fix_xRGB_alpha(dstA);
4614          }
4615 
4616          /* Alpha to One doesn't work with Dual Color Blending.  Override
4617           * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4618           */
4619          if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4620             srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4621             srcA = fix_dual_blend_alpha_to_one(srcA);
4622             dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4623             dstA = fix_dual_blend_alpha_to_one(dstA);
4624          }
4625 
4626          pb.ColorBufferBlendEnable = true;
4627          pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4628          pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4629          pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4630          pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4631 
4632          pb.IndependentAlphaBlendEnable =
4633             srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4634       }
4635    }
4636 }
4637 
4638 static const struct brw_tracked_state genX(ps_blend) = {
4639    .dirty = {
4640       .mesa = _NEW_BUFFERS |
4641               _NEW_COLOR |
4642               _NEW_MULTISAMPLE,
4643       .brw = BRW_NEW_BLORP |
4644              BRW_NEW_CONTEXT |
4645              BRW_NEW_FRAGMENT_PROGRAM,
4646    },
4647    .emit = genX(upload_ps_blend)
4648 };
4649 #endif
4650 
4651 /* ---------------------------------------------------------------------- */
4652 
4653 #if GEN_GEN >= 8
4654 static void
4655 genX(emit_vf_topology)(struct brw_context *brw)
4656 {
4657    brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4658       vftopo.PrimitiveTopologyType = brw->primitive;
4659    }
4660 }
4661 
4662 static const struct brw_tracked_state genX(vf_topology) = {
4663    .dirty = {
4664       .mesa = 0,
4665       .brw = BRW_NEW_BLORP |
4666              BRW_NEW_PRIMITIVE,
4667    },
4668    .emit = genX(emit_vf_topology),
4669 };
4670 #endif
4671 
4672 /* ---------------------------------------------------------------------- */
4673 
4674 #if GEN_GEN >= 7
4675 static void
4676 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4677                                 struct brw_bo *bo,
4678                                 uint32_t offset_in_bytes,
4679                                 uint32_t report_id)
4680 {
4681    brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4682       mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4683       mi_rpc.ReportID = report_id;
4684    }
4685 }
4686 #endif
4687 
4688 /* ---------------------------------------------------------------------- */
4689 
4690 /**
4691  * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4692  */
4693 static void
4694 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4695                                      struct brw_stage_state *stage_state)
4696 {
4697 #if GEN_GEN >= 7
4698    static const uint16_t packet_headers[] = {
4699       [MESA_SHADER_VERTEX] = 43,
4700       [MESA_SHADER_TESS_CTRL] = 44,
4701       [MESA_SHADER_TESS_EVAL] = 45,
4702       [MESA_SHADER_GEOMETRY] = 46,
4703       [MESA_SHADER_FRAGMENT] = 47,
4704    };
4705 
4706    /* Ivybridge requires a workaround flush before VS packets. */
4707    if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4708        stage_state->stage == MESA_SHADER_VERTEX) {
4709       gen7_emit_vs_workaround_flush(brw);
4710    }
4711 
4712    brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4713       ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4714       ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4715    }
4716 #endif
4717 }
4718 
4719 UNUSED static bool
4720 has_component(mesa_format format, int i)
4721 {
4722    if (_mesa_is_format_color_format(format))
4723       return _mesa_format_has_color_component(format, i);
4724 
4725    /* depth and stencil have only one component */
4726    return i == 0;
4727 }
4728 
4729 /**
4730  * Upload SAMPLER_BORDER_COLOR_STATE.
4731  */
4732 static void
4733 genX(upload_default_color)(struct brw_context *brw,
4734                            const struct gl_sampler_object *sampler,
4735                            mesa_format format, GLenum base_format,
4736                            bool is_integer_format, bool is_stencil_sampling,
4737                            uint32_t *sdc_offset)
4738 {
4739    union gl_color_union color;
4740 
4741    switch (base_format) {
4742    case GL_DEPTH_COMPONENT:
4743       /* GL specs that border color for depth textures is taken from the
4744        * R channel, while the hardware uses A.  Spam R into all the
4745        * channels for safety.
