Searched refs:input_tuple (Results 1 – 7 of 7) sorted by relevance
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | tuple_util.cc | 22 /*static*/ HloInstruction* TupleUtil::ExtractPrefix(HloInstruction* input_tuple, in ExtractPrefix() argument 24 CHECK(input_tuple->shape().IsTuple()); in ExtractPrefix() 26 HloComputation* computation = input_tuple->parent(); in ExtractPrefix() 27 const Shape& input_shape = input_tuple->shape(); in ExtractPrefix() 34 input_shape.tuple_shapes(i), input_tuple, i))); in ExtractPrefix() 42 HloInstruction* input_tuple, in AppendSuffix() argument 44 CHECK(input_tuple->shape().IsTuple()); in AppendSuffix() 46 HloComputation* computation = input_tuple->parent(); in AppendSuffix() 47 const Shape& input_shape = input_tuple->shape(); in AppendSuffix() 53 input_shape.tuple_shapes(i), input_tuple, i))); in AppendSuffix()
|
D | tuple_util.h | 30 static HloInstruction* ExtractPrefix(HloInstruction* input_tuple, 40 HloInstruction* input_tuple,
|
D | triangular_solve_expander.cc | 207 auto input_tuple = in InvertDiagonalBlocks() local 210 auto i = GetTupleElement(input_tuple, 0); in InvertDiagonalBlocks() 211 auto body_out = GetTupleElement(input_tuple, 1); in InvertDiagonalBlocks() 212 auto body_input = GetTupleElement(input_tuple, 2); in InvertDiagonalBlocks()
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | if_op.cc | 222 auto input_tuple = xla::Tuple(b, inputs); in Compile() local 224 xla::Conditional(ctx->Input(0), input_tuple, *then_result.computation, in Compile() 225 input_tuple, *else_result.computation); in Compile()
|
D | case_op.cc | 233 auto input_tuple = xla::Tuple(b, inputs); in Compile() local 237 std::vector<xla::XlaOp>(num_branches, input_tuple)); in Compile()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | padding_fifo_queue_test.py | 1508 input_tuple = [] 1518 input_tuple.append(np_array) 1520 q.enqueue_many(input_tuple).run() 1525 for (input_elem, output_elem) in zip(input_tuple, output_tuple):
|
D | fifo_queue_test.py | 1394 input_tuple = [] 1404 input_tuple.append(np_array) 1406 q.enqueue_many(input_tuple).run() 1411 for (input_elem, output_elem) in zip(input_tuple, output_tuple):
|