/external/tensorflow/tensorflow/core/kernels/ |
D | depthwise_conv_op.cc | 193 args.out_rows * args.out_cols * args.out_depth; in operator ()() 208 const int64 b = i / args.out_rows; in operator ()() 212 const int64 out_r = i % args.out_rows; in operator ()() 228 const int64 total_shards = args.batch * args.out_rows; in operator ()() 348 int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0; in Compute() local 351 padding_, &out_rows, &pad_rows)); in Compute() 356 ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth); in Compute() 381 << "]; Output: [" << batch << ", " << out_rows << ", " << out_cols in Compute() 423 args.out_rows = out_rows; in Compute()
|
D | dilation_ops.cc | 68 int64* out_rows, int64* out_cols) { in ParseSizes() argument 108 padding, out_rows, pad_top)); in ParseSizes() 129 int64 out_rows = 0, out_cols = 0; in Compute() local 131 &rate_rows, &rate_cols, &pad_top, &pad_left, &out_rows, in Compute() 138 const std::vector<int64> out_sizes = {batch, out_rows, out_cols, depth}; in Compute() 228 int64 out_rows = 0, out_cols = 0; in Compute() local 230 &rate_rows, &rate_cols, &pad_top, &pad_left, &out_rows, in Compute() 239 out_rows == out_backprop.dim_size(1) && in Compute() 348 int64 out_rows = 0, out_cols = 0; in Compute() local 350 &rate_rows, &rate_cols, &pad_top, &pad_left, &out_rows, in Compute() [all …]
|
D | depthwise_conv_grad_op.cc | 115 int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0; \ 118 padding_, &out_rows, &pad_rows)); \ 123 context, output_rows == out_rows, \ 126 "actual = ", output_rows, ", computed = ", out_rows)); \ 143 args.out_rows = out_rows; \ 151 << ", output: [" << batch << ", " << out_rows << ", " << out_cols \ 192 const int64 out_rows = args.out_rows; in CopyOutputBackpropRegion() local 198 const int64 out_r_end = std::min(out_rows - 1, (in_r + pad_rows) / stride); in CopyOutputBackpropRegion() 412 args.out_rows * args.out_cols * args.out_depth; in operator ()() 478 std::min(args.out_rows - 1, (in_r + args.pad_rows) / stride); in DepthwiseConvBackpropInputReference() [all …]
|
D | conv_ops.cc | 157 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 173 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 180 in_depth, out_depth, out_rows, out_cols)) { in Run() 193 args.out_rows = out_rows; in Run() 214 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 228 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 409 int64 out_rows = 0, out_cols = 0; in ComputeConv2DDimension() local 412 &out_rows, &pad_rows_before, &pad_rows_after)); in ComputeConv2DDimension() 429 dimensions->out_rows = out_rows; in ComputeConv2DDimension() 466 params_.data_format, dimensions.batch, dimensions.out_rows, in Compute() [all …]
|
D | deep_conv2d.h | 79 int out_rows; member 92 out_rows(0), in Conv2DArgs() 102 int out_rows, int out_cols);
|
D | extract_image_patches_op.cc | 86 int64 out_rows = 0, out_cols = 0; in Compute() local 90 padding_, &out_rows, &pad_rows)); in Compute() 95 const std::vector<int64> out_sizes = {batch, out_rows, out_cols, in Compute()
|
D | extract_volume_patches_op.cc | 109 int64 out_planes = 0, out_rows = 0, out_cols = 0; in Compute() local 116 padding_, &out_rows, &pad_rows)); in Compute() 122 batch, out_planes, out_rows, out_cols, in Compute()
|
D | mkl_conv_ops.h | 390 int64 out_rows = 0, out_cols = 0, out_planes = 0; variable 408 padding_type, &out_rows, &pad_top, &pad_bottom)); 419 padding_, &out_rows, &pad_top, &pad_bottom)); 447 ? ShapeFromFormat(data_format_, out_batch, out_rows, out_cols, 450 {{out_planes, out_rows, out_cols}}, out_depth); 458 mkldnn_sizes[MklDnnDims::Dim_H] = static_cast<int>(out_rows); 466 mkldnn_sizes[MklDnnDims3D::Dim3d_H] = static_cast<int>(out_rows);
|
D | deep_conv2d.cc | 50 int out_depth, int out_rows, int out_cols) { in GetDeepConvCost() argument 65 const int64 row_tiles = (out_rows + out_tile_rows - 1) / out_tile_rows; in GetDeepConvCost() 75 int out_depth, int out_rows, int out_cols) { in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 99 int out_rows, int out_cols) { in CanUseDeepConv2D() argument 117 t.output_shape().cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 799 if (out_r_start < 0 || out_r_start >= args.out_rows || in operator ()() 809 if (out_r >= args.out_rows) continue; in operator ()() 1011 (args.out_rows + out_tile_rows - 1) / out_tile_rows + in operator ()() [all …]
|
D | pooling_ops_3d_sycl.h | 35 const int out_rows, const int out_cols, in SYCL3DPoolParams() 51 out_rows_(out_rows), in SYCL3DPoolParams() 126 const int out_rows, const int out_cols, in MaxPool3DSYCL() argument 132 : p_(depth, batch, in_planes, in_rows, in_cols, out_planes, out_rows, in MaxPool3DSYCL() 187 const int out_rows = GetTensorDim(*output, data_format, '1'); 208 out_planes, out_rows, out_cols, window, stride, 532 const int out_rows, const int out_cols, 538 : p_(depth, batch, in_planes, in_rows, in_cols, out_planes, out_rows, 593 const int out_rows = GetTensorDim(*output, data_format, '1'); 614 out_planes, out_rows, out_cols, window, stride,
