/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 80 ragged_reduce_op=ragged_math_ops.reduce_prod, 86 ragged_reduce_op=ragged_math_ops.reduce_prod, 159 ragged_reduce_op=ragged_math_ops.reduce_prod, 185 ragged_reduce_op=ragged_math_ops.reduce_prod, 214 ragged_reduce_op=ragged_math_ops.reduce_prod,
|
D | ragged_math_ops.py | 508 def reduce_prod(input_tensor, axis=None, keepdims=None, name=None): function 510 return _ragged_reduce_aggregate(math_ops.reduce_prod, 556 reduce_prod(_cast(input_tensor, dtypes.int32), axis, keepdims), 578 _set_ragged_reduce_docstring(reduce_prod, 'product', 'multiplied', '1',
|
D | ragged_dispatch.py | 397 math_ops.reduce_prod, 456 (math_ops.reduce_prod, ragged_math_ops.reduce_prod, ['input_tensor']),
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 63 tf.reduce_prod( 66 tf.reduce_prod( 68 self.assertAllEqual(tf.reduce_prod(a, [0, 1]).eval(), 720.0)
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/ |
D | __init__.py | 130 reduce_prod = _ops.reduce_prod variable
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | batch_reshape.py | 379 original_size = math_ops.reduce_prod(original_shape) 382 original_size // math_ops.maximum(1, -math_ops.reduce_prod(new_shape))) 398 math_ops.reduce_prod(expanded_new_shape),
|
D | vector_diffeomixture.py | 581 batch_size = array_ops.reduce_prod(self.batch_shape_tensor()) 584 mix_batch_size = math_ops.reduce_prod( 608 stride = array_ops.reduce_prod(
|
D | test_util.py | 88 batch_size = math_ops.reduce_prod(dist.batch_shape_tensor())
|
D | conditional_transformed_distribution.py | 149 prob = math_ops.reduce_prod(prob, self._reduce_event_indices)
|
D | poisson_lognormal.py | 365 batch_size = math_ops.reduce_prod(self.batch_shape_tensor())
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator_circulant.py | 257 (vec_leading_shape, [math_ops.reduce_prod(vec_block_shape)]), 0) 332 n = math_ops.reduce_prod(trailing_dims) 422 det = math_ops.reduce_prod(self.spectrum, axis=axis)
|
D | linear_operator_lower_triangular.py | 198 return math_ops.reduce_prod(self._diag, axis=[-1])
|
D | linear_operator_diag.py | 231 return math_ops.reduce_prod(self._diag, axis=[-1])
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | embeddings_ops.py | 64 ids, math_ops.reduce_prod(shape, keepdims=True))
|
/external/tensorflow/tensorflow/python/ops/ |
D | math_grad_test.py | 153 outputs = math_ops.reduce_prod(inputs) 164 outputs = math_ops.reduce_prod(inputs, -1) 176 outputs = math_ops.reduce_prod(inputs) 188 outputs = math_ops.reduce_prod(inputs, -1)
|
D | data_flow_grad.py | 39 math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape)
|
D | math_ops.py | 1816 def reduce_prod(input_tensor, axis=None, keepdims=False, name=None): function 1890 return reduce_prod(input_tensor, axis, keepdims, name) 2966 array_is_nonempty = reduce_prod(array_ops.shape(arr)) > 0 3656 prod_free_dims = reduce_prod(free_dims) 3657 prod_axes_dims = reduce_prod(axes_dims)
|
D | math_grad.py | 136 math_ops.reduce_prod(input_shape), math_ops.reduce_prod(output_shape)) 169 reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced)) 170 other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | reduce_ops_test.py | 105 self._testReduction(math_ops.reduce_prod, np.prod, np.float32, 109 self._testReduction(math_ops.reduce_prod, np.prod, np.complex64,
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | local.py | 726 in_size = K.math_ops.reduce_prod(in_dims) 727 out_size = K.math_ops.reduce_prod(out_dims)
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | transformed_distribution.py | 470 prob = math_ops.reduce_prod(prob, self._reduce_event_indices) 548 entropy *= math_ops.cast(math_ops.reduce_prod(self._override_event_shape),
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduction_ops_test.py | 106 math_ops.reduce_prod, math_ops.reduce_max, 567 return math_ops.reduce_prod(x, reduction_axes, keepdims) 578 v = math_ops.reduce_prod([0, 0], constant_op.constant(0, dtype=dtype)) 650 y = math_ops.reduce_prod(x, [1]) 660 y = math_ops.reduce_prod(x, [0])
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | embedding_ops.py | 134 math_ops.reduce_prod( 490 ids, math_ops.reduce_prod(shape, keepdims=True))
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/kernel_tests/ |
D | monte_carlo_test.py | 84 x1_times_x2 = math_ops.reduce_prod(x, axis=[-1])
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/data/ |
D | tfexample_decoder.py | 276 pred=math_ops.equal(math_ops.reduce_prod(array_ops.shape(item)), 0),
|