/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | metrics_v1_test.py | 143 def _expected_fn(num_batches): argument 145 return num_batches * 2 - 0.5 156 def _expected_fn(num_batches): argument 157 return [3./4, 3./8, 3./12, 4./16][num_batches - 1] 172 def _expected_fn(num_batches): argument 177 mean([0.5, 1./3, 1./3, 0., 0.])][num_batches - 1] 191 def _expected_fn(num_batches): argument 196 mean([2./8, 1./7, 1./7, 0., 0.])][num_batches - 1] 209 def _expected_fn(num_batches): argument 214 first = 2. * num_batches - 2. [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | eigen_pooling_test.cc | 31 const int num_batches = 13; in TEST() local 37 Tensor<float, 4> input(depth, input_rows, input_cols, num_batches); in TEST() 38 Tensor<float, 4> result(depth, output_rows, output_cols, num_batches); in TEST() 51 EXPECT_EQ(result.dimension(3), num_batches); in TEST() 53 for (int b = 0; b < num_batches; ++b) { in TEST() 79 const int num_batches = 13; in TEST() local 85 Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth); in TEST() 86 Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, in TEST() 100 EXPECT_EQ(result.dimension(0), num_batches); in TEST() 102 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | parameterized_truncated_normal_op_test.cc | 27 static Graph* PTruncatedNormal(int num_batches, int samples_per_batch) { in PTruncatedNormal() argument 30 shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); in PTruncatedNormal() 33 Tensor means_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 35 Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 38 Tensor minvals_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 40 Tensor maxvals_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 56 static Graph* PTruncatedNormal2SD(int num_batches, int samples_per_batch) { in PTruncatedNormal2SD() argument 59 shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); in PTruncatedNormal2SD() 61 Tensor means_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal2SD() 63 Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal2SD() [all …]
|
D | eigen_backward_spatial_convolutions_test.cc | 499 const int num_batches = 13; in TEST() local 510 num_batches); in TEST() 513 num_batches); in TEST() 525 EXPECT_EQ(input_backward.dimension(3), num_batches); in TEST() 527 for (int b = 0; b < num_batches; ++b) { in TEST() 554 const int num_batches = 13; in TEST() local 564 Tensor<float, 4, RowMajor> input_backward(num_batches, input_cols, input_rows, in TEST() 568 Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, in TEST() 578 EXPECT_EQ(input_backward.dimension(0), num_batches); in TEST() 583 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | parameterized_truncated_normal_op.cc | 52 void operator()(OpKernelContext* ctx, const CPUDevice& d, int64 num_batches, in operator ()() 307 Shard(worker_threads.num_threads, worker_threads.workers, num_batches, in operator ()() 339 int32 num_batches = shape_tensor.flat<int32>()(0); in Compute() local 346 const int32 num_elements = num_batches * samples_per_batch; in Compute() 380 int32 size = num_batches * samples_per_batch; in Compute() 384 num_batches = adjusted_batches; in Compute() 392 means_tensor.dim_size(0) == num_batches, in Compute() 400 stddevs_tensor.dim_size(0) == num_batches, in Compute() 408 minvals_tensor.dim_size(0) == num_batches, in Compute() 416 maxvals_tensor.dim_size(0) == num_batches, in Compute() [all …]
|
D | eigen_spatial_convolutions_test.cc | 197 const int num_batches = 13; in TEST() local 204 Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); in TEST() 206 Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); in TEST() 219 EXPECT_EQ(result.dimension(3), num_batches); in TEST() 221 for (int b = 0; b < num_batches; ++b) { in TEST() 249 const int num_batches = 13; in TEST() local 259 Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); in TEST() 261 Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); in TEST() 274 EXPECT_EQ(result.dimension(3), num_batches); in TEST() 277 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | non_max_suppression_op.cc | 233 const int num_batches = inp_boxes.dim_size(0); in BatchedNonMaxSuppressionOp() local 239 std::vector<std::vector<float>> nmsed_boxes(num_batches); in BatchedNonMaxSuppressionOp() 241 std::vector<std::vector<float>> nmsed_scores(num_batches); in BatchedNonMaxSuppressionOp() 243 std::vector<std::vector<float>> nmsed_classes(num_batches); in BatchedNonMaxSuppressionOp() 250 for (int batch = 0; batch < num_batches; ++batch) { in BatchedNonMaxSuppressionOp() 401 TensorShape boxes_shape({num_batches, per_batch_size, 4}); in BatchedNonMaxSuppressionOp() 407 TensorShape scores_shape({num_batches, per_batch_size}); in BatchedNonMaxSuppressionOp() 418 TensorShape valid_detections_shape({num_batches}); in BatchedNonMaxSuppressionOp() 423 for (int i = 0; i < num_batches; ++i) { in BatchedNonMaxSuppressionOp()
|
D | parameterized_truncated_normal_op_gpu.cu.cc | 54 TruncatedNormalKernel(random::PhiloxRandom gen, T* data, int64 num_batches, in TruncatedNormalKernel() argument 235 void operator()(OpKernelContext* ctx, const GPUDevice& d, int64 num_batches, in operator ()() 247 0, d.stream(), gen, output.data(), num_batches, samples_per_batch, in operator ()()
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/linear_regression/ |
D | linear_regression_test.py | 51 num_batches = 2 54 batch_size, num_batches) 72 true_w, true_b, noise_level=0., batch_size=64, num_batches=40) 87 num_batches = 200 94 num_batches=num_batches) 110 examples_per_sec = num_epochs * num_batches * batch_size / wall_time 114 iters=num_epochs * num_batches,
|
D | linear_regression_graph_test.py | 30 num_batches = 200 38 num_batches=num_batches) 75 examples_per_sec = num_epochs * num_batches * batch_size / wall_time 79 iters=num_epochs * num_batches,
