/external/apache-commons-math/src/main/java/org/apache/commons/math/ode/ |
D | ContinuousOutputModel.java | 108 private List<StepInterpolator> steps; field in ContinuousOutputModel 114 steps = new ArrayList<StepInterpolator>(); in ContinuousOutputModel() 129 if (model.steps.size() == 0) { in append() 133 if (steps.size() == 0) { in append() 149 final StepInterpolator lastInterpolator = steps.get(index); in append() 161 for (StepInterpolator interpolator : model.steps) { in append() 162 steps.add(interpolator.copy()); in append() 165 index = steps.size() - 1; in append() 166 finalTime = (steps.get(index)).getCurrentTime(); in append() 189 steps.clear(); in reset() [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | linear_test.py | 97 classifier.fit(input_fn=input_fn, steps=100) 98 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 99 classifier.fit(input_fn=input_fn, steps=200) 100 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 123 classifier.fit(input_fn=input_fn, steps=100) 124 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 125 classifier.fit(input_fn=input_fn, steps=200) 126 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 138 classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) 140 input_fn=test_data.iris_input_multiclass_fn, steps=100) [all …]
|
D | dnn_linear_combined_test.py | 106 def steps(self): member in _StepCounterHook 221 estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) 224 estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) 277 classifier.fit(input_fn=_input_fn, steps=2) 297 input_fn=test_data.iris_input_multiclass_fn, steps=100, 348 classifier.fit(input_fn=_input_fn_float_label, steps=50) 370 classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) 372 input_fn=test_data.iris_input_logistic_fn, steps=100) 420 classifier.fit(input_fn=_input_fn, steps=100) 421 scores = classifier.evaluate(input_fn=_input_fn, steps=100) [all …]
|
D | debug_test.py | 97 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 116 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 133 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 155 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 178 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 199 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 225 classifier.fit(input_fn=input_fn, steps=5) 226 scores = classifier.evaluate(input_fn=input_fn, steps=1) 242 classifier.fit(input_fn=_input_fn, steps=5) 243 scores = classifier.evaluate(input_fn=_input_fn, steps=1) [all …]
|
D | svm_test.py | 46 svm_classifier.fit(input_fn=input_fn, steps=30) 47 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 72 svm_classifier.fit(input_fn=input_fn, steps=30) 73 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 104 svm_classifier.fit(input_fn=input_fn, steps=30) 105 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 127 svm_classifier.fit(input_fn=input_fn, steps=30) 128 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 155 svm_classifier.fit(input_fn=input_fn, steps=30) 156 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) [all …]
|
D | dnn_test.py | 212 dnn_estimator.fit(input_fn=_input_fn_train, steps=5) 213 scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) 287 classifier.fit(input_fn=_input_fn_float_label, steps=50) 304 classifier.fit(input_fn=input_fn, steps=5) 305 scores = classifier.evaluate(input_fn=input_fn, steps=1) 327 classifier.fit(input_fn=_input_fn, steps=5) 328 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 342 classifier.fit(x=train_x, y=train_y, steps=5) 343 scores = classifier.evaluate(x=train_x, y=train_y, steps=1) 395 classifier.fit(input_fn=_input_fn, steps=50) [all …]
|
D | composable_model_test.py | 137 classifier.fit(input_fn=input_fn, steps=1000) 138 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 139 classifier.fit(input_fn=input_fn, steps=2000) 140 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 163 classifier.fit(input_fn=input_fn, steps=1000) 164 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 165 classifier.fit(input_fn=input_fn, steps=2000) 166 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 178 classifier.fit(input_fn=_iris_input_fn, steps=1000) 179 classifier.evaluate(input_fn=_iris_input_fn, steps=100)
|
D | estimator_test.py | 205 est.fit(input_fn=_input_fn, steps=20) 268 est.fit(input_fn=_input_fn, steps=1) 353 est.fit(input_fn=_make_input_fn(features, labels), steps=1) 388 est.fit(input_fn=_make_input_fn(features, labels), steps=1) 412 est.fit(input_fn=boston_input_fn, steps=1) 426 est.fit(input_fn=boston_input_fn, steps=1) 443 est.fit(input_fn=boston_input_fn, steps=1) 445 est.evaluate(input_fn=boston_eval_fn, steps=1) 459 est.fit(input_fn=boston_input_fn, steps=1) 461 est.evaluate(input_fn=boston_eval_fn, steps=1) [all …]
|
/external/python/cpython3/Lib/ |
