/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | make_initial_dequantize_operator.cc | 55 auto& input_array = model->GetArray(input_name); in AddDequantizeOperatorToInput() local 56 if (input_array.data_type != ArrayDataType::kFloat) { in AddDequantizeOperatorToInput() 60 if (input_array.final_data_type == input_array.data_type || in AddDequantizeOperatorToInput() 61 input_array.final_data_type == ArrayDataType::kNone) { in AddDequantizeOperatorToInput() 83 const auto& input_minmax = input_array.GetMinMax(); in AddDequantizeOperatorToInput() 86 auto& input_qparams = input_array.GetOrCreateQuantizationParams(); in AddDequantizeOperatorToInput() 87 input_array.data_type = input_array.final_data_type; in AddDequantizeOperatorToInput() 89 input_array, input_array.data_type, &input_qparams); in AddDequantizeOperatorToInput() 110 for (auto& input_array : *model->flags.mutable_input_arrays()) { in Run() 111 if (input_array.name() == input) { in Run() [all …]
|
D | resolve_constant_reshape.cc | 55 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 56 if (!ShapesAgreeUpToExtending(input_array.shape(), output_array.shape())) { in Run() 58 ShapeToString(input_array.shape()), in Run() 64 switch (input_array.data_type) { in Run() 66 CopyArrayBuffer<ArrayDataType::kBool>(input_array, &output_array); in Run() 69 CopyArrayBuffer<ArrayDataType::kFloat>(input_array, &output_array); in Run() 72 CopyArrayBuffer<ArrayDataType::kInt8>(input_array, &output_array); in Run() 75 CopyArrayBuffer<ArrayDataType::kUint8>(input_array, &output_array); in Run() 78 CopyArrayBuffer<ArrayDataType::kInt16>(input_array, &output_array); in Run() 81 CopyArrayBuffer<ArrayDataType::kUint16>(input_array, &output_array); in Run() [all …]
|
D | propagate_fixed_sizes.cc | 125 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessConvOperator() local 127 if (!input_array.has_shape()) { in ProcessConvOperator() 130 const auto& input_shape = input_array.shape(); in ProcessConvOperator() 223 const auto& input_array = in ProcessTransposeConvOperator() local 225 if (!input_array.has_shape()) { in ProcessTransposeConvOperator() 229 const auto& input_shape = input_array.shape(); in ProcessTransposeConvOperator() 254 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessDepthwiseConvOperator() local 256 if (!input_array.has_shape()) { in ProcessDepthwiseConvOperator() 259 const auto& input_shape = input_array.shape(); in ProcessDepthwiseConvOperator() 296 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessDepthToSpaceOperator() local [all …]
|
D | resolve_reorder_axes.cc | 58 const Array& input_array, Array* output_array) { in ReorderAxes() argument 59 DCHECK(input_array.buffer->type == DataType); in ReorderAxes() 61 const auto& input_data = input_array.GetBuffer<DataType>().data; in ReorderAxes() 65 Shape input_shape = input_array.shape(); in ReorderAxes() 73 if (input_array.minmax) { in ReorderAxes() 74 output_array->GetOrCreateMinMax() = input_array.GetMinMax(); in ReorderAxes() 76 if (input_array.narrow_range) { in ReorderAxes() 95 auto& input_array = model->GetArray(input_array_name); in Run() local 97 if (!input_array.buffer) { in Run() 105 if (input_array.buffer->type == ArrayDataType::kFloat) { in Run() [all …]
|
D | resolve_constant_strided_slice.cc | 28 void StridedSlice(StridedSliceOperator const& op, Array const& input_array, in StridedSlice() argument 35 CHECK(input_array.data_type == Type); in StridedSlice() 51 Shape const& input_shape = input_array.shape(); in StridedSlice() 52 Buffer<Type> const& input_buffer = input_array.GetBuffer<Type>(); in StridedSlice() 62 strided_slice_params, ToRuntimeShape(input_array.shape()), axis); in StridedSlice() 65 strided_slice_params, ToRuntimeShape(input_array.shape()), axis, in StridedSlice() 132 const auto& input_array = model->GetArray(op->inputs[0]); in Run() local 133 if (!input_array.has_shape()) { in Run() 145 StridedSlice<ArrayDataType::kFloat>(*op, input_array, &output_array); in Run() 148 StridedSlice<ArrayDataType::kUint8>(*op, input_array, &output_array); in Run() [all …]
|