4746        */
4747       color.ui[0] = sampler->BorderColor.ui[0];
4748       color.ui[1] = sampler->BorderColor.ui[0];
4749       color.ui[2] = sampler->BorderColor.ui[0];
4750       color.ui[3] = sampler->BorderColor.ui[0];
4751       break;
4752    case GL_ALPHA:
4753       color.ui[0] = 0u;
4754       color.ui[1] = 0u;
4755       color.ui[2] = 0u;
4756       color.ui[3] = sampler->BorderColor.ui[3];
4757       break;
4758    case GL_INTENSITY:
4759       color.ui[0] = sampler->BorderColor.ui[0];
4760       color.ui[1] = sampler->BorderColor.ui[0];
4761       color.ui[2] = sampler->BorderColor.ui[0];
4762       color.ui[3] = sampler->BorderColor.ui[0];
4763       break;
4764    case GL_LUMINANCE:
4765       color.ui[0] = sampler->BorderColor.ui[0];
4766       color.ui[1] = sampler->BorderColor.ui[0];
4767       color.ui[2] = sampler->BorderColor.ui[0];
4768       color.ui[3] = float_as_int(1.0);
4769       break;
4770    case GL_LUMINANCE_ALPHA:
4771       color.ui[0] = sampler->BorderColor.ui[0];
4772       color.ui[1] = sampler->BorderColor.ui[0];
4773       color.ui[2] = sampler->BorderColor.ui[0];
4774       color.ui[3] = sampler->BorderColor.ui[3];
4775       break;
4776    default:
4777       color.ui[0] = sampler->BorderColor.ui[0];
4778       color.ui[1] = sampler->BorderColor.ui[1];
4779       color.ui[2] = sampler->BorderColor.ui[2];
4780       color.ui[3] = sampler->BorderColor.ui[3];
4781       break;
4782    }
4783 
4784    /* In some cases we use an RGBA surface format for GL RGB textures,
4785     * where we've initialized the A channel to 1.0.  We also have to set
4786     * the border color alpha to 1.0 in that case.
4787     */
4788    if (base_format == GL_RGB)
4789       color.ui[3] = float_as_int(1.0);
4790 
4791    int alignment = 32;
4792    if (GEN_GEN >= 8) {
4793       alignment = 64;
4794    } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4795       alignment = 512;
4796    }
4797 
4798    uint32_t *sdc = brw_state_batch(
4799       brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4800       alignment, sdc_offset);
4801 
4802    struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4803 
4804 #define ASSIGN(dst, src) \
4805    do {                  \
4806       dst = src;         \
4807    } while (0)
4808 
4809 #define ASSIGNu16(dst, src) \
4810    do {                     \
4811       dst = (uint16_t)src;  \
4812    } while (0)
4813 
4814 #define ASSIGNu8(dst, src) \
4815    do {                    \
4816       dst = (uint8_t)src;  \
4817    } while (0)
4818 
4819 #define BORDER_COLOR_ATTR(macro, _color_type, src)              \
4820    macro(state.BorderColor ## _color_type ## Red, src[0]);   \
4821    macro(state.BorderColor ## _color_type ## Green, src[1]);   \
4822    macro(state.BorderColor ## _color_type ## Blue, src[2]);   \
4823    macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4824 
4825 #if GEN_GEN >= 8
4826    /* On Broadwell, the border color is represented as four 32-bit floats,
4827     * integers, or unsigned values, interpreted according to the surface
4828     * format.  This matches the sampler->BorderColor union exactly; just
4829     * memcpy the values.
4830     */
4831    BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4832 #elif GEN_IS_HASWELL
4833    if (is_integer_format || is_stencil_sampling) {
4834       bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4835       const int bits_per_channel =
4836          _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4837 
4838       /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4839        * "If any color channel is missing from the surface format,
4840        *  corresponding border color should be programmed as zero and if
4841        *  alpha channel is missing, corresponding Alpha border color should
4842        *  be programmed as 1."
4843        */
4844       unsigned c[4] = { 0, 0, 0, 1 };
4845       for (int i = 0; i < 4; i++) {
4846          if (has_component(format, i))
4847             c[i] = color.ui[i];
4848       }
4849 
4850       switch (bits_per_channel) {
4851       case 8:
4852          /* Copy RGBA in order. */
4853          BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4854          break;
4855       case 10:
4856          /* R10G10B10A2_UINT is treated like a 16-bit format. */
4857       case 16:
4858          BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4859          break;
4860       case 32:
4861          if (base_format == GL_RG) {
4862             /* Careful inspection of the tables reveals that for RG32 formats,
4863              * the green channel needs to go where blue normally belongs.
