/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduction_ops_test.py | 120 def _tf_reduce(self, x, reduction_axes, keepdims): argument 123 def _np_reduce(self, x, reduction_axes, keepdims): argument 138 def _compare(self, x, reduction_axes, keepdims, feed_dict=None): argument 139 np_ans = self._np_reduce(x, reduction_axes, keepdims) 141 tf_ans = self._tf_reduce(x, reduction_axes, keepdims) 146 def _compareAll(self, x, reduction_axes, feed_dict=None): argument 147 if reduction_axes is not None and np.shape(reduction_axes) == (1,): 149 self._compareAll(x, reduction_axes[0]) 150 self._compare(x, reduction_axes, keepdims=False, feed_dict=feed_dict) 151 self._compare(x, reduction_axes, keepdims=True, feed_dict=feed_dict) [all …]
|
D | reduction_ops_test_big.py | 32 def _tf_reduce(self, x, reduction_axes, keepdims): argument 39 def _tf_reduce_max(self, x, reduction_axes, keepdims): argument 40 return math_ops.reduce_max(x, reduction_axes, keepdims) 42 def _tf_reduce_all(self, x, reduction_axes, keepdims): argument 43 return math_ops.reduce_all(x, reduction_axes, keepdims) 45 def _tf_reduce_mean(self, x, reduction_axes, keepdims): argument 46 return math_ops.reduce_mean(x, reduction_axes, keepdims) 48 def _tf_reduce_sum(self, x, reduction_axes, keepdims): argument 49 return math_ops.reduce_sum(x, reduction_axes, keepdims)
|
D | sparse_ops_test.py | 614 def _compare(self, sp_t, reduction_axes, ndims, keep_dims, do_sum): argument 618 if reduction_axes is None: 624 if not isinstance(reduction_axes, list): # Single scalar. 625 reduction_axes = [reduction_axes] 626 reduction_axes = np.array(reduction_axes).astype(np.int32) 628 reduction_axes = (reduction_axes + ndims) % ndims 630 reduction_axes.sort() 631 for ra in reduction_axes.ravel()[::-1]: 639 tf_dense_ans = sparse_ops.sparse_reduce_sum(sp_t, reduction_axes, 642 tf_dense_ans = sparse_ops.sparse_reduce_max(sp_t, reduction_axes, [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | normalization_test.py | 177 reduction_axes=[-2, -1], channels_axis=-3) 185 reduction_axes=[-2, -1], channels_axis=-3) 194 normalization.group_norm(inputs, reduction_axes=[1, 5]) 200 normalization.group_norm(inputs, channels_axis=-2, reduction_axes=[-2]) 203 normalization.group_norm(inputs, channels_axis=1, reduction_axes=[1, 3]) 206 normalization.group_norm(inputs, channels_axis=-2, reduction_axes=[2]) 222 reduction_axes=[-3, -2]) 229 reduction_axes=[-3, -2], groups=groups) 237 reduction_axes=[-3, -2]) 263 channels_axis=-1, reduction_axes=(-3, -2), [all …]
|
D | normalization.py | 169 reduction_axes=(-3, -2), argument 277 reduction_axes = list(reduction_axes) 278 for i in range(len(reduction_axes)): 279 if reduction_axes[i] < 0: 280 reduction_axes[i] += inputs.shape.ndims 282 for a in reduction_axes: 315 for a in reduction_axes:
|
/external/tensorflow/tensorflow/core/kernels/ |
D | reduction_ops.h | 46 const ReductionAxes& reduction_axes, const Reducer& reducer) { in operator() 47 out.device(d) = in.reduce(reduction_axes, reducer); in operator() 56 const ReductionAxes& reduction_axes, 60 out.device(d) = in.reduce(reduction_axes, sum_reducer) / 72 const ReductionAxes& reduction_axes, 77 (in * in.conjugate()).reduce(reduction_axes, sum_reducer).sqrt(); 86 const ReductionAxes& reduction_axes, 92 .reduce(reduction_axes, sum_reducer) 133 const ReductionAxes& reduction_axes,
|
D | reduction_gpu_kernels.cu.h | 855 const ReductionAxes& reduction_axes, Op op) { 862 reduction_axes[0] == 1) { // row reduction 865 reduction_axes[0] == 0) { // column reduction 867 } else if (in_rank == 3 && out_rank == 2 && reduction_axes[0] == 1) { 870 } else if (in_rank == 3 && out_rank == 1 && reduction_axes[0] == 0 && 871 reduction_axes[1] == 2) { 878 if (out_rank == 1) ss << " " << reduction_axes[0]; 879 if (out_rank == 2) ss << " " << reduction_axes[1]; 888 const ReductionAxes& reduction_axes, 896 const ReductionAxes& reduction_axes, [all …]
|
D | sparse_reduce_op.cc | 59 std::vector<int32> reduction_axes(axes_slice.begin(), axes_slice.end()); in SparseTensorReduceHelper() local 61 for (int64 i = 0; i < reduction_axes.size(); ++i) { in SparseTensorReduceHelper() 62 reduction_axes[i] = (reduction_axes[i] + ndims) % ndims; in SparseTensorReduceHelper() 64 std::sort(reduction_axes.begin(), reduction_axes.end()); in SparseTensorReduceHelper() 74 perm.begin(), perm.end(), reduction_axes.begin(), reduction_axes.end(), in SparseTensorReduceHelper()
