Home
last modified time | relevance | path

Searched refs:min_dim (Results 1 – 9 of 9) sorted by relevance

/external/tensorflow/tensorflow/compiler/tf2xla/kernels/
Dmatrix_set_diag_op.cc44 const int64 min_dim = std::min(m, n); in Compile() local
50 expected_diag_shape.AddDim(min_dim); in Compile()
75 if (min_dim != m) { in Compile()
/external/tensorflow/tensorflow/core/kernels/
Deigen_mkldnn_contraction_kernel_test.cc24 Eigen::array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) { in RandomDims() argument
27 dims[i] = internal::random<int>(min_dim, max_dim); in RandomDims()
Dmatrix_set_diag_op.cc63 const int64 min_dim = std::min(input_shape.dim_size(rank - 1), in Compute() local
67 expected_diag_shape.AddDim(min_dim); in Compute()
Dmatrix_diag_op.cc65 const int64 min_dim = std::min(input_shape.dim_size(rank - 2), in Compute() local
67 output_shape.AddDim(min_dim); in Compute()
/external/tensorflow/tensorflow/python/grappler/
Dhierarchical_controller.py494 min_dim = min(self.hparams.adj_embed_dim, len(neighbors))
495 padding_size = self.hparams.adj_embed_dim - min_dim
496 neighbors = neighbors[:min_dim] + [0] * padding_size
/external/tensorflow/tensorflow/core/ops/
Darray_ops.cc877 DimensionHandle min_dim; in __anondb9326b21202() local
879 c->Min(c->Dim(in, rank - 2), c->Dim(in, rank - 1), &min_dim)); in __anondb9326b21202()
880 dims.push_back(min_dim); in __anondb9326b21202()
1947 const int32 min_dim = -1 * rank - 1; in __anondb9326b22f02() local
1948 if (dim < min_dim || dim > rank) { in __anondb9326b22f02()
1950 min_dim, ", ", rank, "]."); in __anondb9326b22f02()
/external/tensorflow/tensorflow/python/ops/
Darray_grad.py356 min_dim = math_ops.reduce_min(matrix_shape)
357 diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
/external/libaom/libaom/av1/common/
Dresize.c1309 const int min_dim = AOMMIN(16, *dim); in calculate_scaled_size_helper() local
1314 *dim = AOMMAX(*dim, min_dim); in calculate_scaled_size_helper()
/external/tensorflow/tensorflow/python/ops/parallel_for/
Dpfor.py1948 min_dim = math_ops.minimum(b_shape[0], b_shape[1])
1950 math_ops.equal(min_dim, 1), lambda: [0, 1, 2], lambda: [1, 0, 2])