D | resolve_constant_tile.cc | 72 inline void Tile(const Array& input_array, const Array& multiples_array, in Tile() argument 81 input_array.shape(), input_array.GetBuffer<Type>().data.data(), in Tile() 87 input_array.shape(), input_array.GetBuffer<Type>().data.data(), in Tile() 128 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 134 CopyMinMaxAndQuantizationRelatedFields(input_array, &output_array); in Run() 139 Tile<ArrayDataType::kFloat>(input_array, multiples_array, &output_array); in Run() 142 Tile<ArrayDataType::kUint8>(input_array, multiples_array, &output_array); in Run() 145 Tile<ArrayDataType::kInt16>(input_array, multiples_array, &output_array); in Run() 148 Tile<ArrayDataType::kInt32>(input_array, multiples_array, &output_array); in Run() 151 Tile<ArrayDataType::kInt64>(input_array, multiples_array, &output_array); in Run() [all …]
|
D | resolve_constant_slice.cc | 27 bool Slice(SliceOperator const& op, Array const& input_array, in Slice() argument 31 CHECK(input_array.data_type == Type); in Slice() 33 const auto& input_data = input_array.GetBuffer<Type>().data; in Slice() 57 dim_size = input_array.shape().dims()[i] - begin[i]; in Slice() 66 Shape padded_shape = input_array.shape(); in Slice() 118 const auto& input_array = model->GetArray(op->inputs[0]); in Run() local 119 if (!input_array.has_shape()) { in Run() 131 if (!Slice<ArrayDataType::kFloat>(*op, input_array, &output_array)) { in Run() 136 if (!Slice<ArrayDataType::kUint8>(*op, input_array, &output_array)) { in Run() 141 if (!Slice<ArrayDataType::kInt32>(*op, input_array, &output_array)) { in Run() [all …]
|
D | dequantize.cc | 58 for (auto& input_array : *model->flags.mutable_input_arrays()) { in ClearArrayQuantizationParams() 59 if (input_array.name() == array_name) { in ClearArrayQuantizationParams() 63 if (input_array.has_std_value()) { in ClearArrayQuantizationParams() 64 CHECK_LE(std::abs(new_std_value - input_array.std_value()), 0.001); in ClearArrayQuantizationParams() 66 input_array.set_std_value(new_std_value); in ClearArrayQuantizationParams() 68 if (input_array.has_mean_value()) { in ClearArrayQuantizationParams() 69 CHECK_LE(std::abs(new_mean_value - input_array.mean_value()), 0.001); in ClearArrayQuantizationParams() 71 input_array.set_mean_value(new_mean_value); in ClearArrayQuantizationParams() 196 auto& input_array = model->GetArray(op->inputs[0]); in Run() local 197 if (input_array.data_type == ArrayDataType::kFloat) { in Run() [all …]
|
D | resolve_constant_gather.cc | 28 inline void Gather(const Array& input_array, const Array& coords_array, in Gather() argument 30 const Shape& input_shape = input_array.shape(); in Gather() 32 input_array.GetBuffer<Type>().data; in Gather() 106 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 114 if (input_array.minmax) { in Run() 115 const auto& input_minmax = input_array.GetMinMax(); in Run() 124 Gather<ArrayDataType::kFloat>(input_array, coords_array, &output_array); in Run() 127 Gather<ArrayDataType::kUint8>(input_array, coords_array, &output_array); in Run() 130 Gather<ArrayDataType::kInt32>(input_array, coords_array, &output_array); in Run() 133 Gather<ArrayDataType::kInt64>(input_array, coords_array, &output_array); in Run() [all …]
|
D | resolve_constant_unary.cc | 103 const auto& input_array = model->GetArray(op.inputs[0]); in CopyMinMaxFromFirstInput() local 104 if (!input_array.minmax) { in CopyMinMaxFromFirstInput() 107 const auto& input_minmax = input_array.GetMinMax(); in CopyMinMaxFromFirstInput() 181 const auto& input_array = model->GetArray(unary_op->inputs[0]); in Run() local 184 CHECK(input_array.buffer); in Run() 195 if (cast_op->src_data_type != input_array.buffer->type) { in Run() 202 if (input_array.buffer->type != ArrayDataType::kFloat) { in Run() 205 input_float_data = &(input_array.GetBuffer<ArrayDataType::kFloat>().data); in Run() 216 const Shape& input_shape = input_array.shape(); in Run() 221 if (input_array.buffer->type == ArrayDataType::kFloat) { in Run() [all …]
|
D | shuffle_fc_weights.cc | 39 const Array& input_array = model->GetArray(fc_op->inputs[0]); in Run() local 46 if (input_array.data_type != ArrayDataType::kUint8 || in Run() 49 !input_array.quantization_params || !weights_array.quantization_params || in Run() 54 if (!input_array.has_shape() || !weights_array.has_shape()) { in Run() 59 const Shape& input_shape = input_array.shape(); in Run() 151 shuffled_input_workspace_array.data_type = input_array.data_type; in Run() 152 *shuffled_input_workspace_array.mutable_shape() = input_array.shape(); in Run() 153 shuffled_input_workspace_array.GetOrCreateMinMax() = input_array.GetMinMax(); in Run() 155 input_array.GetQuantizationParams(); in Run()