4864              */
4865             state.BorderColor32bitRed = c[0];
4866             state.BorderColor32bitBlue = c[1];
4867             state.BorderColor32bitAlpha = 1;
4868          } else {
4869             /* Copy RGBA in order. */
4870             BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4871          }
4872          break;
4873       default:
4874          assert(!"Invalid number of bits per channel in integer format.");
4875          break;
4876       }
4877    } else {
4878       BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4879    }
4880 #elif GEN_GEN == 5 || GEN_GEN == 6
4881    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4882    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4883    BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4884 
4885 #define MESA_FLOAT_TO_HALF(dst, src) \
4886    dst = _mesa_float_to_half(src);
4887 
4888    BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4889 
4890 #undef MESA_FLOAT_TO_HALF
4891 
4892    state.BorderColorSnorm8Red   = state.BorderColorSnorm16Red >> 8;
4893    state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4894    state.BorderColorSnorm8Blue  = state.BorderColorSnorm16Blue >> 8;
4895    state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4896 
4897    BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4898 #elif GEN_GEN == 4
4899    BORDER_COLOR_ATTR(ASSIGN, , color.f);
4900 #else
4901    BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4902 #endif
4903 
4904 #undef ASSIGN
4905 #undef BORDER_COLOR_ATTR
4906 
4907    GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4908 }
4909 
4910 static uint32_t
4911 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4912 {
4913    switch (wrap) {
4914    case GL_REPEAT:
4915       return TCM_WRAP;
4916    case GL_CLAMP:
4917 #if GEN_GEN >= 8
4918       /* GL_CLAMP is the weird mode where coordinates are clamped to
4919        * [0.0, 1.0], so linear filtering of coordinates outside of
4920        * [0.0, 1.0] give you half edge texel value and half border
4921        * color.
4922        *
4923        * Gen8+ supports this natively.
4924        */
4925       return TCM_HALF_BORDER;
4926 #else
4927       /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4928        * and set clamp_border here, which gets the result desired.
4929        * We just use clamp(_to_edge) for nearest, because for nearest
4930        * clamping to 1.0 gives border color instead of the desired
4931        * edge texels.
4932        */
4933       if (using_nearest)
4934          return TCM_CLAMP;
4935       else
4936          return TCM_CLAMP_BORDER;
4937 #endif
4938    case GL_CLAMP_TO_EDGE:
4939       return TCM_CLAMP;
4940    case GL_CLAMP_TO_BORDER:
4941       return TCM_CLAMP_BORDER;
4942    case GL_MIRRORED_REPEAT:
4943       return TCM_MIRROR;
4944    case GL_MIRROR_CLAMP_TO_EDGE:
4945       return TCM_MIRROR_ONCE;
4946    default:
4947       return TCM_WRAP;
4948    }
4949 }
4950 
4951 /**
4952  * Return true if the given wrap mode requires the border color to exist.
4953  */
4954 static bool
4955 wrap_mode_needs_border_color(unsigned wrap_mode)
4956 {
4957 #if GEN_GEN >= 8
4958    return wrap_mode == TCM_CLAMP_BORDER ||
4959           wrap_mode == TCM_HALF_BORDER;
4960 #else
4961    return wrap_mode == TCM_CLAMP_BORDER;
4962 #endif
4963 }
4964 
4965 /**
4966  * Sets the sampler state for a single unit based off of the sampler key
4967  * entry.
4968  */
4969 static void
4970 genX(update_sampler_state)(struct brw_context *brw,
4971                            GLenum target, bool tex_cube_map_seamless,
4972                            GLfloat tex_unit_lod_bias,
4973                            mesa_format format, GLenum base_format,
4974                            const struct gl_texture_object *texObj,
4975                            const struct gl_sampler_object *sampler,
4976                            uint32_t *sampler_state,
4977                            uint32_t batch_offset_for_sampler_state)
4978 {
4979    struct GENX(SAMPLER_STATE) samp_st = { 0 };
4980 
4981    /* Select min and mip filters. */
4982    switch (sampler->MinFilter) {
4983    case GL_NEAREST:
4984       samp_st.MinModeFilter = MAPFILTER_NEAREST;
4985       samp_st.MipModeFilter = MIPFILTER_NONE;
4986       break;
4987    case GL_LINEAR:
4988       samp_st.MinModeFilter = MAPFILTER_LINEAR;
4989       samp_st.MipModeFilter = MIPFILTER_NONE;
4990       break;
4991    case GL_NEAREST_MIPMAP_NEAREST:
4992       samp_st.MinModeFilter = MAPFILTER_NEAREST;
4993       samp_st.MipModeFilter = MIPFILTER_NEAREST;
4994       break;
4995    case GL_LINEAR_MIPMAP_NEAREST:
4996       samp_st.MinModeFilter = MAPFILTER_LINEAR;
