/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
D | csv_dataset_test.py | 41 def _setup_files(self, inputs, linebreak='\n', compression_type=None): argument 43 for i, ip in enumerate(inputs): 61 def _make_test_datasets(self, inputs, **kwargs): argument 63 filenames = self._setup_files(inputs) 70 def _test_by_comparison(self, inputs, **kwargs): argument 73 inputs, **kwargs) 101 inputs, argument 109 filenames = self._setup_files(inputs, linebreak, compression_type) 122 inputs = [['1,2,3,4']] 123 self._test_by_comparison(inputs, record_defaults=record_defaults) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | tensorflow_op_layer_test.py | 38 inputs = keras.Input(shape=(10,)) 39 x = keras.layers.Dense(10)(inputs) 41 return inputs, outputs 45 inputs = keras.Input(shape=(10,)) 46 x = keras.layers.Dense(10)(inputs) 49 return inputs, outputs 53 inputs = keras.Input(shape=(10,)) 54 x = keras.layers.Dense(10)(inputs) 57 return inputs, outputs 61 inputs = keras.Input(shape=(10,)) [all …]
|
D | merge.py | 45 def _merge_function(self, inputs): argument 119 def call(self, inputs): argument 120 if not isinstance(inputs, list): 124 input_ndims = list(map(K.ndim, inputs)) 130 for x in inputs: 140 for x in inputs: 182 return self._merge_function(inputs) 205 def compute_mask(self, inputs, mask=None): argument 210 if not isinstance(inputs, list): 212 if len(mask) != len(inputs): [all …]
|
/external/deqp/modules/gles31/functional/ |
D | es31fShaderPackingFunctionTests.cpp | 155 m_spec.inputs.push_back(Symbol("in0", glu::VarType(glu::TYPE_FLOAT_VEC2, precision))); in PackSnorm2x16Case() 164 std::vector<tcu::Vec2> inputs; in iterate() local 171 inputs.push_back(tcu::Vec2(0.0f, 0.0f)); in iterate() 172 inputs.push_back(tcu::Vec2(-1.0f, 1.0f)); in iterate() 173 inputs.push_back(tcu::Vec2(0.5f, -0.5f)); in iterate() 174 inputs.push_back(tcu::Vec2(-1.5f, 1.5f)); in iterate() 175 inputs.push_back(tcu::Vec2(0.25f, -0.75f)); in iterate() 182 inputs.push_back(tcu::Vec2(x, y)); in iterate() 190 inputs.push_back(tcu::Vec2(x, y)); in iterate() 193 outputs.resize(inputs.size()); in iterate() [all …]
|
/external/libcxx/benchmarks/ |
D | GenerateInput.hpp | 53 std::vector<IntT> inputs(N, static_cast<IntT>(-1)); in getDuplicateIntegerInputs() local 54 return inputs; in getDuplicateIntegerInputs() 59 std::vector<IntT> inputs; in getSortedIntegerInputs() local 61 inputs.push_back(i); in getSortedIntegerInputs() 62 return inputs; in getSortedIntegerInputs() 67 std::vector<IntT> inputs; in getSortedLargeIntegerInputs() local 69 inputs.push_back(i + N); in getSortedLargeIntegerInputs() 71 return inputs; in getSortedLargeIntegerInputs() 76 std::vector<IntT> inputs = getSortedIntegerInputs<IntT>(N); in getSortedTopBitsIntegerInputs() local 77 for (auto& E : inputs) E <<= ((sizeof(IntT) / 2) * CHAR_BIT); in getSortedTopBitsIntegerInputs() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | accumulate_n_benchmark.py | 41 def _AccumulateNTemplate(self, inputs, init, shape, validate_shape): argument 43 shape=shape, dtype=inputs[0].dtype.base_dtype) 47 ref, tensor, use_locking=True).op for tensor in inputs 52 def _AccumulateNInitializedWithFirst(self, inputs): argument 54 inputs, 55 init=array_ops.zeros_like(inputs[0]), 56 shape=inputs[0].get_shape(), 59 def _AccumulateNInitializedWithMerge(self, inputs): argument 61 inputs, 62 init=array_ops.zeros_like(gen_control_flow_ops.merge(inputs)[0]), [all …]
