/external/tensorflow/tensorflow/python/kernel_tests/ |
D | softplus_op_test.py | 42 softplus = nn_ops.softplus(np_features) 43 tf_softplus = self.evaluate(softplus) 46 self.assertShapeEqual(np_softplus, softplus) 81 y = nn_ops.softplus(x, name="softplus") 98 y = nn_ops.softplus(x, name="softplus") 116 y = nn_ops.softplus(x, name="softplus") 134 nn_ops.softplus(constant_op.constant(42)).eval()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SoftplusGrad.pbtxt | 7 The backpropagated gradients to the corresponding softplus operation. 13 The features passed as input to the corresponding softplus operation. 22 summary: "Computes softplus gradients for a softplus operation."
|
D | api_def_Softplus.pbtxt | 3 summary: "Computes softplus: `log(exp(features) + 1)`."
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | bernoulli.py | 156 nn.softplus(-self.logits)) 184 delta_probs0 = nn.softplus(-b.logits) - nn.softplus(-a.logits) 185 delta_probs1 = nn.softplus(b.logits) - nn.softplus(a.logits)
|
D | gamma.py | 305 concentration=nn.softplus(concentration, 307 rate=nn.softplus(rate, name="softplus_rate"),
|
D | beta.py | 368 concentration1=nn.softplus(concentration1, 370 concentration0=nn.softplus(concentration0,
|
D | exponential.py | 162 rate=nn.softplus(rate, name="softplus_rate"),
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | estimator_test.py | 51 def softplus(x): function 66 return softplus(logits[..., 1] + scale_bias) 71 scale=nn_ops.softplus(logits[..., 1] + scale_bias)) 104 expected_stddev = softplus(logits[..., 1] + scale_bias)
|
/external/tensorflow/tensorflow/core/api_def/python_api/ |
D | api_def_Softplus.pbtxt | 4 name: "math.softplus" 7 name: "nn.softplus"
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
D | softplus.py | 118 return nn_ops.softplus(x) 120 return hinge_softness * nn_ops.softplus(x / hinge_softness) 146 return -nn_ops.softplus(-x)
|
D | sigmoid.py | 59 return -nn_ops.softplus(-x) - nn_ops.softplus(x)
|
D | scale_tril.py | 24 from tensorflow.contrib.distributions.python.ops.bijectors import softplus 116 diag_bijector = softplus.Softplus(validate_args=validate_args)
|
D | softmax_centered.py | 170 log_normalization = nn_ops.softplus(
|
D | __init__.py | 88 from tensorflow.contrib.distributions.python.ops.bijectors.softplus import *
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/python/ops/ |
D | nn.py | 29 softplus = core.define_unary_op('softplus', nn.softplus) variable
|
D | nn_test.py | 41 ('softplus', nn_ops.softplus, nn.softplus),
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | logistic.py | 199 return -nn_ops.softplus(-self._z(x)) 205 return -nn_ops.softplus(self._z(x)) 212 return - z - 2. * nn_ops.softplus(-z)
|
D | inverse_gamma.py | 305 concentration=nn.softplus(concentration, 307 rate=nn.softplus(rate, name="softplus_rate"),
|
D | mvn_diag.py | 249 scale_diag=nn.softplus(scale_diag),
|
/external/tensorflow/tensorflow/python/keras/ |
D | activations.py | 118 def softplus(x): function 127 return nn.softplus(x)
|
D | activations_test.py | 95 def softplus(x): function 99 f = keras.backend.function([x], [keras.activations.softplus(x)]) 102 expected = softplus(test_values)
|
/external/tensorflow/tensorflow/contrib/keras/api/keras/activations/ |
D | __init__.py | 29 from tensorflow.python.keras.activations import softplus
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.activations.pbtxt | 48 name: "softplus"
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.activations.pbtxt | 48 name: "softplus"
|
/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | scaled_softplus.py | 66 y = alpha * nn.softplus(x / alpha)
|