/external/tensorflow/tensorflow/contrib/boosted_trees/python/kernel_tests/ |
D | stats_accumulator_ops_test.py | 47 num_updates, partition, bucket_ids, grads, hessians = accumulator.flush( 49 num_updates, partition, bucket_ids, grads, hessians = sess.run( 50 [num_updates, partition, bucket_ids, grads, hessians]) 53 self.assertEqual(num_updates, 2) 75 num_updates, partition, bucket_ids, grads, hessians = accumulator.flush( 77 num_updates, partition, bucket_ids, grads, hessians = sess.run( 78 [num_updates, partition, bucket_ids, grads, hessians]) 81 self.assertEqual(num_updates, 2) 109 num_updates, partition, feature, grads, hessians = accumulator.flush( 111 num_updates, partition, feature, grads, hessians = sess.run( [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/lib/utils/ |
D | dropout_utils_test.cc | 330 std::vector<int32> num_updates = in TEST_F() local 334 current_weights.size(), 1, ¤t_weights, &num_updates); in TEST_F() 337 current_weights.size(), 1, ¤t_weights, &num_updates); in TEST_F() 343 std::vector<int32> num_updates = in TEST_F() local 348 current_weights.size(), 1, ¤t_weights, &num_updates); in TEST_F() 351 current_weights.size(), 1, ¤t_weights, &num_updates); in TEST_F() 375 std::vector<int32> num_updates = in TEST_F() local 379 current_weights.size(), 1, ¤t_weights, &num_updates); in TEST_F() 382 current_weights.size(), 1, ¤t_weights, &num_updates); in TEST_F() 388 std::vector<int32> num_updates = in TEST_F() local [all …]
|
D | dropout_utils.cc | 112 std::vector<float>* current_weights, std::vector<int32>* num_updates) { in GetTreesWeightsForAddingTrees() argument 113 CHECK(num_updates->size() == current_weights->size()); in GetTreesWeightsForAddingTrees() 131 (*num_updates)[new_tree_index]++; in GetTreesWeightsForAddingTrees() 135 num_updates->push_back(1); in GetTreesWeightsForAddingTrees() 145 ++(*num_updates)[dropped]; in GetTreesWeightsForAddingTrees()
|
D | dropout_utils.h | 70 std::vector<int32>* num_updates);
|
/external/webrtc/webrtc/modules/audio_processing/agc/ |
D | histogram_unittest.cc | 46 EXPECT_EQ(hist_->num_updates(), 0); in TestClean() 62 int num_updates = 0; in RunTest() local 69 num_updates = 0; in RunTest() 76 num_updates++; in RunTest() 77 EXPECT_EQ(hist_->num_updates(), num_updates); in RunTest()
|
D | histogram.h | 47 int num_updates() const { return num_updates_; } in num_updates() function
|
D | agc.cc | 70 if (histogram_->num_updates() < kNumAnalysisFrames) { in GetRmsErrorDb()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | scatter_nd_op_test.py | 51 num_updates = indices.size // ixdim 57 flat_updates = updates.reshape((num_updates, slice_size)) 83 num_updates = indices_shape[0] 94 indices = np.array(all_indices[:num_updates]) 96 if num_updates > 1 and repeat_indices: 97 indices = indices[:num_updates // 2] 98 for _ in range(num_updates - num_updates // 2): 100 indices, [indices[np.random.randint(num_updates // 2)]], axis=0) 102 indices = _AsType(indices[:num_updates], itype) 104 updates_shape = (num_updates,)
|
D | adadelta_test.py | 34 num_updates = 4 # number of ADADELTA steps to perform 98 update = [None] * num_updates 100 for step in range(num_updates):
|
/external/tensorflow/tensorflow/contrib/metrics/python/kernel_tests/ |
D | histogram_ops_test.py | 79 num_updates=1) 89 num_updates=1) 104 num_updates=50) 117 num_updates=1000) 128 num_updates=100) 137 num_updates=10): argument 165 for _ in range(num_updates): 181 num_updates)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/ops/ |
D | stats_accumulator_ops.py | 44 (stamp_token, num_updates, partition_ids, feature_ids, gradients, 49 saver.BaseSaverBuilder.SaveSpec(num_updates, slice_spec, 72 def deserialize(self, stamp_token, num_updates, partition_ids, feature_ids, argument 77 self._resource_handle, stamp_token, num_updates, partition_ids, 81 self._resource_handle, stamp_token, num_updates, partition_ids, 98 num_updates=restored_tensors[1],
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | metric_ops_large_test.py | 48 num_updates = 71 52 for _ in xrange(num_updates): 60 expected_value = 1.0 * np.product(shape) * num_updates
|
/external/tensorflow/tensorflow/python/training/ |
D | moving_averages.py | 333 def __init__(self, decay, num_updates=None, zero_debias=False, argument 357 self._num_updates = num_updates 436 num_updates = math_ops.cast(self._num_updates, 440 (1.0 + num_updates) / (10.0 + num_updates))
|