|
D | nn_grad.py | 47 array_ops.shape(op.inputs[1]), 48 op.inputs[2], 56 op.inputs[1], 69 array_ops.shape(op.inputs[0]), 71 op.inputs[2], 78 op.inputs[0], 103 array_ops.shape(op.inputs[1]), 104 op.inputs[2], 111 op.inputs[1], 123 array_ops.shape(op.inputs[0]), [all …]
|
D | math_grad.py | 59 input_0_shape = op.inputs[0]._shape_tuple() # pylint: disable=protected-access 61 axes = tensor_util.constant_value(op.inputs[1]) 78 input_shape = array_ops.shape(op.inputs[0]) 81 input_shape = array_ops.shape(op.inputs[0]) 85 output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]) 93 input_shape = array_ops.shape(op.inputs[0]) 94 output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]) 102 indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype) 104 math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims) 124 input_shape = op.inputs[0]._shape_tuple() # pylint: disable=protected-access [all …]
|
/external/deqp/modules/gles3/functional/ |
D | es3fShaderPackingFunctionTests.cpp | 151 m_spec.inputs.push_back(Symbol("in0", glu::VarType(glu::TYPE_FLOAT_VEC2, precision))); in PackSnorm2x16Case() 160 std::vector<tcu::Vec2> inputs; in iterate() local 167 inputs.push_back(tcu::Vec2(0.0f, 0.0f)); in iterate() 168 inputs.push_back(tcu::Vec2(-1.0f, 1.0f)); in iterate() 169 inputs.push_back(tcu::Vec2(0.5f, -0.5f)); in iterate() 170 inputs.push_back(tcu::Vec2(-1.5f, 1.5f)); in iterate() 171 inputs.push_back(tcu::Vec2(0.25f, -0.75f)); in iterate() 178 inputs.push_back(tcu::Vec2(x, y)); in iterate() 186 inputs.push_back(tcu::Vec2(x, y)); in iterate() 189 outputs.resize(inputs.size()); in iterate() [all …]
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | identify_lstm_split_inputs.cc | 42 curr_lstm_op->inputs.size() != LstmCellOperator::NUM_INPUTS) { in Run() 49 *model, curr_op->inputs[LstmCellOperator::WEIGHTS_INPUT]) || in Run() 51 *model, curr_op->inputs[LstmCellOperator::BIASES_INPUT])) { in Run() 64 lstm_cell_op->inputs.resize(kExtendedLstmInputCount); in Run() 65 int num_input = model->GetArray(curr_op->inputs[LstmCellOperator::DATA_INPUT]) in Run() 77 lstm_cell_op->inputs[kInputTensor] = in Run() 78 curr_op->inputs[LstmCellOperator::ACTIV_OUTPUT]; in Run() 81 lstm_cell_op->inputs[kInputActivationStateTensor] = in Run() 82 curr_op->inputs[LstmCellOperator::PREV_ACTIV_INPUT]; in Run() 83 lstm_cell_op->inputs[kInputCellStateTensor] = in Run() [all …]
|
D | identify_lstm_merge_inputs.cc | 42 src_lstm_op->inputs.size() != kExtendedLstmInputCount) { in Run() 60 int num_cell = model->GetArray(src_op->inputs[kInputToInputWeightsTensor]) in Run() 63 int num_input = model->GetArray(src_op->inputs[kInputToInputWeightsTensor]) in Run() 67 model->GetArray(src_op->inputs[kRecurrentToInputWeightsTensor]) in Run() 90 model->GetArray(src_op->inputs[kInputToInputWeightsTensor]), 0, 0); in Run() 93 model->GetArray(src_op->inputs[kInputToCellWeightsTensor]), num_cell, 0); in Run() 96 model->GetArray(src_op->inputs[kInputToForgetWeightsTensor]), in Run() 100 model->GetArray(src_op->inputs[kInputToOutputWeightsTensor]), in Run() 104 model->GetArray(src_op->inputs[kRecurrentToInputWeightsTensor]), 0, in Run() 108 model->GetArray(src_op->inputs[kRecurrentToCellWeightsTensor]), num_cell, in Run() [all …]
