/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
D | softmax_centered_test.py | 39 softmax = SoftmaxCentered() 40 self.assertEqual("softmax_centered", softmax.name) 43 self.assertAllClose(y, softmax.forward(x).eval()) 44 self.assertAllClose(x, softmax.inverse(y).eval()) 47 softmax.inverse_log_det_jacobian(y, event_ndims=1).eval(), 51 -softmax.inverse_log_det_jacobian(y, event_ndims=1).eval(), 52 softmax.forward_log_det_jacobian(x, event_ndims=1).eval(), 58 softmax = SoftmaxCentered() 59 self.assertEqual("softmax_centered", softmax.name) 64 self.assertAllClose(real_y, softmax.forward(x).eval( [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | softmax_op_functor.h | 35 typename TTypes<T>::Matrix softmax, const bool log); 45 typename TTypes<T>::Matrix softmax, const bool log) { in Compute() 73 softmax.device(d) = shifted_logits; in Compute() 75 softmax.device(d) = (softmax - softmax.exp() in Compute() 86 softmax.device(d) = shifted_logits.exp(); in Compute() 88 softmax.device(d) = (softmax * softmax.sum(along_class) in Compute()
|
D | softmax_op.cc | 42 typename TTypes<T>::Matrix softmax, const bool log) { in operator ()() 43 SoftmaxEigenImpl<Device, T>::Compute(d, logits, softmax, log); in operator ()()
|
/external/libtextclassifier/lang_id/common/math/ |
D | softmax.cc | 75 std::vector<float> softmax; in ComputeSoftmax() local 76 softmax.reserve(scores.size()); in ComputeSoftmax() 78 return softmax; in ComputeSoftmax() 97 softmax.push_back(exp_scores[i] / denominator); in ComputeSoftmax() 99 return softmax; in ComputeSoftmax()
|
/external/libtextclassifier/utils/math/ |
D | softmax.cc | 77 std::vector<float> softmax; in ComputeSoftmax() local 80 softmax.reserve(scores_size); in ComputeSoftmax() 99 softmax.push_back(exp_scores[i] / denominator); in ComputeSoftmax() 101 return softmax; in ComputeSoftmax()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | softmax_op_test.py | 48 softmax = e / np.reshape(np.sum(e, axis=dim), one_only_on_dim) 50 res = np.log(softmax) 52 res = softmax 67 tf_softmax = nn_ops.softmax(np_features, axis=dim, name=name) 214 op = nn_ops.softmax([[[1., 1., 1., 1.], [1., 2., 3., 4.]], 226 nn_ops.softmax(x, axis=0).eval() 234 nn_ops.softmax([1., 2., 3., 4.], axis=dim).eval() 241 nn_ops.softmax(ones, axis=2).eval() 254 y = nn_ops.softmax(x)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Softmax.pbtxt | 10 name: "softmax" 15 summary: "Computes softmax activations." 19 $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$
|
D | api_def_SparseSoftmax.pbtxt | 28 summary: "Applies softmax to a batched N-D `SparseTensor`." 33 This op is equivalent to applying the normal `tf.nn.softmax()` to each innermost 38 (1) Applies `tf.nn.softmax()` to a densified view of each innermost submatrix
|
D | api_def_LogSoftmax.pbtxt | 15 summary: "Computes log softmax activations."
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/python/ops/ |
D | nn.py | 35 softmax = core.define_unary_op('softmax', nn.softmax) variable
|
D | nn_test.py | 43 ('softmax', nn_ops.softmax, nn.softmax),
|
/external/tensorflow/tensorflow/contrib/specs/python/ |
D | specs_ops.py | 84 Cm = Fun(layers.conv2d, activation_fn=nn_ops.softmax) 93 Fm = Fun(layers.fully_connected, activation_fn=nn_ops.softmax) 121 Smax = Fun(nn_ops.softmax)
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/models/ |
D | hard_decisions_to_data_then_nn.py | 59 inference_result, output_size, activation_fn=nn_ops.softmax) 65 return nn_ops.softmax(
|
/external/libtextclassifier/lang_id/ |
D | lang-id.cc | 142 std::vector<float> softmax = ComputeSoftmax(scores); in FindLanguages() local 144 for (int i = 0; i < softmax.size(); ++i) { in FindLanguages() 146 softmax[i]); in FindLanguages()
|
/external/libtextclassifier/lang_id/common/flatbuffers/ |
D | embedding-network.fbs | 84 // hidden layer or the final (output / softmax) layer. 93 // is generally used for softmax classification. That's why we say that the 94 // last layer is the "softmax layer". 113 // Hidden layers, followed by the final (softmax) layer.
|
/external/tensorflow/tensorflow/python/keras/ |
D | activations.py | 44 def softmax(x, axis=-1): function 59 return nn.softmax(x)
|
D | activations_test.py | 60 f = keras.backend.function([x], [keras.activations.softmax(x)]) 69 keras.activations.softmax(x) 73 f = keras.backend.function([x], [keras.activations.softmax(x)])
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
D | export_text_rnn_model.py | 158 softmax = tf.nn.softmax(logits) 160 next_ids = tf.math.argmax(softmax, axis=1)
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_grad.py | 294 softmax = op.outputs[0] 295 sum_channels = math_ops.reduce_sum(grad_softmax * softmax, -1, keepdims=True) 296 return (grad_softmax - sum_channels) * softmax 313 softmax = math_ops.exp(op.outputs[0]) 314 return grad - math_ops.reduce_sum(grad, -1, keepdims=True) * softmax 534 softmax = nn_ops.softmax(logits) 539 array_ops.expand_dims(softmax, 2)), 540 axis=1)) * softmax)
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | analytical_cost_estimator_test.cc | 81 auto softmax = ops::Softmax(s.WithOpName("softmax"), logits); in CreateMiniGraph() local 82 auto lsm = ops::Log(s.WithOpName("lsm"), softmax); in CreateMiniGraph()
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | seq2seq_ops.py | 59 predictions.append(nn.softmax(sampling_decoding[i])) 61 predictions.append(nn.softmax(pred))
|
/external/tensorflow/tensorflow/lite/experimental/micro/kernels/ |
D | BUILD | 18 "softmax.cc", 54 "softmax.cc",
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/ |
D | hybrid_model.py | 92 return nn_ops.softmax(self._base_inference(data, data_spec=data_spec)) 102 probabilities = nn_ops.softmax(inference_result, name="probabilities")
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | mixture_test.py | 257 cat_probs = nn_ops.softmax(dist.cat.logits) 279 cat_probs = nn_ops.softmax(dist.cat.logits) 307 cat_probs = nn_ops.softmax(dist.cat.logits) 350 cat_probs = nn_ops.softmax(dist.cat.logits) 412 cat_probs = nn_ops.softmax([dist.cat.logits])[0] 440 cat_probs = nn_ops.softmax([dist.cat.logits])[0] 466 cat_probs = nn_ops.softmax(dist.cat.logits) 494 cat_probs = nn_ops.softmax(dist.cat.logits) 683 cat_probs = nn_ops.softmax(dist.cat.logits)
|
/external/tensorflow/tensorflow/examples/udacity/ |
D | 2_fullyconnected.ipynb | 269 " # the softmax and cross-entropy (it's one operation in TensorFlow, because\n", 283 " train_prediction = tf.nn.softmax(logits)\n", 284 " valid_prediction = tf.nn.softmax(\n", 286 " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)" 457 " train_prediction = tf.nn.softmax(logits)\n", 458 " valid_prediction = tf.nn.softmax(\n", 460 " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)"
|