|
D | resolve_constant_transpose.cc | 29 void Transpose(Model* model, const Array& input_array, in Transpose() argument 31 const Shape& input_shape = input_array.shape(); in Transpose() 33 input_array.GetBuffer<Type>().data; in Transpose() 132 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 134 CopyMinMaxAndQuantizationRelatedFields(input_array, &output_array); in Run() 147 Transpose<ArrayDataType::kFloat>(model, input_array, op->perm, in Run() 151 Transpose<ArrayDataType::kUint8>(model, input_array, op->perm, in Run() 155 Transpose<ArrayDataType::kInt32>(model, input_array, op->perm, in Run() 159 Transpose<ArrayDataType::kInt64>(model, input_array, op->perm, in Run() 163 Transpose<ArrayDataType::kComplex64>(model, input_array, op->perm, in Run()
|
D | hardcode_min_max.cc | 37 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForIm2colArray() local 38 if (!input_array.minmax) { in HardcodeMinMaxForIm2colArray() 41 const auto& input_minmax = input_array.GetMinMax(); in HardcodeMinMaxForIm2colArray() 54 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForL2Normalization() local 55 if (!input_array.minmax) { in HardcodeMinMaxForL2Normalization() 58 const auto& input_minmax = input_array.GetMinMax(); in HardcodeMinMaxForL2Normalization() 156 auto& input_array = model->GetArray(op->inputs[1]); in HardcodeMinMaxForSplit() local 157 if (!input_array.minmax) { in HardcodeMinMaxForSplit() 163 if (!array.minmax || !(array.GetMinMax() == input_array.GetMinMax())) { in HardcodeMinMaxForSplit() 165 array.GetOrCreateMinMax() = *input_array.minmax; in HardcodeMinMaxForSplit() [all …]
|
D | resolve_constant_concatenation.cc | 40 for (Array* input_array : input_arrays) { in CopyTensorSegments() 41 if (!input_array->buffer) { in CopyTensorSegments() 60 for (Array* input_array : input_arrays) { in CopyTensorSegments() 61 src_ptr.push_back(input_array->GetBuffer<A>().data.data()); in CopyTensorSegments() 90 for (Array* input_array : input_arrays) { in ConcatenateTensorBuffers() 91 const Shape array_shape = input_array->shape(); in ConcatenateTensorBuffers() 119 for (Array* input_array : input_arrays) { in SetMinMaxForConcatenedArray() 122 if (!input_array->minmax) return; in SetMinMaxForConcatenedArray() 123 const MinMax& input_minmax = input_array->GetMinMax(); in SetMinMaxForConcatenedArray()
|
D | propagate_default_min_max.cc | 52 auto& input_array = model->GetArray(input); in Run() local 53 if (!input_array.minmax && !input_array.buffer && in Run() 54 SupportsMinMax(input_array)) { in Run() 55 did_change |= SetArrayMinMax(input, &input_array); in Run()
|
D | convert_trivial_pack_to_reshape.cc | 43 const auto& input_array = model->GetArray(pack_op->inputs[0]); in Run() local 44 if (!input_array.has_shape()) { in Run() 48 if (input_array.shape().dimensions_count() == 0) { in Run() 66 1 + input_array.shape().dimensions_count()}; in Run() 71 for (int dim : input_array.shape().dims()) { in Run()
|
D | resolve_constant_shape_or_rank.cc | 39 const auto& input_array = model->GetArray(op->inputs[0]); in Run() local 40 if (!input_array.has_shape()) { in Run() 55 output_buffer.data = input_array.shape().dims(); in Run() 59 output_buffer.data[0] = input_array.shape().dimensions_count(); in Run()
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | convolution_variants_test.cc | 57 const Array4D<float> input_array(1, 1, 1, 1, {2}); in XLA_TEST_F() local 58 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 72 const Array4D<float> input_array(5, 1, 1, 1, {1, 2, 3, 4, 5}); in XLA_TEST_F() local 73 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 87 Array4D<float> input_array(2, 1, 3, 4); in XLA_TEST_F() local 88 input_array.FillWithMultiples(1); in XLA_TEST_F() 89 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 104 Array4D<float> input_array(1, 2, 1, 1, {10, 1}); in XLA_TEST_F() local 105 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 119 Array4D<float> input_array(1, 1, 1, 2, {1, 2}); in XLA_TEST_F() local [all …]
|