|
D | propagate_array_data_types.cc | 43 for (const auto& input : op->inputs) { in Run() 84 CHECK_GE(op->inputs.size(), 2); in Run() 85 const ArrayDataType data_type = model->GetArray(op->inputs[1]).data_type; in Run() 91 CHECK_GE(op->inputs.size(), 3); in Run() 92 const ArrayDataType data_type = model->GetArray(op->inputs[0]).data_type; in Run() 98 CHECK_GE(op->inputs.size(), 3); in Run() 99 const ArrayDataType data_type = model->GetArray(op->inputs[2]).data_type; in Run() 133 CHECK_GE(op->inputs.size(), 1); in Run() 134 data_type = model->GetArray(op->inputs[0]).data_type; in Run() 152 CHECK_EQ(op->inputs.size(), 2); in Run() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | topk_op_test.py | 43 inputs, argument 51 values_op, indices_op = nn_ops.top_k(inputs, k, sorted=sorted) 74 np_inputs = np.array(inputs) 97 inputs = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.3, 0.3, 0.2]] 98 self._validateTopK(inputs, 1, [[0.4], [0.3]], [[3], [1]]) 101 inputs = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.3, 0.4, 0.2]] 102 self._validateTopK(inputs, 2, [[0.4, 0.3], [0.4, 0.3]], [[3, 1], [2, 1]]) 106 inputs = np.random.permutation(np.linspace(0, 100, 6140, dtype=np.float64)) 107 indices = np.argsort(-inputs)[:k] 108 values = -np.sort(-inputs)[:k] [all …]
|
D | nth_element_op_test.py | 34 def _validateNthElement(self, inputs, dtype, n, reverse, expected_values): argument 37 inputs_op = ops.convert_to_tensor(inputs, dtype=dtype) 45 inputs = [2.2, 4.4, 1.1, 5.5, 3.3] 46 self._validateNthElement(inputs, dtypes.float32, 1, False, 2.2) 47 self._validateNthElement(inputs, dtypes.float32, 1, True, 4.4) 50 inputs = [[2.2, 4.4, 1.1], [5.5, 3.3, 6.6]] 51 self._validateNthElement(inputs, dtypes.float64, 2, False, [4.4, 6.6]) 52 self._validateNthElement(inputs, dtypes.float64, 2, True, [1.1, 3.3]) 55 inputs = [[[2, 4, 1], [5, -3, 6]], 57 self._validateNthElement(inputs, dtypes.int32, 0, False, [all …]
|
/external/deqp/external/vulkancts/modules/vulkan/shaderexecutor/ |
D | vktShaderPackingFunctionTests.cpp | 166 std::vector<tcu::Vec2> inputs; in iterate() local 173 inputs.push_back(tcu::Vec2(0.0f, 0.0f)); in iterate() 174 inputs.push_back(tcu::Vec2(-1.0f, 1.0f)); in iterate() 175 inputs.push_back(tcu::Vec2(0.5f, -0.5f)); in iterate() 176 inputs.push_back(tcu::Vec2(-1.5f, 1.5f)); in iterate() 177 inputs.push_back(tcu::Vec2(0.25f, -0.75f)); in iterate() 184 inputs.push_back(tcu::Vec2(x, y)); in iterate() 192 inputs.push_back(tcu::Vec2(x, y)); in iterate() 195 outputs.resize(inputs.size()); in iterate() 197 …m_testCtx.getLog() << TestLog::Message << "Executing shader for " << inputs.size() << " input valu… in iterate() [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | layers.py | 78 def avg_pool2d(inputs, argument 112 with ops.name_scope(scope, 'AvgPool2D', [inputs]) as sc: 113 inputs = ops.convert_to_tensor(inputs) 122 outputs = layer.apply(inputs) 127 def avg_pool3d(inputs, argument 161 with ops.name_scope(scope, 'AvgPool3D', [inputs]) as sc: 162 inputs = ops.convert_to_tensor(inputs) 171 outputs = layer.apply(inputs) 175 def _fused_batch_norm(inputs, argument 266 scope, 'BatchNorm', [inputs], reuse=reuse) as sc: [all …]