4997       samp_st.MipModeFilter = MIPFILTER_NEAREST;
4998       break;
4999    case GL_NEAREST_MIPMAP_LINEAR:
5000       samp_st.MinModeFilter = MAPFILTER_NEAREST;
5001       samp_st.MipModeFilter = MIPFILTER_LINEAR;
5002       break;
5003    case GL_LINEAR_MIPMAP_LINEAR:
5004       samp_st.MinModeFilter = MAPFILTER_LINEAR;
5005       samp_st.MipModeFilter = MIPFILTER_LINEAR;
5006       break;
5007    default:
5008       unreachable("not reached");
5009    }
5010 
5011    /* Select mag filter. */
5012    samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5013       MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5014 
5015    /* Enable anisotropic filtering if desired. */
5016    samp_st.MaximumAnisotropy = RATIO21;
5017 
5018    if (sampler->MaxAnisotropy > 1.0f) {
5019       if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5020          samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5021       if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5022          samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5023 
5024       if (sampler->MaxAnisotropy > 2.0f) {
5025          samp_st.MaximumAnisotropy =
5026             MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5027       }
5028    }
5029 
5030    /* Set address rounding bits if not using nearest filtering. */
5031    if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5032       samp_st.UAddressMinFilterRoundingEnable = true;
5033       samp_st.VAddressMinFilterRoundingEnable = true;
5034       samp_st.RAddressMinFilterRoundingEnable = true;
5035    }
5036 
5037    if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5038       samp_st.UAddressMagFilterRoundingEnable = true;
5039       samp_st.VAddressMagFilterRoundingEnable = true;
5040       samp_st.RAddressMagFilterRoundingEnable = true;
5041    }
5042 
5043    bool either_nearest =
5044       sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5045    unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
5046    unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
5047    unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
5048 
5049    if (target == GL_TEXTURE_CUBE_MAP ||
5050        target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5051       /* Cube maps must use the same wrap mode for all three coordinate
5052        * dimensions.  Prior to Haswell, only CUBE and CLAMP are valid.
5053        *
5054        * Ivybridge and Baytrail seem to have problems with CUBE mode and
5055        * integer formats.  Fall back to CLAMP for now.
5056        */
5057       if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5058           !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5059          wrap_s = TCM_CUBE;
5060          wrap_t = TCM_CUBE;
5061          wrap_r = TCM_CUBE;
5062       } else {
5063          wrap_s = TCM_CLAMP;
5064          wrap_t = TCM_CLAMP;
5065          wrap_r = TCM_CLAMP;
5066       }
5067    } else if (target == GL_TEXTURE_1D) {
5068       /* There's a bug in 1D texture sampling - it actually pays
5069        * attention to the wrap_t value, though it should not.
5070        * Override the wrap_t value here to GL_REPEAT to keep
5071        * any nonexistent border pixels from floating in.
5072        */
5073       wrap_t = TCM_WRAP;
5074    }
5075 
5076    samp_st.TCXAddressControlMode = wrap_s;
5077    samp_st.TCYAddressControlMode = wrap_t;
5078    samp_st.TCZAddressControlMode = wrap_r;
5079 
5080    samp_st.ShadowFunction =
5081       sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5082       intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5083 
5084 #if GEN_GEN >= 7
5085    /* Set shadow function. */
5086    samp_st.AnisotropicAlgorithm =
5087       samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5088       EWAApproximation : LEGACY;
5089 #endif
5090 
5091 #if GEN_GEN >= 6
5092    samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5093 #endif
5094 
5095    const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5096    samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5097    samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5098    samp_st.TextureLODBias =
5099       CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5100 
5101 #if GEN_GEN == 6
5102    samp_st.BaseMipLevel =
5103       CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5104    samp_st.MinandMagStateNotEqual =
5105       samp_st.MinModeFilter != samp_st.MagModeFilter;
5106 #endif
5107 
5108    /* Upload the border color if necessary.  If not, just point it at
5109     * offset 0 (the start of the batch) - the color should be ignored,
5110     * but that address won't fault in case something reads it anyway.
