/external/tensorflow/tensorflow/core/kernels/ |
D | deep_conv2d.cc | 50 int out_depth, int out_rows, int out_cols) { in GetDeepConvCost() argument 57 const int64 product_cost = input_tile_spatial_size * in_depth * out_depth; in GetDeepConvCost() 62 output_tile_spatial_size * input_tile_spatial_size * out_depth; in GetDeepConvCost() 75 int out_depth, int out_rows, int out_cols) { in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 98 int filter_cols, int in_depth, int out_depth, in CanUseDeepConv2D() argument 117 t.output_shape().cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 148 const int64 input_stride = args.out_depth * kPacketSize; in operator ()() 153 args.out_depth); in operator ()() [all …]
|
D | depthwise_conv_grad_op.cc | 109 const int32 out_depth = static_cast<int32>(out_depth_raw); \ 111 context, (depth_multiplier * in_depth) == out_depth, \ 145 args.out_depth = out_depth; \ 152 << ", " << out_depth << "]"; 212 const int64 vectorized_size = (args.out_depth / kPacketSize) * kPacketSize; in CopyOutputBackpropRegion() 213 const int64 scalar_size = args.out_depth % kPacketSize; in CopyOutputBackpropRegion() 224 out_backprop + (out_r * args.out_cols + out_c) * args.out_depth; in CopyOutputBackpropRegion() 286 const int64 out_depth = args.out_depth; in ComputeBackpropInput() local 290 const int64 output_vectorized_size = (out_depth / kPacketSize) * kPacketSize; in ComputeBackpropInput() 291 const int64 output_scalar_size = out_depth % kPacketSize; in ComputeBackpropInput() [all …]
|
D | depthwise_conv_op.cc | 89 const int64 out_depth = args.out_depth; in Run() local 91 const int64 output_scalar_size = out_depth % kPacketSize; in Run() 93 (out_depth / kPacketSize) * kPacketSize; in Run() 94 const int64 base_output_index = (out_r * args.out_cols + out_c) * out_depth; in Run() 167 const bool pad_filter = (args.out_depth % kPacketSize) == 0 ? false : true; in operator ()() 173 ((args.out_depth + kPacketSize - 1) / kPacketSize) * kPacketSize; in operator ()() 193 args.out_rows * args.out_cols * args.out_depth; in operator ()() 196 ((args.out_depth + kPacketSize - 1) / kPacketSize) * kPacketSize; in operator ()() 236 const int64 shard_cost = kCostMultiplier * args.out_cols * args.out_depth; in operator ()() 327 const int32 out_depth = in_depth * depth_multiplier; in Compute() local [all …]
|
D | eigen_spatial_convolutions_test.cc | 678 const int out_depth = in_depth; in TEST() local 685 Tensor<float, 4> result(kern_filters, out_depth, out_height, out_width); in TEST() 693 EXPECT_EQ(result.dimension(1), out_depth); in TEST() 702 for (int i = 0; i < out_depth; ++i) { in TEST() 739 const int out_depth = in_depth; in TEST() local 746 Tensor<float, 4, RowMajor> result(out_width, out_height, out_depth, in TEST() 755 EXPECT_EQ(result.dimension(2), out_depth); in TEST() 764 for (int i = 0; i < out_depth; ++i) { in TEST() 801 const int out_depth = 3; in TEST() local 808 Tensor<float, 4> result(kern_filters, out_depth, out_height, out_width); in TEST() [all …]
|
D | depthwise_conv_op_gpu.h | 92 const int out_depth = args.out_depth; in DepthwiseConv2dGPUKernelNHWC() local 96 const int out_channel = thread_id % out_depth; in DepthwiseConv2dGPUKernelNHWC() 97 const int out_col = (thread_id / out_depth) % out_width; in DepthwiseConv2dGPUKernelNHWC() 98 const int out_row = (thread_id / out_depth / out_width) % out_height; in DepthwiseConv2dGPUKernelNHWC() 99 const int batch = thread_id / out_depth / out_width / out_height; in DepthwiseConv2dGPUKernelNHWC() 332 const int out_depth = args.out_depth; in DepthwiseConv2dGPUKernelNCHW() local 344 const int out_channel = (thread_id / out_width / out_height) % out_depth; in DepthwiseConv2dGPUKernelNCHW() 345 const int batch = thread_id / out_width / out_height / out_depth; in DepthwiseConv2dGPUKernelNCHW() 612 args.batch * DivUp(args.out_depth, kBlockDepth) * kBlockDepth; in LaunchDepthwiseConv2dGPUSmall() 621 DivUp(args.batch * args.out_depth, kBlockDepth) * kBlockDepth; in LaunchDepthwiseConv2dGPUSmall() [all …]
|
D | deep_conv2d.h | 81 int out_depth; member 94 out_depth(0) {} in Conv2DArgs() 101 int filter_cols, int in_depth, int out_depth,
|