|
D | normalization.py | 42 def instance_norm(inputs, argument 93 inputs = ops.convert_to_tensor(inputs) 94 inputs_shape = inputs.shape 95 inputs_rank = inputs.shape.ndims 98 raise ValueError('Inputs %s has undefined rank.' % inputs.name) 103 scope, 'InstanceNorm', [inputs], reuse=reuse) as sc: 120 inputs.name, params_shape)) 124 dtype = inputs.dtype.base_dtype 155 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True) 159 inputs, mean, variance, beta, gamma, epsilon, name='instancenorm') [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | training_loop.py | 30 def while_loop(condition, body, inputs=None, infeed_queue=None, name=None): argument 58 inputs = [] if inputs is None else [ops.convert_to_tensor(x) for 59 x in inputs] 60 input_types = [x.dtype for x in inputs] 61 input_arity = len(inputs) 70 input_arity, str([i.name for i in inputs]), body_arg_error)) 76 [i.name for i in inputs]), infeed_queue.number_of_tuple_elements, 85 "condition needs %s" % (input_arity, str([i.name for i in inputs]), 92 "condition." % (input_arity, str([i.name for i in inputs]), 95 def condition_wrapper(*inputs): argument [all …]
|
/external/tensorflow/tensorflow/contrib/mixed_precision/python/ |
D | loss_scale_manager_test.py | 30 def _GetExampleIter(inputs): argument 31 dataset = dataset_ops.Dataset.from_tensor_slices(inputs) 59 inputs, argument 71 itr = _GetExampleIter(inputs) 79 for _ in range(len(inputs)): 89 inputs = [True] * 6 91 self._test_helper(inputs, expected_outputs) 98 inputs = [True] * 6 105 self._test_helper(inputs, expected_outputs, init_loss_scale) 109 inputs = [False] * 6 [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | subgraph_test_util_test.cc | 44 interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); in TestAccumelateLoopBody() 45 interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); in TestAccumelateLoopBody() 48 FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {input1}); in TestAccumelateLoopBody() 49 FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {input2}); in TestAccumelateLoopBody() 67 interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2}); in TEST_F() 68 interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2}); in TEST_F() 71 FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {5, 7}); in TEST_F() 72 FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {1, 2}); in TEST_F() 82 interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2}); in TEST_F() 83 interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2}); in TEST_F() [all …]
|
/external/tensorflow/tensorflow/contrib/specs/python/ |
D | specs_test.py | 42 inputs = constant_op.constant(_rand(1, 18, 19, 5)) 44 outputs = specs.create_net(spec, inputs) 50 summaries.tf_spec_structure(spec, inputs), 57 inputs = constant_op.constant(_rand(17, 55)) 59 outputs = specs.create_net(spec, inputs) 67 inputs = constant_op.constant(_rand(17, 55)) 69 outputs = specs.create_net(spec, inputs) 75 summaries.tf_spec_structure(spec, inputs), 81 inputs = constant_op.constant(_rand(1, 64, 64, 5)) 83 outputs = specs.create_net(spec, inputs) [all …]