|
D | reduction_ops_gpu_bool.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_gpu_complex128.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_half_mean_sum.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_gpu_complex64.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_half_prod_max_min.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SparseReduceMaxSparse.pbtxt | 23 name: "reduction_axes" 40 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 42 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 45 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
D | api_def_SparseReduceSumSparse.pbtxt | 23 name: "reduction_axes" 40 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 42 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 45 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
D | api_def_SparseReduceMax.pbtxt | 23 name: "reduction_axes" 46 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 48 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 51 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
D | api_def_SparseReduceSum.pbtxt | 23 name: "reduction_axes" 46 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 48 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 51 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
D | virtual_batchnorm_impl.py | 199 reduction_axes = list(range(ndims)) 200 del reduction_axes[axis] 219 self._reference_batch, reduction_axes) 247 def _virtual_statistics(self, inputs, reduction_axes): argument 249 cur_mean, cur_mean_sq = _statistics(inputs, reduction_axes)
|
D | virtual_batchnorm_test.py | 80 reduction_axes = list(range(4)) 81 del reduction_axes[reduction_axis] 82 mom_mean, mom_variance = nn.moments(full_batch, reduction_axes)
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
D | batch_normalization.py | 211 reduction_axes = [i for i in range(ndims) if i not in self.batchnorm.axis] 220 reduction_axes != list(range(ndims - 1))): 261 reduction_axes = [i for i in range(len(input_shape)) if i not in event_dims] 269 _, v = nn.moments(y, axes=reduction_axes, keep_dims=True)
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
D | batch_normalization_test.py | 111 reduction_axes = self._reduction_axes(input_shape, event_dims) 115 x_, axis=reduction_axes, keepdims=keepdims) 116 expected_batch_var = np.var(x_, axis=reduction_axes, keepdims=keepdims) 122 self.assertAllClose(np.mean(zeros, axis=reduction_axes), 123 np.mean(norm_x_, axis=reduction_axes))
|
/external/tensorflow/tensorflow/python/ops/ |
D | sparse_ops.py | 1082 reduction_axes = None 1088 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, 1095 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, 1107 reduction_axes=None, keep_dims=None): argument 1167 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims) 1177 reduction_axes=None, argument 1216 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims)) 1272 reduction_axes = None 1278 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, 1284 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.sparse.pbtxt | 65 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=… 69 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=… 73 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=… 77 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=…
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 565 def _moments(self, inputs, reduction_axes, keep_dims): argument 566 return nn.moments(inputs, reduction_axes, keep_dims=keep_dims) 597 reduction_axes = [i for i in range(ndims) if i not in self.axis] 599 del reduction_axes[1] # Do not reduce along virtual batch dim 608 reduction_axes != list(range(ndims - 1))): 641 reduction_axes,
|
/external/tensorflow/tensorflow/core/graph/ |
D | quantize_training.cc | 478 Node* reduction_axes; in MakeEMAMinMaxVars() local 480 MakeReductionAxes(graph, name_prefix, input, &reduction_axes)); in MakeEMAMinMaxVars() 485 .Input(reduction_axes) in MakeEMAMinMaxVars() 491 .Input(reduction_axes) in MakeEMAMinMaxVars()
|