5111     */
5112    uint32_t border_color_offset = 0;
5113    if (wrap_mode_needs_border_color(wrap_s) ||
5114        wrap_mode_needs_border_color(wrap_t) ||
5115        wrap_mode_needs_border_color(wrap_r)) {
5116       genX(upload_default_color)(brw, sampler, format, base_format,
5117                                  texObj->_IsIntegerFormat,
5118                                  texObj->StencilSampling,
5119                                  &border_color_offset);
5120    }
5121 #if GEN_GEN < 6
5122       samp_st.BorderColorPointer =
5123          ro_bo(brw->batch.state.bo, border_color_offset);
5124 #else
5125       samp_st.BorderColorPointer = border_color_offset;
5126 #endif
5127 
5128 #if GEN_GEN >= 8
5129    samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5130 #else
5131    samp_st.LODPreClampEnable = true;
5132 #endif
5133 
5134    GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5135 }
5136 
5137 static void
5138 update_sampler_state(struct brw_context *brw,
5139                      int unit,
5140                      uint32_t *sampler_state,
5141                      uint32_t batch_offset_for_sampler_state)
5142 {
5143    struct gl_context *ctx = &brw->ctx;
5144    const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5145    const struct gl_texture_object *texObj = texUnit->_Current;
5146    const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5147 
5148    /* These don't use samplers at all. */
5149    if (texObj->Target == GL_TEXTURE_BUFFER)
5150       return;
5151 
5152    struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5153    genX(update_sampler_state)(brw, texObj->Target,
5154                               ctx->Texture.CubeMapSeamless,
5155                               texUnit->LodBias,
5156                               firstImage->TexFormat, firstImage->_BaseFormat,
5157                               texObj, sampler,
5158                               sampler_state, batch_offset_for_sampler_state);
5159 }
5160 
5161 static void
5162 genX(upload_sampler_state_table)(struct brw_context *brw,
5163                                  struct gl_program *prog,
5164                                  struct brw_stage_state *stage_state)
5165 {
5166    struct gl_context *ctx = &brw->ctx;
5167    uint32_t sampler_count = stage_state->sampler_count;
5168 
5169    GLbitfield SamplersUsed = prog->SamplersUsed;
5170 
5171    if (sampler_count == 0)
5172       return;
5173 
5174    /* SAMPLER_STATE is 4 DWords on all platforms. */
5175    const int dwords = GENX(SAMPLER_STATE_length);
5176    const int size_in_bytes = dwords * sizeof(uint32_t);
5177 
5178    uint32_t *sampler_state = brw_state_batch(brw,
5179                                              sampler_count * size_in_bytes,
5180                                              32, &stage_state->sampler_offset);
5181    /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5182 
5183    uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
5184 
5185    for (unsigned s = 0; s < sampler_count; s++) {
5186       if (SamplersUsed & (1 << s)) {
5187          const unsigned unit = prog->SamplerUnits[s];
5188          if (ctx->Texture.Unit[unit]._Current) {
5189             update_sampler_state(brw, unit, sampler_state,
5190                                  batch_offset_for_sampler_state);
5191          }
5192       }
5193 
5194       sampler_state += dwords;
5195       batch_offset_for_sampler_state += size_in_bytes;
5196    }
5197 
5198    if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5199       /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5200       genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5201    } else {
5202       /* Flag that the sampler state table pointer has changed; later atoms
5203        * will handle it.
5204        */
5205       brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5206    }
5207 }
5208 
5209 static void
5210 genX(upload_fs_samplers)(struct brw_context *brw)
5211 {
5212    /* BRW_NEW_FRAGMENT_PROGRAM */
5213    struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5214    genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5215 }
5216 
5217 static const struct brw_tracked_state genX(fs_samplers) = {
5218    .dirty = {
5219       .mesa = _NEW_TEXTURE,
5220       .brw = BRW_NEW_BATCH |
5221              BRW_NEW_BLORP |
5222              BRW_NEW_FRAGMENT_PROGRAM,
5223    },
5224    .emit = genX(upload_fs_samplers),
5225 };
5226 
5227 static void
5228 genX(upload_vs_samplers)(struct brw_context *brw)
5229 {
5230    /* BRW_NEW_VERTEX_PROGRAM */
5231    struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5232    genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5233 }
5234 
5235 static const struct brw_tracked_state genX(vs_samplers) = {
5236    .dirty = {
5237       .mesa = _NEW_TEXTURE,
5238       .brw = BRW_NEW_BATCH |
5239              BRW_NEW_BLORP |
5240              BRW_NEW_VERTEX_PROGRAM,
5241    },
5242    .emit = genX(upload_vs_samplers),
5243 };
5244 
5245 #if GEN_GEN >= 6
5246 static void
5247 genX(upload_gs_samplers)(struct brw_context *brw)
5248 {
5249    /* BRW_NEW_GEOMETRY_PROGRAM */
5250    struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5251    if (!gs)
5252       return;
5253 
5254    genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5255 }
5256 
5257 
5258 static const struct brw_tracked_state genX(gs_samplers) = {
5259    .dirty = {
5260       .mesa = _NEW_TEXTURE,
