/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head_test.py | 381 n_classes = 3 383 n_classes=n_classes, metric_class_ids=range(n_classes)) 396 n_classes = 2 400 n_classes=n_classes, metric_class_ids=range(n_classes)) 426 head = head_lib.multi_label_head(n_classes=len(self._labels[0]) + 1) 434 n_classes = 3 436 n_classes=n_classes, metric_class_ids=range(n_classes)) 471 n_classes = 3 473 n_classes=n_classes, metric_class_ids=range(n_classes)) 482 n_classes = 3 [all …]
|
D | dnn_test.py | 170 n_classes=3, 222 n_classes=3, 276 n_classes=2, 352 self, expected_len, n_classes, predictions): argument 355 self.assertIn(prediction, range(n_classes)) 390 n_classes=2, 435 n_classes=2, 482 n_classes=2, 508 n_classes=3, 533 n_classes=3, [all …]
|
D | debug_test.py | 95 classifier = debug.DebugClassifier(n_classes=N_CLASSES) 114 classifier = debug.DebugClassifier(n_classes=2) 131 classifier = debug.DebugClassifier(n_classes=2) 153 classifier = debug.DebugClassifier(n_classes=N_CLASSES) 176 classifier = debug.DebugClassifier(n_classes=2) 197 classifier = debug.DebugClassifier(n_classes=2) 208 estimator=debug.DebugClassifier(n_classes=3), 288 classifier = debug.DebugClassifier(n_classes=2) 318 classifier = debug.DebugClassifier(n_classes=2) 331 classifier = debug.DebugClassifier(n_classes=3) [all …]
|
D | nonlinear_test.py | 44 n_classes=3, 100 n_classes=3, 112 n_classes=3, 124 n_classes=3,
|
D | head.py | 270 def multi_class_head(n_classes, argument 319 if (n_classes is None) or (n_classes < 2): 321 n_classes) 326 if n_classes == 2: 340 n_classes=n_classes, 388 def multi_label_head(n_classes, argument 432 if n_classes < 2: 438 n_classes=n_classes, 994 n_classes, argument 1036 logits_dimension=n_classes, [all …]
|
D | debug.py | 165 n_classes=2, argument 197 n_classes=n_classes,
|
D | composable_model_test.py | 134 head = head_lib.multi_class_head(n_classes=2) 160 head = head_lib.multi_class_head(n_classes=2) 174 head = head_lib.multi_class_head(n_classes=3)
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
D | data_feeder.py | 48 def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): argument 52 if y_is_dict and n_classes is not None: 53 assert isinstance(n_classes, dict) 82 output_shape = out_el_shape(y_shape, n_classes) 85 out_el_shape(v, n_classes[k] 86 if n_classes is not None and 87 k in n_classes else None)) 113 n_classes, argument 157 return StreamingDataFeeder(x, y, n_classes, batch_size) 159 x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) [all …]
|
D | data_feeder_test.py | 52 data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) 55 feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) 157 func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1)) 160 self._wrap_dict(data), None, n_classes=0, batch_size=1)) 173 func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) 178 n_classes=self._wrap_dict(0, 'out'), 203 func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1)) 208 n_classes=self._wrap_dict(0, 'out'), 222 func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2)) 227 n_classes=self._wrap_dict(0, 'out'), [all …]
|
D | io_test.py | 46 n_classes=3) 62 n_classes=3) 117 n_classes=3)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | distillation_loss.py | 41 def _logits_to_label_for_tree(logits, n_classes): argument 42 if n_classes == 2: 48 def create_dnn_to_tree_squared_loss_fn(n_classes): argument 53 labels=_logits_to_label_for_tree(dnn_logits, n_classes), 54 logits=_logits_to_label_for_tree(tree_logits, n_classes), 60 def create_dnn_to_tree_cross_entropy_loss_fn(n_classes): argument 64 if n_classes == 2: 66 labels=_logits_to_label_for_tree(dnn_logits, n_classes), 71 labels=_logits_to_label_for_tree(dnn_logits, n_classes),
|
D | estimator.py | 46 n_classes=2, argument 104 if n_classes > 2: 112 num_classes=n_classes) 117 n_classes=n_classes, 123 learner_config.num_classes = n_classes 124 elif learner_config.num_classes != n_classes: 126 (learner_config.num_classes, n_classes)) 526 n_classes, argument 534 labels=labels, logits=logits, weights=None, num_classes=n_classes) 539 n_classes=n_classes,
|
