/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 57 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 63 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 69 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 75 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 81 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 87 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 93 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 99 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 105 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 111 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], [all …]
|
D | ragged_row_lengths_op_test.py | 38 rt_input=[[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []], 41 rt_input=[[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []], 47 rt_input=[['a'], ['b', 'c', 'd'], ['e'], [], ['f']], 50 rt_input=[['a'], ['b', 'c', 'd'], ['e'], [], ['f']], 54 rt_input=[['a', 'b', 'c', 'd', 'e', 'f', 'g']], 57 rt_input=[[], ['a', 'b', 'c', 'd', 'e', 'f', 'g'], []], 60 rt_input=[], 64 rt_input=[], 71 rt_input=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10]]], 76 rt_input=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10]]], [all …]
|
D | ragged_tensor_shape.py | 161 def from_tensor(cls, rt_input): argument 163 with ops.name_scope(None, 'RaggedTensorDynamicShapeFromTensor', [rt_input]): 164 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 165 if not ragged_tensor.is_ragged(rt_input): 166 return cls([], array_ops.shape(rt_input)) 169 (rt_input.nrows(),) + rt_input.nested_row_lengths()) 172 array_ops.shape(rt_input.flat_values)[1:]) 440 def broadcast_to(rt_input, shape, broadcast_inner_dimensions=True): argument 459 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 463 return _broadcast_to_uniform_shape(rt_input, shape, [all …]
|
D | ragged_tile_op_test.py | 43 rt_input=[[1, 2], [3]], 54 rt_input=[[[1, 2], [3]], [], [[4]]], 60 rt_input=[[[1, 2], [3]], [], [[4]]], 65 rt_input=[[[1, 2], [3]], [], [[4]]], 70 rt_input=[[[1, 2], [3]], [], [[4]]], 76 rt_input=[[[1, 2], [3]], [], [[4]]], 82 rt_input=[[[1, 2], [3]], [], [[4]]], 88 rt_input=[[['a', 'b'], ['c']], [], [['d']]], 97 rt_input=[[[1, 2], [3, 4]], [], [[5, 6]]], 104 rt_input=[[[1, 2], [3, 4]], [], [[5, 6]]], [all …]
|
D | ragged_getitem.py | 108 def _ragged_getitem(rt_input, key_list): argument 127 return rt_input 132 expanded_key_list = _expand_ellipsis(key_list, rt_input.shape.ndims) 133 return _ragged_getitem(rt_input, expanded_key_list) 138 inner_rt = _ragged_getitem(rt_input, inner_keys) 146 sliced_rt_input = _slice_ragged_row_dimension(rt_input, row_key) 152 starts = rt_input.row_splits[:-1] 153 limits = rt_input.row_splits[1:] 175 row = rt_input.values[starts[row_key]:limits[row_key]] 179 def _slice_ragged_row_dimension(rt_input, row_key): argument [all …]
|
D | ragged_expand_dims_op_test.py | 51 dict(rt_input=[[1, 2], [3]], 55 dict(rt_input=[[1, 2], [3]], 59 dict(rt_input=[[1, 2], [3]], 66 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 71 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 76 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 85 dict(rt_input=EXAMPLE4D, 90 dict(rt_input=EXAMPLE4D, 95 dict(rt_input=EXAMPLE4D, 100 dict(rt_input=EXAMPLE4D, [all …]
|
D | ragged_array_ops.py | 272 def _tile_ragged_values(rt_input, multiples, const_multiples=None): argument 297 ragged_rank = rt_input.ragged_rank 298 nested_splits = rt_input.nested_row_splits 323 ragged_tiled_values = array_ops.gather(rt_input.flat_values, inner_value_ids) 332 def _tile_ragged_splits(rt_input, multiples, const_multiples=None): argument 356 ragged_rank = rt_input.ragged_rank 357 nested_splits = rt_input.nested_row_splits 522 def _increase_ragged_rank_to(rt_input, ragged_rank): argument 525 if not ragged_tensor.is_ragged(rt_input): 526 rt_input = ragged_conversion_ops.from_tensor(rt_input) [all …]
|
D | ragged_concat_ops.py | 136 rt_input, name='rt_input') for rt_input in rt_inputs 184 splits = [[rt_input.row_splits] for rt_input in rt_inputs] 284 def _increase_ragged_rank_to(rt_input, ragged_rank): argument 287 if not ragged_tensor.is_ragged(rt_input): 288 rt_input = ragged_conversion_ops.from_tensor(rt_input) 289 if rt_input.ragged_rank < ragged_rank: 290 rt_input = rt_input.with_values( 291 _increase_ragged_rank_to(rt_input.values, ragged_rank - 1)) 292 return rt_input
|
D | ragged_conversion_ops.py | 32 def to_tensor(rt_input, default_value=None, name=None): argument 33 if ragged_tensor.is_ragged(rt_input): 34 return rt_input.to_tensor(default_value, name) 36 return rt_input 39 def to_sparse(rt_input, name=None): argument 40 return rt_input.to_sparse(name)
|
D | ragged_math_ops.py | 401 rt_input, argument 440 if not ragged_tensor.is_ragged(rt_input): 441 return reduce_op(rt_input, axis, name=name) 455 return reduce_op(rt_input.flat_values, None, name=name) 457 with ops.name_scope(name, 'RaggedReduce', [rt_input, axis]): 460 return rt_input 470 rt_input, axis[-1], keepdims) 474 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor( 475 rt_input, name='rt_input') 477 axis = ragged_util.get_positive_axis(axis, rt_input.shape.ndims) [all …]
|
D | ragged_where_op.py | 161 def _nrows(rt_input, out_type=dtypes.int64, name=None): argument 162 if isinstance(rt_input, ragged_tensor.RaggedTensor): 163 return rt_input.nrows(out_type=out_type, name=name) 165 with ops.name_scope(name, 'RaggedNRows', [rt_input]): 166 return array_ops.shape(rt_input, out_type=out_type)[0]
|
D | ragged_to_tensor_op_test.py | 98 rt_input, argument 103 rt = ragged_factory_ops.constant(rt_input, ragged_rank=ragged_rank) 131 def testError(self, rt_input, default, error, ragged_rank=None): argument 132 rt = ragged_factory_ops.constant(rt_input, ragged_rank=ragged_rank)
|
D | ragged_concat_op_test.py | 43 ragged_factory_ops.constant(rt_input, ragged_rank=rrank) 44 if rrank != 0 else constant_op.constant(rt_input) 45 for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
|
D | ragged_stack_op_test.py | 329 ragged_factory_ops.constant(rt_input, ragged_rank=rrank) # pylint: disable=g-long-ternary 330 if rrank != 0 else constant_op.constant(rt_input) 331 for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
|