5261       .brw = BRW_NEW_BATCH |
5262              BRW_NEW_BLORP |
5263              BRW_NEW_GEOMETRY_PROGRAM,
5264    },
5265    .emit = genX(upload_gs_samplers),
5266 };
5267 #endif
5268 
5269 #if GEN_GEN >= 7
5270 static void
5271 genX(upload_tcs_samplers)(struct brw_context *brw)
5272 {
5273    /* BRW_NEW_TESS_PROGRAMS */
5274    struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5275    if (!tcs)
5276       return;
5277 
5278    genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5279 }
5280 
5281 static const struct brw_tracked_state genX(tcs_samplers) = {
5282    .dirty = {
5283       .mesa = _NEW_TEXTURE,
5284       .brw = BRW_NEW_BATCH |
5285              BRW_NEW_BLORP |
5286              BRW_NEW_TESS_PROGRAMS,
5287    },
5288    .emit = genX(upload_tcs_samplers),
5289 };
5290 #endif
5291 
5292 #if GEN_GEN >= 7
5293 static void
5294 genX(upload_tes_samplers)(struct brw_context *brw)
5295 {
5296    /* BRW_NEW_TESS_PROGRAMS */
5297    struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5298    if (!tes)
5299       return;
5300 
5301    genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5302 }
5303 
5304 static const struct brw_tracked_state genX(tes_samplers) = {
5305    .dirty = {
5306       .mesa = _NEW_TEXTURE,
5307       .brw = BRW_NEW_BATCH |
5308              BRW_NEW_BLORP |
5309              BRW_NEW_TESS_PROGRAMS,
5310    },
5311    .emit = genX(upload_tes_samplers),
5312 };
5313 #endif
5314 
5315 #if GEN_GEN >= 7
5316 static void
5317 genX(upload_cs_samplers)(struct brw_context *brw)
5318 {
5319    /* BRW_NEW_COMPUTE_PROGRAM */
5320    struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5321    if (!cs)
5322       return;
5323 
5324    genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5325 }
5326 
5327 const struct brw_tracked_state genX(cs_samplers) = {
5328    .dirty = {
5329       .mesa = _NEW_TEXTURE,
5330       .brw = BRW_NEW_BATCH |
5331              BRW_NEW_BLORP |
5332              BRW_NEW_COMPUTE_PROGRAM,
5333    },
5334    .emit = genX(upload_cs_samplers),
5335 };
5336 #endif
5337 
5338 /* ---------------------------------------------------------------------- */
5339 
5340 #if GEN_GEN <= 5
5341 
5342 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5343 {
5344    struct gl_context *ctx = &brw->ctx;
5345 
5346    brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5347       blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5348       blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5349       blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5350       blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5351    }
5352 }
5353 
5354 static const struct brw_tracked_state genX(blend_constant_color) = {
5355    .dirty = {
5356       .mesa = _NEW_COLOR,
5357       .brw = BRW_NEW_CONTEXT |
5358              BRW_NEW_BLORP,
5359    },
5360    .emit = genX(upload_blend_constant_color)
5361 };
5362 #endif
5363 
5364 /* ---------------------------------------------------------------------- */
5365 
5366 void
5367 genX(init_atoms)(struct brw_context *brw)
5368 {
5369 #if GEN_GEN < 6
5370    static const struct brw_tracked_state *render_atoms[] =
5371    {
5372       /* Once all the programs are done, we know how large urb entry
5373        * sizes need to be and can decide if we need to change the urb
5374        * layout.
5375        */
5376       &brw_curbe_offsets,
5377       &brw_recalculate_urb_fence,
5378 
5379       &genX(cc_vp),
5380       &genX(color_calc_state),
5381 
5382       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5383        * table upload must be last.
5384        */
5385       &brw_vs_pull_constants,
5386       &brw_wm_pull_constants,
5387       &brw_renderbuffer_surfaces,
5388       &brw_renderbuffer_read_surfaces,
5389       &brw_texture_surfaces,
5390       &brw_vs_binding_table,
5391       &brw_wm_binding_table,
5392 
5393       &genX(fs_samplers),
5394       &genX(vs_samplers),
5395 
5396       /* These set up state for brw_psp_urb_cbs */
5397       &genX(wm_state),
5398       &genX(sf_clip_viewport),
5399       &genX(sf_state),
5400       &genX(vs_state), /* always required, enabled or not */
5401       &genX(clip_state),
5402       &genX(gs_state),
5403 
5404       /* Command packets:
5405        */
5406       &brw_binding_table_pointers,
5407       &genX(blend_constant_color),
5408 
5409       &brw_depthbuffer,
5410 
5411       &genX(polygon_stipple),
5412       &genX(polygon_stipple_offset),
5413 
5414       &genX(line_stipple),
5415 
5416       &brw_psp_urb_cbs,
5417 
5418       &genX(drawing_rect),
5419       &brw_indices, /* must come before brw_vertices */
5420       &genX(index_buffer),
5421       &genX(vertices),
5422 
5423       &brw_constant_buffer
5424    };
5425 #elif GEN_GEN == 6
5426    static const struct brw_tracked_state *render_atoms[] =
5427    {
5428       &genX(sf_clip_viewport),
5429 
5430       /* Command packets: */
5431 
5432       &genX(cc_vp),
5433 
5434       &gen6_urb,
5435       &genX(blend_state),		/* must do before cc unit */
5436       &genX(color_calc_state),	/* must do before cc unit */
5437       &genX(depth_stencil_state),	/* must do before cc unit */
5438 
5439       &genX(vs_push_constants), /* Before vs_state */
5440       &genX(gs_push_constants), /* Before gs_state */
5441       &genX(wm_push_constants), /* Before wm_state */
5442 
5443       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5444        * table upload must be last.