D | estimator_test.py | 330 n_classes=learner_config.num_classes, 356 n_classes=learner_config.num_classes, 383 n_classes=learner_config.num_classes, 530 n_classes = 3 532 learner_config.num_classes = n_classes 537 head_fn = estimator.core_multiclass_head(n_classes=n_classes) 557 n_classes = 3 559 learner_config.num_classes = n_classes 564 head_fn = estimator.core_multiclass_head(n_classes=n_classes) 584 n_classes = 3 [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/datasets/ |
D | synthetic.py | 37 n_classes=2, argument 72 linspace = np.linspace(0, 2 * np.pi, n_samples // n_classes) 79 for label in range(n_classes): 84 y = np.append(y, label * np.ones(n_samples // n_classes, dtype=np.int32)) 87 extras = n_samples % n_classes 135 n_classes = 2 # I am not sure how to make it multiclass 148 linspace = np.linspace(0, 2 * n_loops * np.pi, n_samples // n_classes) 153 for label in range(n_classes): 157 y = np.append(y, label * np.ones(n_samples // n_classes, dtype=np.int32)) 160 extras = n_samples % n_classes
|
D | synthetic_test.py | 56 n_classes = 2 58 n_samples=n_samples, noise=None, n_classes=n_classes) 62 self.assertSetEqual(set(circ.target), set(range(n_classes))) 74 n_samples=100, noise=noise, n_classes=2, seed=seed) 76 n_samples=100, noise=noise, n_classes=2, seed=seed) 81 n_samples=100, noise=noise, n_classes=2, seed=seed + 1) 88 n_samples=100, noise=noise / 2., n_classes=2, seed=seed)
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | target_column_test.py | 60 target_column = target_column_lib.multi_class_target(n_classes=2) 73 n_classes=2, weight_column_name="label_weight") 86 target_column = target_column_lib.multi_class_target(n_classes=2) 99 target_column = target_column_lib.multi_class_target(n_classes=3) 110 n_classes=3, weight_column_name="label_weight") 122 target_column_lib.multi_class_target(n_classes=1) 129 target_column = target_column_lib.multi_class_target(n_classes=3)
|
D | target_column.py | 68 def multi_class_target(n_classes, label_name=None, weight_column_name=None): argument 87 if n_classes < 2: 89 if n_classes == 2: 95 n_classes=n_classes, 294 def __init__(self, loss_fn, n_classes, label_name, weight_column_name): argument 295 if n_classes < 2: 299 num_label_columns=1 if n_classes == 2 else n_classes, 385 n_classes=2,
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | kernel_estimators.py | 260 n_classes=2, argument 305 n_classes=n_classes, weight_column_name=weight_column_name),
|
D | kernel_estimators_test.py | 77 feature_columns=[feature], n_classes=1) 241 feature_columns=[feature_column], n_classes=3) 257 feature_columns=[], n_classes=3, kernel_mappers=kernel_mappers)
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | embeddings_ops.py | 73 def categorical_variable(tensor_in, n_classes, embedding_size, name): argument 91 [n_classes, embedding_size])
|
/external/tensorflow/tensorflow/lite/experimental/examples/lstm/ |
D | unidirectional_sequence_rnn_test.py | 50 self.n_classes = 10 71 tf.random_normal([self.num_units, self.n_classes])) 72 out_bias = tf.Variable(tf.random_normal([self.n_classes])) 98 y = tf.placeholder("float", [None, self.n_classes])
|
D | unidirectional_sequence_lstm_test.py | 50 self.n_classes = 10 75 tf.random_normal([self.num_units, self.n_classes])) 76 out_bias = tf.Variable(tf.random_normal([self.n_classes])) 102 y = tf.placeholder("float", [None, self.n_classes])
|
D | bidirectional_sequence_lstm_test.py | 51 self.n_classes = 10 76 tf.random_normal([self.num_units * 2, self.n_classes])) 77 out_bias = tf.Variable(tf.random_normal([self.n_classes])) 111 y = tf.placeholder("float", [None, self.n_classes])
|
D | bidirectional_sequence_rnn_test.py | 52 self.n_classes = 10 78 tf.random_normal([self.num_units * 2, self.n_classes])) 79 out_bias = tf.Variable(tf.random_normal([self.n_classes])) 130 y = tf.placeholder("float", [None, self.n_classes])
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | revnet_test.py | 62 maxval=config.n_classes, 77 self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes]) 126 self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes]) 155 maxval=self.config.n_classes, 182 [batch_size], minval=0, maxval=config.n_classes, dtype=tf.int32)
|