/external/tensorflow/tensorflow/contrib/eager/python/examples/l2hmc/ |
D | l2hmc.py | 111 momentum = tf.random_normal(tf.shape(position)) 112 position_post, momentum_post = position, momentum 119 accept_prob = self._compute_accept_prob(position, momentum, position_post, 124 def _forward_lf(self, position, momentum, i): argument 131 momentum, logdet = self._update_momentum_forward(position, momentum, t) 134 position, logdet = self._update_position_forward(position, momentum, t, 138 position, logdet = self._update_position_forward(position, momentum, t, 142 momentum, logdet = self._update_momentum_forward(position, momentum, t) 145 return position, momentum, sumlogdet 147 def _backward_lf(self, position, momentum, i): argument [all …]
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | rmsprop_test.py | 60 def _rmsprop_update_numpy(self, var, g, mg, rms, mom, lr, rho, momentum, argument 69 if momentum > 0.: 70 mom_t = momentum * mom + lr * g / (np.sqrt(denom_t + epsilon)) 78 lr, rho, momentum, epsilon, centered): argument 92 if momentum > 0.: 93 mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt(denom_t + 103 for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS: 118 momentum=momentum, 132 if momentum > 0.: 161 momentum, epsilon, centered) [all …]
|
D | rmsprop.py | 66 momentum=0.0, argument 114 if isinstance(momentum, ops.Tensor) or callable(momentum) or momentum > 0: 116 if isinstance(momentum, (int, float)) and (momentum < 0 or momentum > 1): 118 self._set_hyper("momentum", momentum) 138 momentum = self._get_hyper("momentum", var_dtype) 151 momentum, 162 momentum, 183 momentum = self._get_hyper("momentum", var_dtype) 196 momentum, 208 momentum,
|
D | gradient_descent.py | 64 momentum=0.0, argument 88 if isinstance(momentum, ops.Tensor) or callable(momentum) or momentum > 0: 90 if isinstance(momentum, (int, float)) and (momentum < 0 or momentum > 1): 92 self._set_hyper("momentum", momentum)
|
D | gradient_descent_test.py | 293 def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum): argument 294 accum = accum * momentum - g * lr 295 var += (accum * momentum - g * lr) 310 momentum = 0.9 312 learning_rate=learning_rate, momentum=momentum) 377 learning_rate=2.0, momentum=0.9, nesterov=True) 413 learning_rate=2.0, momentum=0.9, nesterov=True) 454 opt = gradient_descent.SGD(learning_rate=1.0, momentum=0.0) 479 opt = gradient_descent.SGD(learning_rate=1.0, momentum=0.0) 494 momentum=constant_op.constant(0.9)) [all …]
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | lars_optimizer.py | 50 momentum=0.9, argument 83 if momentum < 0.0: 84 raise ValueError("momentum should be positive: %s" % momentum) 90 self._momentum = momentum 173 momentum = self._momentum 174 if callable(momentum): 175 momentum = momentum() 176 self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
|
D | weight_decay_optimizers.py | 27 from tensorflow.python.training import momentum as momentum_opt 304 def __init__(self, weight_decay, learning_rate, momentum, argument 332 weight_decay, learning_rate=learning_rate, momentum=momentum,
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ResourceApplyKerasMomentum.pbtxt | 28 name: "momentum" 45 var + momentum * accum, so in the end, the var you get is actually 46 var + momentum * accum. 49 summary: "Update \'*var\' according to the momentum scheme. Set use_nesterov = True if you" 51 want to use Nesterov momentum. 53 accum = accum * momentum - lr * grad
|
D | api_def_ResourceApplyMomentum.pbtxt | 28 name: "momentum" 45 var - lr * momentum * accum, so in the end, the var you get is actually 46 var - lr * momentum * accum. 49 summary: "Update \'*var\' according to the momentum scheme. Set use_nesterov = True if you" 51 want to use Nesterov momentum. 53 accum = accum * momentum + grad
|
D | api_def_ApplyMomentum.pbtxt | 28 name: "momentum" 51 var - lr * momentum * accum, so in the end, the var you get is actually 52 var - lr * momentum * accum. 55 summary: "Update \'*var\' according to the momentum scheme. Set use_nesterov = True if you" 57 want to use Nesterov momentum. 59 accum = accum * momentum + grad
|
D | api_def_SparseApplyMomentum.pbtxt | 34 name: "momentum" 57 var - lr * momentum * accum, so in the end, the var you get is actually 58 var - lr * momentum * accum. 61 summary: "Update relevant entries in \'*var\' and \'*accum\' according to the momentum scheme." 63 Set use_nesterov = True if you want to use Nesterov momentum. 67 $$accum = accum * momentum + grad$$
|
D | api_def_ResourceSparseApplyMomentum.pbtxt | 34 name: "momentum" 51 var - lr * momentum * accum, so in the end, the var you get is actually 52 var - lr * momentum * accum. 55 summary: "Update relevant entries in \'*var\' and \'*accum\' according to the momentum scheme." 57 Set use_nesterov = True if you want to use Nesterov momentum. 61 accum = accum * momentum + grad
|
D | api_def_ResourceSparseApplyKerasMomentum.pbtxt | 34 name: "momentum" 51 var + momentum * accum, so in the end, the var you get is actually 52 var + momentum * accum. 55 summary: "Update relevant entries in \'*var\' and \'*accum\' according to the momentum scheme." 57 Set use_nesterov = True if you want to use Nesterov momentum. 61 accum = accum * momentum - lr * grad
|
/external/tensorflow/tensorflow/python/training/ |