5445        */
5446       &brw_vs_pull_constants,
5447       &brw_vs_ubo_surfaces,
5448       &brw_gs_pull_constants,
5449       &brw_gs_ubo_surfaces,
5450       &brw_wm_pull_constants,
5451       &brw_wm_ubo_surfaces,
5452       &gen6_renderbuffer_surfaces,
5453       &brw_renderbuffer_read_surfaces,
5454       &brw_texture_surfaces,
5455       &gen6_sol_surface,
5456       &brw_vs_binding_table,
5457       &gen6_gs_binding_table,
5458       &brw_wm_binding_table,
5459 
5460       &genX(fs_samplers),
5461       &genX(vs_samplers),
5462       &genX(gs_samplers),
5463       &gen6_sampler_state,
5464       &genX(multisample_state),
5465 
5466       &genX(vs_state),
5467       &genX(gs_state),
5468       &genX(clip_state),
5469       &genX(sf_state),
5470       &genX(wm_state),
5471 
5472       &genX(scissor_state),
5473 
5474       &gen6_binding_table_pointers,
5475 
5476       &brw_depthbuffer,
5477 
5478       &genX(polygon_stipple),
5479       &genX(polygon_stipple_offset),
5480 
5481       &genX(line_stipple),
5482 
5483       &genX(drawing_rect),
5484 
5485       &brw_indices, /* must come before brw_vertices */
5486       &genX(index_buffer),
5487       &genX(vertices),
5488    };
5489 #elif GEN_GEN == 7
5490    static const struct brw_tracked_state *render_atoms[] =
5491    {
5492       /* Command packets: */
5493 
5494       &genX(cc_vp),
5495       &genX(sf_clip_viewport),
5496 
5497       &gen7_l3_state,
5498       &gen7_push_constant_space,
5499       &gen7_urb,
5500       &genX(blend_state),		/* must do before cc unit */
5501       &genX(color_calc_state),	/* must do before cc unit */
5502       &genX(depth_stencil_state),	/* must do before cc unit */
5503 
5504       &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5505       &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5506       &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5507       &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5508       &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5509 
5510       &genX(vs_push_constants), /* Before vs_state */
5511       &genX(tcs_push_constants),
5512       &genX(tes_push_constants),
5513       &genX(gs_push_constants), /* Before gs_state */
5514       &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5515 
5516       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5517        * table upload must be last.