|
D | fractional_avg_pool_op.cc | 245 const int64 out_rows = out_backprop.dim_size(1); in Compute() local 277 out_cols * out_rows * out_batch); in Compute() 283 for (int64 r = 0; r < out_rows; ++r) { in Compute() 296 const int64 out_index = (b * out_rows + r) * out_cols + c; in Compute()
|
D | quantized_conv_ops.cc | 540 int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0; in Compute() local 543 padding_, &out_rows, &pad_rows)); in Compute() 548 CHECK_GT(out_rows, 0); in Compute() 551 TensorShape out_shape({batch, out_rows, out_cols, out_depth}); in Compute() 564 padding_, output->flat<T3>().data(), out_rows, out_cols, in Compute()
|
D | conv_ops_using_gemm.cc | 520 int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0; in Compute() local 523 padding_, &out_rows, &pad_rows)); in Compute() 528 ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth); in Compute() 552 output->flat<T>().data(), out_rows, out_cols); in Compute()
|
D | depthwise_conv_op_gpu.h | 47 args.in_cols <= 32 && args.in_rows == args.out_rows && in CanLaunchDepthwiseConv2dGPUSmall() 60 args.in_cols <= 32 && args.in_rows == args.out_rows && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 90 const int out_height = args.out_rows; in DepthwiseConv2dGPUKernelNHWC() 330 const int out_height = args.out_rows; in DepthwiseConv2dGPUKernelNCHW() 637 const int num_outputs = args.out_rows * args.out_cols * block_count; in LaunchDepthwiseConv2dGPUSmall() 760 args.batch * args.out_rows * args.out_cols * args.out_depth; 832 const int out_height = args.out_rows; 902 const int out_height = args.out_rows; 1052 const int out_height = args.out_rows; 1336 const int out_height = args.out_rows; [all …]
|
D | conv_ops_3d.cc | 226 int64 out_rows = GetTensorDim(*output, data_format, '1'); in launch() local 233 0, (out_rows - 1) * strides[1] + filter_rows - in_rows); in launch() 361 .set_spatial_dim(DimIndex::Y, out_rows) in launch() 400 {{out_planes, out_rows, out_cols}}, out_depth), in launch()
|
D | depthwise_conv_op.h | 39 int out_rows; member 54 out_rows(0), in DepthwiseArgs()
|
D | conv_ops_fused_impl.h | 593 const int64 out_rows = GetTensorDim(*output, params.data_format, 'H'); 616 0, (out_rows - 1) * dimensions.stride_rows + 705 .set_height(out_rows) 728 ShapeFromFormat(FORMAT_NCHW, out_batch, out_rows, 905 params_.data_format, dimensions.batch, dimensions.out_rows,
|
D | conv_ops_fused_image_transform.cc | 825 int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0; in Compute() local 828 padding_, &out_rows, &pad_rows)); in Compute() 833 ShapeFromFormat(FORMAT_NHWC, batch, out_rows, out_cols, out_depth); in Compute() 861 output->flat<T>().data(), out_rows, out_cols, st, top_padding, in Compute()
|
D | conv_ops.h | 98 int64 out_rows;
|
/external/tensorflow/tensorflow/python/framework/ |
D | common_shapes.py | 225 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 229 output_shape = [batch_size, out_rows, out_cols, depth_out] 286 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 290 return [tensor_shape.TensorShape([batch_size, out_rows, out_cols, depth_out])] 349 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 353 return [tensor_shape.TensorShape([batch_size, out_rows, out_cols, depth_out])] 412 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, ksize_r, 416 output_shape = [batch_size, out_rows, out_cols, depth] 484 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, ksize_r, 487 output_shape = [batch_size, out_rows, out_cols, depth]
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 90 int64 out_rows = 0, out_cols = 0, pad_rows = 0, pad_cols = 0; in Compute() local 93 padding_, &out_rows, &pad_rows)); in Compute() 97 TensorShape out_shape({batch, out_rows, out_cols, out_depth}); in Compute() 115 << out_rows << ", " << out_cols << ", " << out_depth << "]"; in Compute()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ExtractVolumePatches.pbtxt | 12 5-D Tensor with shape `[batch, out_planes, out_rows, out_cols, 15 in the "depth" dimension. Note `out_planes`, `out_rows` and `out_cols`
|
D | api_def_ExtractImagePatches.pbtxt | 12 4-D Tensor with shape `[batch, out_rows, out_cols, ksize_rows * 15 `out_rows` and `out_cols` are the dimensions of the output patches.
|
D | api_def_Conv3DBackpropInput.pbtxt | 19 Backprop signal of shape `[batch, out_depth, out_rows, out_cols,
|
D | api_def_Conv3DBackpropFilter.pbtxt | 19 Backprop signal of shape `[batch, out_depth, out_rows, out_cols,
|