D | adadelta_test.py | 38 num_updates = 4 # number of ADADELTA steps to perform 108 update = [None] * num_updates 110 for step in range(num_updates):
|
D | moving_averages_test.py | 263 ema = moving_averages.ExponentialMovingAverage(0.25, num_updates=1) 271 0.25, num_updates=1, zero_debias=True) 278 ema = moving_averages.ExponentialMovingAverage(0.25, num_updates=1) 286 0.25, num_updates=1, zero_debias=True)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/kernels/ |
D | stats_accumulator_ops.cc | 112 const int64& num_updates() const { return num_updates_; } in num_updates() function in tensorflow::boosted_trees::__anon539a428c0111::StatsAccumulatorResource 226 accumulator_resource->set_num_updates(accumulator_resource->num_updates() + in AddToScalarAccumulator() 234 int64 num_updates = partition_ids_shape.dim_size(0); in AddToScalarAccumulator() local 236 for (int64 i = 0; i < num_updates; ++i) { in AddToScalarAccumulator() 270 accumulator_resource->set_num_updates(accumulator_resource->num_updates() + in AddToTensorAccumulator() 297 int64 num_updates = partition_ids_shape.dim_size(0); in AddToTensorAccumulator() local 299 for (int64 i = 0; i < num_updates; ++i) { in AddToTensorAccumulator() 578 num_updates_t->scalar<int64>()() = accumulator_resource->num_updates(); in Compute() 619 num_updates_t->scalar<int64>()() = accumulator_resource->num_updates(); in Compute() 708 num_updates_t->scalar<int64>()() = accumulator_resource->num_updates(); in Compute() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | scatter_nd_ops_test.py | 64 num_updates = indices.size // ixdim 70 flat_updates = updates.reshape((num_updates, slice_size)) 112 num_updates = indices_shape[0] 124 indices = np.array(all_indices[:num_updates]) 126 if num_updates > 1 and repeat_indices: 127 indices = indices[:num_updates // 2] 128 for _ in range(num_updates - num_updates // 2): 130 indices, [indices[np.random.randint(num_updates // 2)]], axis=0) 132 indices = _AsType(indices[:num_updates], itype) 134 updates_shape = (num_updates,) [all …]
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | moving_average_optimizer.py | 67 def __init__(self, opt, average_decay=0.9999, num_updates=None, argument 86 average_decay, num_updates=num_updates)
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | adadelta_test.py | 36 num_updates = 4 # number of ADADELTA steps to perform 98 update = [None] * num_updates 100 for step in range(num_updates):
|
/external/tensorflow/tensorflow/core/kernels/ |
D | scatter_nd_op.cc | 57 int64 num_updates) { in ValidEmptyOutputShape() argument 58 if (num_indices == 0 && num_updates == 0) { in ValidEmptyOutputShape() 62 return (num_inputs != 0 && num_indices != 0 && num_updates != 0); in ValidEmptyOutputShape() 556 int64* slice_dim, Index* num_updates, in PrepareAndValidateInputs() argument 621 *num_updates = indices_shape.num_elements() / safe_slice_dim; in PrepareAndValidateInputs() 666 Index num_updates; in DoScatterNd() local 669 shape, indices, updates, &slice_dim, &num_updates, &slice_size)); in DoScatterNd() 673 auto updates_flat = updates.shaped<T, 2>({num_updates, slice_size}); in DoScatterNd()
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | adadelta_test.py | 38 num_updates = 4 # number of ADADELTA steps to perform 93 update = [None] * num_updates 95 for step in range(num_updates):
|
/external/tensorflow/tensorflow/contrib/boosted_trees/resources/ |
D | decision_tree_ensemble_resource.h | 151 const int32 num_updates = decision_tree_ensemble_->tree_metadata(index) in SetTreeWeight() local 154 ->set_num_tree_weight_updates(num_updates + increment_num_updates); in SetTreeWeight()
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.train.-exponential-moving-average.pbtxt | 11 …argspec: "args=[\'self\', \'decay\', \'num_updates\', \'zero_debias\', \'name\'], varargs=None, ke…
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.train.-exponential-moving-average.pbtxt | 11 …argspec: "args=[\'self\', \'decay\', \'num_updates\', \'zero_debias\', \'name\'], varargs=None, ke…
|
/external/webrtc/webrtc/modules/video_coding/ |
D | qm_select_unittest.cc | 48 void UpdateQmEncodedFrame(size_t* encoded_size, size_t num_updates); 54 int num_updates); 1263 size_t num_updates) { in UpdateQmEncodedFrame() argument 1264 for (size_t i = 0; i < num_updates; ++i) { in UpdateQmEncodedFrame() 1275 int num_updates) { in UpdateQmRateData() argument 1276 for (int i = 0; i < num_updates; ++i) { in UpdateQmRateData()
|