/external/tensorflow/tensorflow/python/kernel_tests/ |
D | decode_jpeg_op_test.py | 44 num_iters, argument 111 for _ in xrange(num_iters): 118 num_iters = 10 122 num_iters) 124 num_iters, False, crop_window) 126 'small.jpg', parallelism, num_iters, True, crop_window) 129 iters=num_iters, 133 iters=num_iters, 137 iters=num_iters, 142 num_iters = 10 [all …]
|
D | parameterized_truncated_normal_op_test.py | 243 def parameterized_vs_naive(shape, num_iters, use_gpu=False): argument 261 param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters) 264 naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters) 268 def randn_sampler_switchover(shape, num_iters, use_gpu=False): argument 310 lambda: sess.run(uniform_sampler_op), number=num_iters) 315 lambda: sess.run(randn_sampler_op), number=num_iters) 329 num_iters = 50 331 "naive TruncatedNormalOp [%d iters]") % num_iters) 336 p_dt, n_dt = parameterized_vs_naive(shape, num_iters, use_gpu) 342 iters=num_iters, [all …]
|
D | reduce_benchmark_test.py | 41 def _run(self, func, num_iters): argument 45 for _ in range(num_iters): 48 mean_us = (end - start) * 1e6 / num_iters 50 iters=num_iters, 52 extras={"examples_per_sec": num_iters / (end - start)})
|
/external/eigen/bench/tensors/ |
D | tensor_benchmarks.h | 36 void memcpy(int num_iters) { in memcpy() argument 39 for (int iter = 0; iter < num_iters; ++iter) { in memcpy() 43 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); in memcpy() 46 void typeCasting(int num_iters) { in typeCasting() argument 60 for (int iter = 0; iter < num_iters; ++iter) { in typeCasting() 64 finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); in typeCasting() 67 void random(int num_iters) { in random() argument 75 for (int iter = 0; iter < num_iters; ++iter) { in random() 79 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); in random() 82 void slicing(int num_iters) { in slicing() argument [all …]
|
/external/tensorflow/tensorflow/python/eager/ |
D | benchmarks_test.py | 146 def _run(self, func, num_iters, execution_mode=None): argument 154 for _ in xrange(num_iters): 159 mean_us = (end - start) * 1e6 / num_iters 161 iters=num_iters, 163 extras={"examples_per_sec": num_iters / (end - start)}) 239 def _benchmark_np_multiply(self, m, num_iters): argument 242 self._run(func, num_iters) 244 def _benchmark_tf_multiply(self, m, num_iters): argument 246 self._run(func, num_iters) 248 def _benchmark_tf_multiply_op(self, m, num_iters): argument [all …]
|
/external/tensorflow/tensorflow/python/data/experimental/benchmarks/ |
D | map_defun_benchmark.py | 37 def _run(self, op, name=None, num_iters=3000): argument 42 for _ in range(num_iters): 45 mean_us = (end - start) * 1e6 / num_iters 48 iters=num_iters, 50 extras={"examples_per_sec": num_iters / (end - start)}) 64 num_iters = 100000 // input_size 69 map_defun_op, "with_defun_size_%d" % input_size, num_iters=num_iters) 71 map_fn_op, "without_defun_size_%d" % input_size, num_iters=num_iters)
|
/external/tensorflow/tensorflow/python/ops/ |
D | transpose_benchmark.py | 34 def build_graph(device, input_shape, perm, datatype, num_iters): argument 55 for _ in range(1, num_iters): 65 def _run_graph(self, device, input_shape, perm, num_iters, datatype): argument 80 outputs = build_graph(device, input_shape, perm, datatype, num_iters) 88 duration = (time.time() - start_time) / num_iters 94 str(perm).replace(" ", ""), num_iters, duration, throughput)) 105 iters=num_iters, 129 num_iters = 40 132 self._run_graph("gpu", ishape, perm, num_iters, datatype) 137 self._run_graph("gpu", ishape, perm, num_iters, datatype) [all …]
|
D | matmul_benchmark.py | 71 def run_graph(self, device, n, m, k, transpose_a, transpose_b, num_iters, argument 96 for _ in range(num_iters): 100 throughput = num_items * num_iters / duration / 1e9 103 ',ta:' + str(transpose_a) + '.tb:' + str(transpose_b), num_iters, 114 iters=num_iters, 118 def run_test_gpu(self, n, m, k, transpose_a, transpose_b, dtype, num_iters): argument 120 num_iters, dtype) 122 def test_round(self, num_iters): argument 129 self.run_test_gpu(n, m, k, transpose_a, transpose_b, dtype, num_iters) 134 self.run_test_gpu(n, m, k, transpose_a, transpose_b, dtype, num_iters) [all …]