D | conv_ops_test.cc | 1105 int filter_w, int filter_h, int out_depth) { in Conv2D() argument 1109 Tensor filter_t = MakeRandomTensor({filter_w, filter_h, in_depth, out_depth}); in Conv2D() 1129 int filter_h, int out_depth) { in Conv2DWithBias() argument 1131 Conv2D(batch, height, width, in_depth, filter_w, filter_h, out_depth); in Conv2DWithBias() 1136 Tensor bias_t = MakeRandomTensor({out_depth}); in Conv2DWithBias() 1155 int out_depth) { in Conv2DWithBiasAndRelu() argument 1157 batch, height, width, in_depth, filter_w, filter_h, out_depth); in Conv2DWithBiasAndRelu() 1176 int out_depth) { in Conv2DWithBatchNorm() argument 1178 Conv2D(batch, height, width, in_depth, filter_w, filter_h, out_depth); in Conv2DWithBatchNorm() 1183 Tensor scale_t = MakeRandomTensor({out_depth}); in Conv2DWithBatchNorm() [all …]
|
D | conv_ops_3d.cc | 136 const int64 out_depth = filter.dim_size(4); in Compute() local 161 data_format_, in_batch, {{out[0], out[1], out[2]}}, out_depth); in Compute() 222 const int64 out_depth = filter.dim_size(4); in launch() local 246 const uint64 n = out_depth; in launch() 273 const uint64 n = out_depth; in launch() 363 .set_feature_map_count(out_depth) in launch() 370 .set_output_feature_map_count(out_depth); in launch() 385 TensorShape({out_depth, in_depth, filter_planes, in launch() 400 {{out_planes, out_rows, out_cols}}, out_depth), in launch() 422 out_depth, in launch()
|
D | conv_grad_ops_3d.cc | 391 const int64 size_A = output_image_size * dims.out_depth; in Compute() 393 const int64 size_B = filter_total_size * dims.out_depth; in Compute() 457 dims.spatial_dims[2].output_size * dims.out_depth; in Compute() 486 output_image_size, dims.out_depth); in Compute() 487 ConstTensorMap B(filter_data, filter_total_size, dims.out_depth); in Compute() 539 ConstMatrixMap A(out_data, output_image_size, dims.out_depth); in Compute() 540 ConstMatrixMap B(filter_data, filter_total_size, dims.out_depth); in Compute() 866 const int64 size_B = output_image_size * dims.out_depth; in Compute() 868 const int64 size_C = filter_total_size * dims.out_depth; in Compute() 918 dims.spatial_dims[2].output_size * dims.out_depth; in Compute() [all …]
|
D | conv_ops.cc | 174 int out_cols, int out_depth, int dilation_rows, in Run() argument 180 in_depth, out_depth, out_rows, out_cols)) { in Run() 195 args.out_depth = out_depth; in Run() 215 int out_cols, int out_depth, int stride_rows, int stride_cols, in Run() argument 229 int out_cols, int out_depth, int dilation_rows, in Run() argument 240 desc.K = out_depth; in Run() 367 const int out_depth = static_cast<int>(filter.dim_size(3)); in ComputeConv2DDimension() local 424 dimensions->out_depth = out_depth; in ComputeConv2DDimension() 467 dimensions.out_cols, dimensions.out_depth); in Compute() 484 << ", out_depth = " << dimensions.out_depth; in Compute() [all …]
|
D | conv_grad_filter_ops.cc | 141 auto out_depth = output.dimension(3); in operator ()() local 153 desc.K = out_depth; in operator ()() 316 const size_t size_B = output_image_size * dims.out_depth; in Compute() 318 const size_t size_C = filter_total_size * dims.out_depth; in Compute() 339 dims.spatial_dims[1].output_size * dims.out_depth; in Compute() 353 TensorMap C(filter_backprop_data, filter_total_size, dims.out_depth); in Compute() 391 dims.out_depth); in Compute() 615 const uint64 n = dims.out_depth; in operator ()() 657 const uint64 n = dims.out_depth; in operator ()() 726 .set_feature_map_count(dims.out_depth) in operator ()() [all …]
|
D | conv_grad_input_ops.cc | 148 auto out_depth = output_backward.dimension(3); in operator ()() local 159 desc.K = out_depth; in operator ()() 407 const size_t size_A = output_image_size * dims.out_depth; in Compute() 409 const size_t size_B = filter_total_size * dims.out_depth; in Compute() 453 dims.spatial_dims[1].output_size * dims.out_depth; in Compute() 482 output_image_size, dims.out_depth); in Compute() 483 ConstTensorMap B(filter_data, filter_total_size, dims.out_depth); in Compute() 515 output_image_size, dims.out_depth, im2col_buf); in Compute() 752 const uint64 k = dims.out_depth; in operator ()() 784 const uint64 k = dims.out_depth; in operator ()() [all …]
|
D | depthwise_conv_op.h | 41 int out_depth; member 56 out_depth(0) {} in DepthwiseArgs() 137 const int64 filter_inner_dim_size = args.out_depth; 211 const int64 output_scalar_size = args.out_depth % kPacketSize;