|
/external/llvm/test/tools/dsymutil/X86/ |
D | multiple-inputs.test | 1 RUN: rm -rf %T/multiple-inputs 2 RUN: mkdir -p %T/multiple-inputs 4 RUN: cat %p/../Inputs/basic.macho.x86_64 > %T/multiple-inputs/basic.macho.x86_64 5 RUN: cat %p/../Inputs/basic-archive.macho.x86_64 > %T/multiple-inputs/basic-archive.macho.x86_64 6 RUN: cat %p/../Inputs/basic-lto.macho.x86_64 > %T/multiple-inputs/basic-lto.macho.x86_64 7 RUN: cat %p/../Inputs/basic-lto-dw4.macho.x86_64 > %T/multiple-inputs/basic-lto-dw4.macho.x86_64 9 # Multiple inputs in flat mode 10 …/multiple-inputs/basic.macho.x86_64 %T/multiple-inputs/basic-archive.macho.x86_64 %T/multiple-inpu… 11 RUN: llvm-dwarfdump %T/multiple-inputs/basic.macho.x86_64.dwarf \ 13 RUN: llvm-dwarfdump %T/multiple-inputs/basic-archive.macho.x86_64.dwarf \ [all …]
|
/external/tensorflow/tensorflow/cc/framework/ |
D | while_gradients_test.cc | 42 const std::vector<Output>* inputs = nullptr) { in CreateLoop() argument 43 if (inputs == nullptr) inputs = &inputs_; in CreateLoop() 44 TF_ASSERT_OK(ops::BuildWhileLoop(scope_, *inputs, cond, body, "test_loop", in CreateLoop() 95 [](const Scope& s, const std::vector<Output>& inputs, Output* output) { in TEST_F() argument 96 *output = ops::Less(s, inputs[0], 10); in TEST_F() 99 [](const Scope& s, const std::vector<Output>& inputs, in TEST_F() 104 outputs->push_back(ops::AddN(s, {inputs[0], 1})); in TEST_F() 117 [](const Scope& s, const std::vector<Output>& inputs, Output* output) { in TEST_F() argument 118 *output = ops::Less(s, inputs[0], 10); in TEST_F() 121 [](const Scope& s, const std::vector<Output>& inputs, in TEST_F() [all …]
|
/external/tensorflow/tensorflow/python/layers/ |
D | core_test.py | 74 inputs = random_ops.random_uniform((5, 4), seed=1) 75 outputs = dense(inputs) 91 inputs = random_ops.random_uniform((5, 4), seed=1) 92 core_layers.Dense(5)(inputs) 93 core_layers.Dense(2, activation=nn_ops.relu, name='my_dense')(inputs) 98 inputs = random_ops.random_uniform((5, 4, 3), seed=1) 99 outputs = dense(inputs) 105 inputs = random_ops.random_uniform((5, 2), seed=1) 106 _ = dense(inputs) 119 inputs = random_ops.random_uniform((5, 2), seed=1) [all …]
|
/external/tensorflow/tensorflow/lite/toco/ |
D | export_tensorflow.cc | 378 const string& input_of_fakequant_name = op->inputs[0]; in WalkUpToConstantArray() 386 const bool has_bias = src_op.inputs.size() >= 3; in ConvertConvOperator() 395 *conv2d_op->add_input() = src_op.inputs[0]; in ConvertConvOperator() 396 *conv2d_op->add_input() = src_op.inputs[1]; in ConvertConvOperator() 399 WalkUpToConstantArray(model, src_op.inputs[1]); in ConvertConvOperator() 432 biasadd_op->add_input(src_op.inputs[2]); in ConvertConvOperator() 434 CHECK(model.HasArray(src_op.inputs[2])); in ConvertConvOperator() 436 WalkUpToConstantArray(model, src_op.inputs[2]); in ConvertConvOperator() 454 const bool has_bias = src_op.inputs.size() >= 3; in ConvertDepthwiseConvOperator() 463 *dc2d_op->add_input() = src_op.inputs[0]; in ConvertDepthwiseConvOperator() [all …]
|