|
D | conv2d_benchmark.py | 45 padding, num_iters, warmup_iters): argument 75 for _ in range(1, num_iters): 98 strides, padding, num_iters, warmup_iters): argument 123 padding, num_iters, warmup_iters) 148 duration = (time.time() - start_time) / num_iters 153 str(strides).replace(" ", ""), padding, num_iters, duration)) 168 iters=num_iters, 204 num_iters = 80 207 padding, num_iters, warmup_iters)
|
D | concat_benchmark.py | 82 num_iters): argument 108 for _ in range(num_iters): 113 num_inputs, axis, grad, duration / num_iters, 115 100 / (duration / num_iters) / 1e9)) 128 iters=num_iters)) 138 num_iters = [10] * len(shapes) 140 for shape, iters in zip(shapes, num_iters):
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_ptb/ |
D | rnn_ptb_graph_test.py | 65 def _report(self, label, start, num_iters, device, batch_size): argument 66 wall_time = (time.time() - start) / num_iters 71 iters=num_iters, 79 num_iters = 100 84 dtype=tf.int64)).repeat(num_iters + num_warmup) 97 for _ in range(num_iters): 99 self._report(label, start, num_iters, 119 num_iters = 100 124 dtype=tf.int64)).repeat(num_iters + num_warmup) 142 for _ in range(num_iters): [all …]
|
/external/tensorflow/tensorflow/contrib/fused_conv/python/ops/ |
D | fused_conv2d_bias_activation_benchmark.py | 33 padding, num_iters, data_format): argument 67 for _ in range(1, num_iters): 78 padding, num_iters, data_format): argument 116 for _ in range(1, num_iters): 135 num_iters, data_format): argument 158 num_iters, data_format) 166 duration = (time.time() - start_time) / num_iters 172 num_iters, duration)) 184 iters=num_iters,
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/gan/ |
D | mnist_graph_test.py | 78 def _report(self, test_name, start, num_iters, batch_size): argument 79 avg_time = (time.time() - start) / num_iters 85 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 105 num_burn, num_iters = (3, 100) 117 for _ in range(num_iters): 123 self._report('train', start, num_iters, batch_size) 138 num_burn, num_iters = (30, 1000) 143 for _ in range(num_iters): 148 self._report('generate', start, num_iters, batch_size)
|
D | mnist_test.py | 45 def _report(self, test_name, start, num_iters, batch_size): argument 46 avg_time = (time.time() - start) / num_iters 52 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 99 num_burn, num_iters = (30, 1000) 106 for _ in range(num_iters): 110 self._report('generate', start, num_iters, batch_size)
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/densenet/ |
D | densenet_graph_test.py | 84 def _report(self, label, start, num_iters, batch_size): argument 85 avg_time = (time.time() - start) / num_iters 90 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 109 num_burn, num_iters = (3, 30) 113 for _ in range(num_iters): 115 self._report('apply', start, num_iters, batch_size) 142 (num_burn, num_iters) = (5, 10) 146 for _ in range(num_iters): 148 self._report('train', start, num_iters, batch_size)
|
D | densenet_test.py | 205 def _report(self, label, start, num_iters, device, batch_size, data_format): argument 206 avg_time = (time.time() - start) / num_iters 211 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 235 num_iters = 30 244 for _ in xrange(num_iters): 248 self._report(label, start, num_iters, device, batch_size, data_format) 286 num_iters = 10 299 for _ in xrange(num_iters): 306 self._report(label, start, num_iters, device, batch_size, data_format)
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/resnet50/ |
D | resnet50_graph_test.py | 109 def _report(self, label, start, num_iters, batch_size): argument 110 avg_time = (time.time() - start) / num_iters 115 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 129 num_burn, num_iters = (3, 30) 133 for _ in range(num_iters): 138 self._report('apply', start, num_iters, batch_size) 158 (num_burn, num_iters) = (5, 10) 162 for _ in range(num_iters): 164 self._report('train', start, num_iters, batch_size)