|
D | mkl_conv_ops.h | 373 int out_depth; variable 382 out_depth = (filter_shape.dim_size(TF_2DFILTER_DIM_I) * 385 out_depth = filter_shape.dim_size( 448 out_depth) 450 {{out_planes, out_rows, out_cols}}, out_depth); 457 mkldnn_sizes[MklDnnDims::Dim_C] = out_depth; 464 mkldnn_sizes[MklDnnDims3D::Dim3d_C] = out_depth;
|
D | conv_ops_using_gemm.cc | 486 const int out_depth = static_cast<int>(filter.dim_size(3)); in Compute() local 528 ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth); in Compute() 542 << ", out_depth = " << out_depth; in Compute() 551 out_depth, stride_rows, stride_cols, padding_, in Compute()
|
D | conv_grad_ops.cc | 138 dims->out_depth = filter_shape.dim_size(num_dims - 1); in ConvBackpropComputeDimensionsV2() 139 if (dims->out_depth != out_backprop_shape.dim_size(feature_dim)) { in ConvBackpropComputeDimensionsV2()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_3d_test.py | 368 self, batch, input_shape, filter_shape, in_depth, out_depth, stride, argument 376 filter_planes, filter_rows, filter_cols, in_depth, out_depth 395 output_shape = [batch, output_planes, output_rows, output_cols, out_depth] 472 out_depth=3, 484 out_depth=3, 496 out_depth=3, 508 out_depth=3, 520 out_depth=3, 532 out_depth=3, 544 out_depth=1, [all …]
|
D | conv_ops_test.py | 1639 filter_cols, in_depth, out_depth, stride_rows, argument 1643 filter_shape = [filter_rows, filter_cols, in_depth, out_depth] 1657 output_shape = [batch, output_rows, output_cols, out_depth] 1726 out_depth=3, 1744 out_depth=3, 1762 out_depth=3, 1780 out_depth=3, 1798 out_depth=5, 1816 out_depth=3, 1834 out_depth=3, [all …]
|
/external/tensorflow/tensorflow/contrib/hvx/hexagon_controller/src_impl/ |
D | graph_functions_wrapper.c | 216 uint32_t* out_width, uint32_t* out_depth, uint8_t* out_vals, in hexagon_controller_ExecuteGraph() argument 246 *out_depth = output.depth; in hexagon_controller_ExecuteGraph() 252 *out_width, *out_depth, *out_data_byte_size); in hexagon_controller_ExecuteGraph() 259 uint32_t out_batches, out_height, out_width, out_depth; in hexagon_controller_ExecuteInceptionDummyData() local 268 &out_batches, &out_height, &out_width, &out_depth, in hexagon_controller_ExecuteInceptionDummyData() 273 s_output_values, out_batches * out_height * out_width * out_depth, in hexagon_controller_ExecuteInceptionDummyData() 276 out_width, out_depth, out_data_size); in hexagon_controller_ExecuteInceptionDummyData() 279 out_batches * out_height * out_width * out_depth)); in hexagon_controller_ExecuteInceptionDummyData()
|
D | hexagon_controller.c | 187 const uint32_t out_depth = output0->depth; in hexagon_controller_ExecuteGraphWithBuffer() local 203 out_batches * out_height * out_width * out_depth, OUT_RANKING_SIZE, in hexagon_controller_ExecuteGraphWithBuffer() 206 out_height, out_width, out_depth, out_data_size, out_buf_byte_size); in hexagon_controller_ExecuteGraphWithBuffer()
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | fold_batch_norms_test.py | 95 out_depth = 3 if with_bypass else 32 103 out_depth, [5, 5], 124 out_depth, [5, 5], 195 out_depth = 3 202 out_depth, [5, 5], 215 2 * out_depth, [5, 5], 290 out_depth = 3 if with_bypass else 32 296 out_depth, [5, 5], 363 out_depth = 256 if with_bypass else 128 371 out_depth, [all …]
|
D | quantize_parameterized_test.py | 185 out_depth = 3 if with_bypass else 32 192 out_depth, [5, 5], 237 out_depth = 256 if with_bypass else 128 244 out_depth, 511 out_depth = 3 if with_bypass else 32 517 out_depth, [5, 5], 567 out_depth = 256 if with_bypass else 128 573 out_depth,
|
D | common_test.py | 101 out_depth = 32 105 out_depth, [2, 2],
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 86 const int32 out_depth = in_depth * depth_multiplier; in Compute() local 97 TensorShape out_shape({batch, out_rows, out_cols, out_depth}); in Compute() 115 << out_rows << ", " << out_cols << ", " << out_depth << "]"; in Compute()
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | utils_test.cc | 73 int out_depth = 5; in TEST() local 83 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST() 87 CreateConstOp("output_backprop", {batch, out_rows, out_cols, out_depth}, in TEST() 98 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST()
|