|
D | linear_regression.py | 98 def synthetic_dataset(w, b, noise_level, batch_size, num_batches): argument 102 num_batches) 106 num_batches): argument 118 return tf.data.Dataset.range(num_batches).map(batch)
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/data/ |
D | prefetch_queue_test.py | 43 num_batches = 5 48 counter = examples.count_up_to(num_batches * batch_size) 62 for i in range(num_batches): 80 num_batches = 5 85 counter = examples.count_up_to(num_batches * batch_size) 100 for _ in range(num_batches): 109 np.arange(0, num_batches * batch_size)) 120 num_batches = 4 125 counter = examples.count_up_to(num_batches * batch_size) 141 for _ in range(int(num_batches / 2)): [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | fractional_max_pool_op_test.py | 200 num_batches = 5 206 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 216 num_batches = 5 222 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 235 for num_batches in [1, 3]: 239 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 251 num_batches = 3 255 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 272 num_batches = 3 276 tensor_shape = (num_batches, num_rows, num_cols, num_channels) [all …]
|
D | fractional_avg_pool_op_test.py | 198 num_batches = 5 204 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 238 for num_batches in [1, 3]: 242 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 254 num_batches = 3 258 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 275 num_batches = 3 279 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 353 for num_batches in [1, 3]: 359 input_shape = (num_batches, num_rows, num_cols, num_channels) [all …]
|
D | self_adjoint_eig_op_test.py | 129 num_batches = int(np.prod(x_e.shape[:-1])) 131 x_e = np.reshape(x_e, [num_batches] + [n]) 132 x_v = np.reshape(x_v, [num_batches] + [n, n]) 133 y_e = np.reshape(y_e, [num_batches] + [n]) 134 y_v = np.reshape(y_v, [num_batches] + [n, n]) 135 for i in range(num_batches):
|
/external/tensorflow/tensorflow/python/training/ |
D | input_test.py | 467 num_batches = 3 470 counter = examples.count_up_to(num_batches * batch_size) 494 for i in range(num_batches): 552 num_batches = 3 555 counter = examples.count_up_to(num_batches * batch_size) 565 for i in range(num_batches): 584 num_batches = 3 587 counter = examples.count_up_to(num_batches * batch_size) 598 for i in range(num_batches): 620 num_batches = 3 [all …]
|
/external/tensorflow/tensorflow/contrib/data/python/kernel_tests/ |
D | slide_dataset_op_test.py | 90 num_batches = (count * 7 - ( 92 for i in range(num_batches): 154 num_batches = (count * 7 - ( 156 for i in range(num_batches): 217 num_batches = (10 - 5) // 3 + 1 218 for i in range(num_batches): 246 num_batches = (10 - 5) // 3 + 1 247 for i in range(num_batches):
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | basic_rnn_test.cc | 218 int num_batches() { return batches_; } in num_batches() function in tflite::__anonaa6237b70111::RNNOpModel 265 (rnn.input_size() * rnn.num_batches()); in TEST() 292 (rnn.input_size() * rnn.num_batches()); in TEST() 320 (rnn.input_size() * rnn.num_batches()); in TEST()
|
D | unidirectional_sequence_lstm_test.cc | 200 int num_batches() { return n_batch_; } in num_batches() function in tflite::__anon67ed54f90111::UnidirectionalLSTMOpModel 345 const int num_batches = input.size(); in VerifyGoldens() local 346 EXPECT_GT(num_batches, 0); in VerifyGoldens() 354 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 358 lstm->SetInput(((i * num_batches) + b) * num_inputs, batch_start, in VerifyGoldens() 363 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 380 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 388 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens()
|
D | lstm_test.cc | 226 int num_batches() { return n_batch_; } in num_batches() function in tflite::__anonb3707f480111::LSTMOpModel 371 const int num_batches = input.size(); in VerifyGoldens() local 372 EXPECT_GT(num_batches, 0); in VerifyGoldens() 378 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 389 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 1769 const int num_batches = input.size(); in VerifyGoldens() local 1770 EXPECT_GT(num_batches, 0); in VerifyGoldens() 1776 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 1788 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens()
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/spinn/ |
D | data_test.py | 254 self.assertEqual(4, train_data.num_batches(1)) 255 self.assertEqual(2, train_data.num_batches(2)) 256 self.assertEqual(2, train_data.num_batches(3)) 257 self.assertEqual(1, train_data.num_batches(4))
|
/external/tensorflow/tensorflow/python/data/kernel_tests/ |
D | window_test.py | 135 num_batches = (10 - 5) // 3 + 1 140 dense_shape=[5, 1]) for i in range(num_batches) 158 num_batches = (10 - 5) // 3 + 1 159 for i in range(num_batches):
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | classifier_metrics_impl.py | 316 def classifier_score(images, classifier_fn, num_batches=1): argument 346 images, num_or_size_splits=num_batches) 456 num_batches=1): argument 499 real_images, num_or_size_splits=num_batches) 501 generated_images, num_or_size_splits=num_batches)
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
D | map_and_batch_test.py | 90 num_batches = (28 * 7) // 14 91 for i in range(num_batches): 105 num_batches = int(math.ceil((14 * 7) / 8)) 106 for i in range(num_batches - 1): 116 self.assertAllEqual(component[((num_batches - 1) * 8 + j) % 7]**2,
|
/external/libxkbcommon/xkbcommon/src/x11/ |
D | util.c | 162 const size_t num_batches = ROUNDUP(count, SIZE) / SIZE; in adopt_atoms() local 165 for (size_t batch = 0; batch < num_batches; batch++) { in adopt_atoms()
|