|
D | resnet50_test.py | 200 def _report(self, label, start, num_iters, device, batch_size, data_format, argument 202 avg_time = (time.time() - start) / num_iters 209 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 227 num_iters = 30 236 for _ in xrange(num_iters): 240 self._report(label, start, num_iters, device, batch_size, data_format) 273 num_iters = 10 286 for _ in xrange(num_iters): 293 self._report(label, start, num_iters, device, batch_size, data_format)
|
/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | control_flow_ops_test.py | 1079 num_iters = array_ops.placeholder(dtypes.int32) 1085 pfor = pfor_control_flow_ops.pfor(loop_fn, num_iters) 1087 sess.run(pfor, feed_dict={num_iters: 3}) 1091 num_iters = 10 1097 pfor = pfor_control_flow_ops.pfor(loop_fn, num_iters) 1099 indices = [[i, j] for i in range(num_iters) for j in range(3)] 1100 values = [4, 5, 6] * num_iters 1101 dense_shapes = [num_iters, 3] 1108 num_iters = 10 1116 pfor = pfor_control_flow_ops.pfor(loop_fn, num_iters) [all …]
|
/external/tensorflow/tensorflow/contrib/factorization/python/kernel_tests/ |
D | masked_matmul_benchmark.py | 62 def _run_graph(self, a_shape, b_shape, nnz, num_iters, sort=False, argument 98 for _ in range(num_iters): 107 avg_wall_time += (time.time() - start_time)/num_iters 124 iters=num_iters, 131 num_iters = 10 139 self._run_graph(a_shape, b_shape, nnz, num_iters, sort, transpose_a,
|
/external/libaom/libaom/test/ |
D | hiprec_convolve_test_util.cc | 76 const int num_iters = GET_PARAM(2); in RunCheckOutput() local 99 for (i = 0; i < num_iters; ++i) { in RunCheckOutput() 122 const int num_iters = GET_PARAM(2) / 500; in RunSpeedTest() local 147 for (i = 0; i < num_iters; ++i) { in RunSpeedTest() 161 for (i = 0; i < num_iters; ++i) { in RunSpeedTest() 213 const int num_iters = GET_PARAM(2); in RunCheckOutput() local 240 for (i = 0; i < num_iters; ++i) { in RunCheckOutput() 264 const int num_iters = GET_PARAM(2) / 500; in RunSpeedTest() local 293 for (i = 0; i < num_iters; ++i) { in RunSpeedTest() 307 for (i = 0; i < num_iters; ++i) { in RunSpeedTest()
|
/external/tensorflow/tensorflow/python/data/kernel_tests/ |
D | memory_cleanup_test.py | 47 num_iters=100000, argument 58 for _ in six.moves.range(num_iters): 83 f, num_iters=100, increase_threshold_absolute_mb=350) 102 f, num_iters=100, increase_threshold_absolute_mb=500)
|
/external/tensorflow/tensorflow/python/kernel_tests/random/ |
D | multinomial_op_test.py | 216 def native_op_vs_composed_ops(batch_size, num_classes, num_samples, num_iters): argument 232 native_dt = timeit.timeit(lambda: sess.run(native_op), number=num_iters) 233 composed_dt = timeit.timeit(lambda: sess.run(composed_op), number=num_iters) 240 num_iters = 50 242 num_iters) 250 num_samples, num_iters) 258 iters=num_iters, 263 iters=num_iters,
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | revnet_test.py | 222 def _report(self, label, start, num_iters, device, batch_size, data_format): argument 223 avg_time = (time.time() - start) / num_iters 228 iters=num_iters, wall_time=avg_time, name=name, extras=extras) 244 num_iters = 10 253 for _ in range(num_iters): 257 self._report(label, start, num_iters, device, batch_size, data_format) 291 num_iters = 10 303 for _ in range(num_iters): 309 self._report(label, start, num_iters, device, batch_size, data_format)
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | kmeans_test.py | 474 def _report(self, num_iters, start, end, scores): argument 477 iters=num_iters, 478 wall_time=(end - start) / num_iters, 482 def _fit(self, num_iters=10): argument 507 self._fit(num_iters=4) 515 self._fit(num_iters=4) 520 def _fit(self, num_iters=10): argument 523 for i in range(num_iters): 539 self._report(num_iters, start, time.time(), scores) 544 def _fit(self, num_iters=10): argument [all …]
|