D | momentum.py | 46 def __init__(self, learning_rate, momentum, argument 77 self._momentum = momentum 90 momentum = self._momentum 91 if callable(momentum): 92 momentum = momentum() 93 self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
|
D | rmsprop_test.py | 61 def _rmsprop_update_numpy(self, var, g, mg, rms, mom, lr, decay, momentum, argument 70 mom_t = momentum * mom + lr * g / np.sqrt(denom_t, dtype=denom_t.dtype) 75 lr, decay, momentum, epsilon, centered): argument 88 mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt(denom_t) 95 for (dtype, learning_rate, decay, momentum, 115 momentum=momentum, 152 decay, momentum, epsilon, centered) 155 decay, momentum, epsilon, centered) 179 momentum=0.0, 203 momentum=0.0, [all …]
|
D | momentum_test.py | 35 from tensorflow.python.training import momentum as momentum_lib 40 def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum): argument 41 var = var + accum * lr * momentum 42 accum = accum * momentum + g 44 var = var - accum * lr * momentum 60 momentum = lambda: 0.9 function 63 momentum = momentum() 65 learning_rate=learning_rate, momentum=momentum) 177 learning_rate=2.0, momentum=0.9, use_nesterov=True) 214 learning_rate=2.0, momentum=0.9, use_nesterov=True) [all …]
|
/external/tensorflow/tensorflow/python/layers/ |
D | normalization_test.py | 318 axis=1, epsilon=epsilon, momentum=0.9) 361 axis=2, epsilon=epsilon, momentum=0.9) 403 axis=1, epsilon=epsilon, momentum=0.9) 444 axis=2, epsilon=epsilon, momentum=0.9) 485 axis=3, epsilon=epsilon, momentum=0.9) 526 axis=3, epsilon=epsilon, momentum=0.9, fused=True) 568 axis=1, epsilon=epsilon, momentum=0.9, fused=True) 609 axis=-1, epsilon=epsilon, momentum=0.9) 651 axis=-1, epsilon=epsilon, momentum=0.9) 696 momentum=0.9, [all …]
|
D | normalization.py | 109 momentum=0.99, argument 132 momentum=momentum, 163 momentum=0.99, argument 290 momentum=momentum,
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | momentum_test.py | 24 from tensorflow.contrib.optimizer_v2 import momentum as momentum_lib 40 def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum): argument 41 var = var + accum * lr * momentum 42 accum = accum * momentum + g 44 var = var - accum * lr * momentum 60 momentum = lambda: 0.9 function 63 momentum = momentum() 65 learning_rate=learning_rate, momentum=momentum) 176 learning_rate=2.0, momentum=0.9, use_nesterov=True) 212 learning_rate=2.0, momentum=0.9, use_nesterov=True) [all …]
|
D | rmsprop_test.py | 57 def _rmsprop_update_numpy(self, var, g, mg, rms, mom, lr, decay, momentum, argument 66 mom_t = momentum * mom + lr * g / np.sqrt(denom_t, dtype=denom_t.dtype) 71 lr, decay, momentum, centered): argument 84 mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt(denom_t) 92 (learning_rate, decay, momentum, epsilon, centered, use_resource) = tuple( 112 momentum=momentum, 149 decay, momentum, centered) 152 decay, momentum, centered) 178 momentum=0.0, 200 momentum=0.0, [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | momentum_test.py | 30 from tensorflow.python.training import momentum as momentum_lib 35 def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum): argument 36 var += accum * lr * momentum 37 accum = accum * momentum + g 39 var -= accum * lr * momentum 50 learning_rate=2.0, momentum=0.9) 115 learning_rate=0.1, momentum=0.9, use_nesterov=True) 136 momentum=constant_op.constant(0.9))
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 138 momentum=0.99, argument 168 self.momentum = momentum 427 def _assign_moving_average(self, variable, value, momentum): argument 429 [variable, value, momentum]) as scope: 431 decay = ops.convert_to_tensor(1.0 - momentum, name='decay') 475 momentum = tf_utils.smart_cond(training, 476 lambda: self.momentum, 479 momentum = ops.convert_to_tensor(self.momentum) 485 (mean, self.momentum)) 488 (variance, self.momentum)) [all …]
|
/external/tensorflow/tensorflow/python/framework/ |
D | auto_control_deps_test.py | 37 from tensorflow.python.training import momentum 231 optimizer = momentum.MomentumOptimizer(learning_rate=1.0, momentum=1.0) 244 optimizer = momentum.MomentumOptimizer(learning_rate=1.0, momentum=1.0) 277 optimizer = momentum.MomentumOptimizer(learning_rate=1.0, momentum=1.0)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | training_ops_gpu.cu.cc | 89 typename TTypes<T>::ConstScalar momentum, bool use_nesterov) { in operator ()() 93 accum.device(d) = accum * momentum.reshape(single).broadcast(bcast) + grad; in operator ()() 96 accum * momentum.reshape(single).broadcast(bcast) * in operator ()() 110 typename TTypes<T>::ConstScalar momentum, bool use_nesterov) { in operator ()() 114 accum.device(d) = (accum * momentum.reshape(single).broadcast(bcast) - in operator ()() 117 var.device(d) += (accum * momentum.reshape(single).broadcast(bcast) - in operator ()() 233 typename TTypes<T>::ConstScalar momentum, in operator ()() 244 mom * momentum.reshape(single).broadcast(bcast) + in operator ()() 258 typename TTypes<T>::ConstScalar momentum, in operator ()() 270 mom.device(d) = mom * momentum.reshape(single).broadcast(bcast) + in operator ()()
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | single_loss_example.py | 91 momentum=0.9, argument 106 renorm=renorm, momentum=momentum, fused=False)
|