Home
last modified time | relevance | path

Searched refs:recurrent_kernel (Results 1 – 14 of 14) sorted by relevance

/external/tensorflow/tensorflow/python/keras/layers/
Drecurrent_v2.py283 recurrent_kernel=self.cell.recurrent_kernel,
291 recurrent_kernel=self.cell.recurrent_kernel,
308 recurrent_kernel=self.cell.recurrent_kernel,
315 self.cell.kernel, self.cell.recurrent_kernel,
321 def standard_gru(inputs, init_h, kernel, recurrent_kernel, bias, activation, argument
369 matrix_inner = K.dot(h_tm1, recurrent_kernel)
392 def cudnn_gru(inputs, init_h, kernel, recurrent_kernel, bias, time_major): argument
399 weights += array_ops.split(recurrent_kernel, 3, axis=1)
634 self.cell.recurrent_kernel, self.cell.bias, self.time_major)
638 self.cell.recurrent_kernel, self.cell.bias, self.activation,
[all …]
Dcudnn_recurrent.py143 return [self.kernel, self.recurrent_kernel, self.bias]
149 return [self.kernel, self.recurrent_kernel, self.bias]
256 self.recurrent_kernel = self.add_weight(
283 self.recurrent_kernel[:, self.units:self.units * 2],
284 self.recurrent_kernel[:, :self.units],
285 self.recurrent_kernel[:, self.units * 2:],
439 self.recurrent_kernel = self.add_weight(
479 self.recurrent_kernel[:, :self.units],
480 self.recurrent_kernel[:, self.units:self.units * 2],
481 self.recurrent_kernel[:, self.units * 2:self.units * 3],
[all …]
Drecurrent.py1215 self.recurrent_kernel = self.add_weight(
1247 output = h + K.dot(prev_output, self.recurrent_kernel)
1622 self.recurrent_kernel = self.add_weight(
1688 recurrent_z = K.dot(h_tm1_z, self.recurrent_kernel[:, :self.units])
1690 self.recurrent_kernel[:, self.units:self.units * 2])
1701 recurrent_h = K.dot(h_tm1_h, self.recurrent_kernel[:, self.units * 2:])
1707 self.recurrent_kernel[:, self.units * 2:])
1729 matrix_inner = K.dot(h_tm1, self.recurrent_kernel)
1734 matrix_inner = K.dot(h_tm1, self.recurrent_kernel[:, :2 * self.units])
1746 self.recurrent_kernel[:, 2 * self.units:])
[all …]
Drecurrent_test.py158 self.recurrent_kernel = self.add_weight(
167 output = h + keras.backend.dot(prev_output, self.recurrent_kernel)
242 self.recurrent_kernel = self.add_weight(
251 output = h + keras.backend.dot(prev_output, self.recurrent_kernel)
398 self.recurrent_kernel = self.add_weight(
412 h_state = keras.backend.dot(prev_output, self.recurrent_kernel)
528 self.recurrent_kernel = self.add_weight(
542 h_state = keras.backend.dot(prev_output, self.recurrent_kernel)
Dsimplernn_test.py98 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
Dgru_test.py204 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
Dconvolutional_recurrent.py620 self.recurrent_kernel = self.add_weight(
685 recurrent_kernel_o) = array_ops.split(self.recurrent_kernel, 4, axis=3)
Dwrappers_test.py48 self.recurrent_kernel = self.add_weight(
62 h_state = keras.backend.dot(prev_output, self.recurrent_kernel)
Dlstm_test.py117 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
Dgru_v2_test.py383 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
Dlstm_v2_test.py375 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
/external/tensorflow/tensorflow/python/keras/saving/
Dhdf5_format.py420 recurrent_kernel = np.concatenate(
423 weights = [kernel, recurrent_kernel, bias]
431 recurrent_kernel = np.concatenate(
435 weights = [kernel, recurrent_kernel, bias]
441 recurrent_kernel = np.concatenate(
449 recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0))
450 weights = [kernel, recurrent_kernel, bias]
/external/tensorflow/tensorflow/python/kernel_tests/
Drnn_test.py603 kernel, recurrent_kernel, bias = keras_weights
604 tf_weights = [np.concatenate((kernel, recurrent_kernel)), bias]
/external/tensorflow/tensorflow/contrib/rnn/python/ops/
Drnn_cell.py1528 self.recurrent_kernel = self.add_variable(
1573 m_matrix = math_ops.matmul(m_prev, self.recurrent_kernel)
3945 self.recurrent_kernel = self.add_weight(
3984 u = self.recurrent_kernel