D | reduce_window_test.cc | 156 Array4D<float> input_array(1, 0, 2, 1); in XLA_TEST_P() local 157 const auto input = CreateConstantFromArray(input_array, &builder_); in XLA_TEST_P() 161 auto res = ReferenceUtil::ReduceWindow4DAdd(input_array, 0.0f, {1, 1, 2, 1}, in XLA_TEST_P() 169 Array4D<float> input_array(1, 2, 2, 1); in TEST_P() local 170 input_array.FillRandom(2.f, 2.f); in TEST_P() 171 const auto input = CreateConstantFromArray(input_array, &builder_); in TEST_P() 176 auto res = ReferenceUtil::ReduceWindow4DAdd(input_array, 0.0f, {1, 1, 2, 1}, in TEST_P() 184 Array4D<float> input_array(1, 3, 3, 1); in TEST_P() local 185 input_array.FillRandom(2.f, 2.f); in TEST_P() 186 const auto input = CreateConstantFromArray(input_array, &builder_); in TEST_P() [all …]
|
D | constants_test.cc | 138 Array4D<float> input_array(3, 2, 1, 1); in TEST_F() local 145 input_array.FillWithPZ(pz); in TEST_F() 146 Literal input_literal = LiteralUtil::CreateR4FromArray4D(input_array); in TEST_F() 151 ComputeAndCompareR4<float>(&builder, input_array, {}, error_spec_); in TEST_F() 156 ConstantR4FromArray4D<float>(&builder, input_array); in TEST_F() 157 ComputeAndCompareR4<float>(&builder, input_array, {}, error_spec_); in TEST_F()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduce_join_op_test.py | 101 input_array, argument 119 inputs=input_array, 128 def _testMultipleReduceJoin(self, input_array, axis, separator=" "): argument 142 inputs=input_array, axis=axis, keep_dims=False, separator=separator) 144 inputs=input_array, axis=axis, keep_dims=True, separator=separator) 146 truth = input_array 163 input_array = ["this", "is", "a", "test"] 166 self._testReduceJoin(input_array, truth, truth_shape, axis=0) 169 input_array = [["this", "is", "a", "test"], 176 input_array, truth_dim_zero, truth_shape_dim_zero, axis=0) [all …]
|
/external/tensorflow/tensorflow/lite/toco/tflite/ |
D | operator.cc | 68 const Array& input_array = op_signature.model->GetArray(input_name); in GetVersion() local 69 if (input_array.data_type == ArrayDataType::kInt8) { in GetVersion() 109 const Array& input_array = op_signature.model->GetArray(input_name); in GetVersion() local 113 if (input_array.data_type == ArrayDataType::kInt8 && in GetVersion() 120 if (input_array.data_type == ArrayDataType::kFloat && in GetVersion() 166 const Array& input_array = op_signature.model->GetArray(input_name); in GetVersion() local 170 if (input_array.data_type == ArrayDataType::kInt8 && in GetVersion() 204 const Array& input_array = op_signature.model->GetArray(input_name); in GetVersion() local 206 if (input_array.data_type == ArrayDataType::kInt8) { in GetVersion() 250 const Array& input_array = op_signature.model->GetArray(input_name); in GetVersion() local [all …]
|
/external/tensorflow/tensorflow/lite/python/ |
D | convert.py | 350 input_array = model.input_arrays.add() 351 input_array.name = tensor_name(input_tensor) 352 input_array.data_type = convert_dtype_to_tflite_type(input_tensor.dtype) 358 input_array.mean_value, input_array.std_value = quantized_input_stats[idx] 363 input_array.shape.dims.extend(map(int, shape)) 405 input_array = model_flags.input_arrays.add() 411 input_array.mean_value, input_array.std_value = kwargs[ 413 input_array.name = name 414 input_array.shape.dims.extend(map(int, shape))
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | spacetobatch_op_test.py | 30 def space_to_batch_direct(input_array, block_shape, paddings): argument 43 input_array = np.array(input_array) 48 padded = np.pad(input_array, 50 (input_array.ndim - 1 - num_block_dims)), 52 reshaped_padded_shape = [input_array.shape[0]] 53 output_shape = [input_array.shape[0] * np.prod(block_shape)] 59 reshaped_padded_shape.extend(input_array.shape[num_block_dims + 1:]) 60 output_shape.extend(input_array.shape[num_block_dims + 1:]) 66 np.arange(input_array.ndim - num_block_dims - 1) + 1 + num_block_dims
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantize_down_and_shrink_range.cc | 53 auto input_array = input.flat<T1>(); in Compute() local 60 for (int i = 0; i < input_array.size(); ++i) { in Compute() 61 const T1 value = input_array(i); in Compute() 76 RequantizeManyInNewRange<T1, T2>(input_array.data(), input_array.size(), in Compute() 82 if (input_array.size() > 0) { in Compute()
|