/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | ggt_test.py | 45 m_t = m * beta1 + (1 - beta1) * g_t 46 grad_buffer[((t - 1) % window), :] = m_t 57 np.transpose(m_matrix), m_t 63 new_step += (m_t - np.linalg.multi_dot([ 67 np.transpose(m_matrix), m_t 71 return param_t, m_t, grad_buffer 105 m_t = opt._get_moment1() 108 self.assertTrue(m_t is not None) 111 self.assertIn(m_t, opt_variables) 125 m_t = opt._get_moment1() [all …]
|
D | nadam_optimizer.py | 83 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 84 with ops.control_dependencies([m_t]): 85 m_t = scatter_add(m, indices, m_scaled_g_values) 87 m_bar = m_scaled_g_values + beta1_t * array_ops.gather(m_t, indices)
|
D | adam_gs_optimizer.py | 191 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 192 with ops.control_dependencies([m_t]): 193 m_t = scatter_add(m, indices, m_scaled_g_values) 202 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 203 return control_flow_ops.group(*[var_update, m_t, v_t])
|
D | lazy_adam_gs_optimizer.py | 62 m_t = state_ops.scatter_update(m, grad.indices, 75 m_t_slice = array_ops.gather(m_t, grad.indices) 81 return control_flow_ops.group(var_update, m_t, v_t)
|
D | lazy_adam_optimizer.py | 62 m_t = state_ops.scatter_update(m, grad.indices, 75 m_t_slice = array_ops.gather(m_t, grad.indices) 81 return control_flow_ops.group(var_update, m_t, v_t)
|
D | adamax_test.py | 46 m_t = beta1 * m + (1 - beta1) * g_t 48 param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon)) 49 return param_t, m_t, v_t 62 m_t, v_t, param_t = np.copy(m), np.copy(v), np.copy(param) 67 m_t[indices] = m_t_slice 70 return param_t, m_t, v_t
|
D | addsign.py | 141 m_t = state_ops.assign( 147 array_ops.gather(math_ops.sign(m_t), sign_g.indices) * sign_g.values, 168 return control_flow_ops.group(* [var_update, m_t])
|
D | powersign.py | 144 m_t = state_ops.assign( 150 array_ops.gather(math_ops.sign(m_t), sign_g.indices) * sign_g.values, 172 return control_flow_ops.group(* [var_update, m_t])
|
D | nadam_optimizer_test.py | 43 m_t = beta1 * m + (1 - beta1) * g_t 46 m_bar = (1 - beta1) * g_t + beta1 * m_t 49 return param_t, m_t, v_t
|
/external/clang/test/PCH/ |
D | cxx-member-init.cpp | 19 struct m_t struct 22 m_t() { } in m_t() argument 33 m_t *test() { in test() 34 return new m_t; in test()
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | nadam.py | 150 m_t = beta_1_t * m + (1 - beta_1_t) * grad 151 m_t = state_ops.assign(m, m_t, use_locking=self._use_locking) 152 m_t_prime = m_t / (1. - self.m_schedule_next) 174 m_t = state_ops.assign(m, m * beta_1_t, use_locking=self._use_locking) 175 with ops.control_dependencies([m_t]): 176 m_t = self._resource_scatter_add(m, indices, m_scaled_g_values) 177 m_t_slice = array_ops.gather(m_t, indices)
|
D | adam.py | 218 m_t = state_ops.assign(m, m * beta_1_t, use_locking=self._use_locking) 219 with ops.control_dependencies([m_t]): 220 m_t = self._resource_scatter_add(m, indices, m_scaled_g_values) 232 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 233 return control_flow_ops.group(*[var_update, m_t, v_t]) 243 lr * m_t / (v_hat_sqrt + epsilon_t), 245 return control_flow_ops.group(*[var_update, m_t, v_t, v_hat_t])
|
D | adam_test.py | 49 m_t = beta1 * m + (1 - beta1) * g_t 52 param_t = param - lr_t * m_t / (np.sqrt(v_t) + epsilon) 53 return param_t, m_t, v_t 68 m_t = beta1 * m + (1 - beta1) * g_t 72 param_t = param - lr_t * m_t / (np.sqrt(vhat_t) + epsilon) 73 return param_t, m_t, v_t, vhat_t 87 m_t, v_t, vhat_t, param_t = (np.copy(m), np.copy(v), np.copy(vhat), 92 m_t[indices] = m_t_slice 99 return param_t, m_t, v_t, vhat_t
|
D | adamax_test.py | 45 m_t = beta1 * m + (1 - beta1) * g_t 47 param_t = param - (alpha / (1 - beta1**(t + 1))) * (m_t / (v_t + epsilon)) 48 return param_t, m_t, v_t 61 m_t, v_t, param_t = np.copy(m), np.copy(v), np.copy(param) 66 m_t[indices] = m_t_slice 69 return param_t, m_t, v_t
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | adam.py | 161 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 162 with ops.control_dependencies([m_t]): 163 m_t = scatter_add(m, indices, m_scaled_g_values) 172 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 173 return control_flow_ops.group(*[var_update, m_t, v_t])
|
/external/tensorflow/tensorflow/python/training/ |
D | adam.py | 191 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 192 with ops.control_dependencies([m_t]): 193 m_t = scatter_add(m, indices, m_scaled_g_values) 202 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 203 return control_flow_ops.group(*[var_update, m_t, v_t])
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | powersign_test.py | 48 m_t = beta * m + (1 - beta) * g_t 53 multiplier = base ** (sign_decayed * np.sign(g_t) * np.sign(m_t)) 55 return params_t, m_t
|
D | addsign_test.py | 47 m_t = beta * m + (1 - beta) * g_t 52 multiplier = alpha + sign_decayed * np.sign(g_t) * np.sign(m_t) 54 return params_t, m_t
|
D | adamax_test.py | 42 m_t = beta1 * m + (1 - beta1) * g_t 44 param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon)) 45 return param_t, m_t, v_t
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ResourceApplyPowerSign.pbtxt | 55 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 56 update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g
|
D | api_def_ApplyPowerSign.pbtxt | 61 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 62 update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g
|
D | api_def_ResourceApplyAdaMax.pbtxt | 68 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 70 variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
|
D | api_def_ApplyAdaMax.pbtxt | 74 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 76 variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
|
D | api_def_ResourceApplyAdam.pbtxt | 80 $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ 82 $$variable := variable - lr_t * m_t / (\sqrt{v_t} + \epsilon)$$
|
/external/tensorflow/tensorflow/python/keras/ |
D | optimizers.py | 503 m_t = (self.beta_1 * m) + (1. - self.beta_1) * g 507 p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon) 510 p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) 512 self.updates.append(state_ops.assign(m, m_t)) 592 m_t = (self.beta_1 * m) + (1. - self.beta_1) * g 594 p_t = p - lr_t * m_t / (u_t + self.epsilon) 596 self.updates.append(state_ops.assign(m, m_t)) 682 m_t = self.beta_1 * m + (1. - self.beta_1) * g 683 m_t_prime = m_t / (1. - m_schedule_next) 689 self.updates.append(state_ops.assign(m, m_t))
|