5518        */
5519       &brw_vs_pull_constants,
5520       &brw_vs_ubo_surfaces,
5521       &brw_tcs_pull_constants,
5522       &brw_tcs_ubo_surfaces,
5523       &brw_tes_pull_constants,
5524       &brw_tes_ubo_surfaces,
5525       &brw_gs_pull_constants,
5526       &brw_gs_ubo_surfaces,
5527       &brw_wm_pull_constants,
5528       &brw_wm_ubo_surfaces,
5529       &gen6_renderbuffer_surfaces,
5530       &brw_renderbuffer_read_surfaces,
5531       &brw_texture_surfaces,
5532 
5533       &genX(push_constant_packets),
5534 
5535       &brw_vs_binding_table,
5536       &brw_tcs_binding_table,
5537       &brw_tes_binding_table,
5538       &brw_gs_binding_table,
5539       &brw_wm_binding_table,
5540 
5541       &genX(fs_samplers),
5542       &genX(vs_samplers),
5543       &genX(tcs_samplers),
5544       &genX(tes_samplers),
5545       &genX(gs_samplers),
5546       &genX(multisample_state),
5547 
5548       &genX(vs_state),
5549       &genX(hs_state),
5550       &genX(te_state),
5551       &genX(ds_state),
5552       &genX(gs_state),
5553       &genX(sol_state),
5554       &genX(clip_state),
5555       &genX(sbe_state),
5556       &genX(sf_state),
5557       &genX(wm_state),
5558       &genX(ps_state),
5559 
5560       &genX(scissor_state),
5561 
5562       &gen7_depthbuffer,
5563 
5564       &genX(polygon_stipple),
5565       &genX(polygon_stipple_offset),
5566 
5567       &genX(line_stipple),
5568 
5569       &genX(drawing_rect),
5570 
5571       &brw_indices, /* must come before brw_vertices */
5572       &genX(index_buffer),
5573       &genX(vertices),
5574 
5575 #if GEN_IS_HASWELL
5576       &genX(cut_index),
5577 #endif
5578    };
5579 #elif GEN_GEN >= 8
5580    static const struct brw_tracked_state *render_atoms[] =
5581    {
5582       &genX(cc_vp),
5583       &genX(sf_clip_viewport),
5584 
5585       &gen7_l3_state,
5586       &gen7_push_constant_space,
5587       &gen7_urb,
5588       &genX(blend_state),
5589       &genX(color_calc_state),
5590 
5591       &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5592       &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5593       &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5594       &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5595       &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5596 
5597       &genX(vs_push_constants), /* Before vs_state */
5598       &genX(tcs_push_constants),
5599       &genX(tes_push_constants),
5600       &genX(gs_push_constants), /* Before gs_state */
5601       &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5602 
5603       /* Surface state setup.  Must come before the VS/WM unit.  The binding
5604        * table upload must be last.
5605        */
5606       &brw_vs_pull_constants,
5607       &brw_vs_ubo_surfaces,
5608       &brw_tcs_pull_constants,
5609       &brw_tcs_ubo_surfaces,
5610       &brw_tes_pull_constants,
5611       &brw_tes_ubo_surfaces,
5612       &brw_gs_pull_constants,
5613       &brw_gs_ubo_surfaces,
5614       &brw_wm_pull_constants,
5615       &brw_wm_ubo_surfaces,
5616       &gen6_renderbuffer_surfaces,
5617       &brw_renderbuffer_read_surfaces,
5618       &brw_texture_surfaces,
5619 
5620       &genX(push_constant_packets),
5621 
5622       &brw_vs_binding_table,
5623       &brw_tcs_binding_table,
5624       &brw_tes_binding_table,
5625       &brw_gs_binding_table,
5626       &brw_wm_binding_table,
5627 
5628       &genX(fs_samplers),
5629       &genX(vs_samplers),
5630       &genX(tcs_samplers),
5631       &genX(tes_samplers),
5632       &genX(gs_samplers),
5633       &genX(multisample_state),
5634 
5635       &genX(vs_state),
5636       &genX(hs_state),
5637       &genX(te_state),
5638       &genX(ds_state),
5639       &genX(gs_state),
5640       &genX(sol_state),
5641       &genX(clip_state),
5642       &genX(raster_state),
5643       &genX(sbe_state),
5644       &genX(sf_state),
5645       &genX(ps_blend),
5646       &genX(ps_extra),
5647       &genX(ps_state),
5648       &genX(depth_stencil_state),
5649       &genX(wm_state),
5650 
5651       &genX(scissor_state),
5652 
5653       &gen7_depthbuffer,
5654 
5655       &genX(polygon_stipple),
5656       &genX(polygon_stipple_offset),
5657 
5658       &genX(line_stipple),
5659 
5660       &genX(drawing_rect),
5661 
5662       &genX(vf_topology),
5663 
5664       &brw_indices,
5665       &genX(index_buffer),
5666       &genX(vertices),
5667 
5668       &genX(cut_index),
5669       &gen8_pma_fix,
5670    };
5671 #endif
5672 
5673    STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5674    brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5675                            render_atoms, ARRAY_SIZE(render_atoms));
5676 
5677 #if GEN_GEN >= 7
5678    static const struct brw_tracked_state *compute_atoms[] =
5679    {
5680       &gen7_l3_state,
5681       &brw_cs_image_surfaces,
5682       &genX(cs_push_constants),
5683       &genX(cs_pull_constants),
5684       &brw_cs_ubo_surfaces,
5685       &brw_cs_texture_surfaces,
5686       &brw_cs_work_groups_surface,
5687       &genX(cs_samplers),
5688       &genX(cs_state),
5689    };
5690 
5691    STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5692    brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5693                            compute_atoms, ARRAY_SIZE(compute_atoms));
5694 
5695    brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5696 #endif
5697 }
5698