D | pipes.py | 92 return '<Template instance, steps=%r>' % (self.steps,) 96 self.steps = [] 102 t.steps = self.steps[:] 118 if self.steps and self.steps[-1][1] == SINK: 124 self.steps.append((cmd, kind)) 134 if self.steps and self.steps[0][1] == SOURCE: 140 self.steps.insert(0, (cmd, kind)) 155 if not self.steps: 157 if self.steps[-1][1] == SINK: 163 if not self.steps: [all …]
|
/external/python/cpython2/Lib/ |
D | pipes.py | 90 return '<Template instance, steps=%r>' % (self.steps,) 94 self.steps = [] 100 t.steps = self.steps[:] 119 if self.steps and self.steps[-1][1] == SINK: 128 self.steps.append((cmd, kind)) 141 if self.steps and self.steps[0][1] == SOURCE: 150 self.steps.insert(0, (cmd, kind)) 165 if not self.steps: 167 if self.steps[-1][1] == SINK: 174 if not self.steps: [all …]
|
/external/tensorflow/tensorflow/contrib/linear_optimizer/python/ |
D | sdca_estimator_test.py | 60 classifier.fit(input_fn=input_fn, steps=100) 61 loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 82 classifier.fit(input_fn=input_fn, steps=100) 83 loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 109 classifier.fit(input_fn=input_fn, steps=50) 110 metrics = classifier.evaluate(input_fn=input_fn, steps=1) 139 classifier.fit(input_fn=input_fn, steps=50) 140 metrics = classifier.evaluate(input_fn=input_fn, steps=1) 170 classifier.fit(input_fn=input_fn, steps=50) 171 metrics = classifier.evaluate(input_fn=input_fn, steps=1) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_distributed.py | 141 steps=None, argument 147 steps, batch_size = distributed_training_utils.get_input_params( 148 model._distribution_strategy, first_x_value, steps, batch_size) 149 batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) 157 model, dataset, verbose=verbose, steps=steps, callbacks=callbacks) 164 steps=steps, 172 steps=None, argument 179 steps, batch_size = distributed_training_utils.get_input_params( 180 model._distribution_strategy, first_x_value, steps, 182 batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) [all …]
|
D | training_generator_test.py | 121 steps=5, 127 steps=5, 131 steps=5, 147 steps=5, 152 steps=5, 156 steps=5, 161 steps=5, 166 steps=5, 170 steps=5, 200 steps=5, [all …]
|
/external/libxml2/ |
D | pattern.c | 104 xmlStreamStepPtr steps; /* the array of steps */ member 172 xmlStepOpPtr steps; /* ops for computation */ member 214 cur->steps = (xmlStepOpPtr) xmlMalloc(cur->maxStep * sizeof(xmlStepOp)); in xmlNewPattern() 215 if (cur->steps == NULL) { in xmlNewPattern() 243 if (comp->steps != NULL) { in xmlFreePattern() 246 op = &comp->steps[i]; in xmlFreePattern() 253 xmlFree(comp->steps); in xmlFreePattern() 353 temp = (xmlStepOpPtr) xmlRealloc(comp->steps, comp->maxStep * 2 * in xmlPatternAdd() 360 comp->steps = temp; in xmlPatternAdd() 363 comp->steps[comp->nbStep].op = op; in xmlPatternAdd() [all …]
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | kernel_estimators_test.py | 88 input_fn=_linearly_separable_binary_input_fn, steps=100) 91 input_fn=_linearly_separable_binary_input_fn, steps=1) 119 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 121 input_fn=_linearly_inseparable_binary_input_fn, steps=1) 141 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 143 input_fn=_linearly_inseparable_binary_input_fn, steps=1) 157 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 171 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 211 linear_classifier.fit(input_fn=input_fn, steps=100) 212 linear_metrics = linear_classifier.evaluate(input_fn=input_fn, steps=1) [all …]
|
/external/droiddriver/src/io/appium/droiddriver/actions/ |
D | SwipeAction.java | 99 private final int steps; field in SwipeAction 108 public SwipeAction(PhysicalDirection direction, int steps) { in SwipeAction() argument 109 this(direction, steps, false, 1000L); in SwipeAction() 115 public SwipeAction(PhysicalDirection direction, int steps, boolean drag, long timeoutMillis) { in SwipeAction() argument 116 this(direction, steps, drag, timeoutMillis, 0.1F, 0.1F, 0.1F, 0.1F); in SwipeAction() 131 public SwipeAction(PhysicalDirection direction, int steps, boolean drag, long timeoutMillis, in SwipeAction() argument 135 this.steps = Math.max(2, steps); in SwipeAction() 189 double xStep = ((double) (endX - startX)) / steps; in perform() 190 double yStep = ((double) (endY - startY)) / steps; in perform() 198 for (int i = 1; i < steps; i++) { in perform() [all …]
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | keras_test.py | 361 input_fn=get_ds_test_input_fn, steps=1) 362 est_keras.train(input_fn=get_ds_train_input_fn, steps=_TRAIN_SIZE / 16) 364 steps=1) 390 input_fn=get_ds_test_input_fn, steps=1) 391 est_keras.train(input_fn=get_ds_train_input_fn, steps=_TRAIN_SIZE / 16) 393 steps=1) 446 input_fn=eval_input_fn, steps=1) 447 est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16) 448 eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1) 471 est_keras.train(input_fn=get_ds_train_input_fn, steps=_TRAIN_SIZE / 16) [all …]
|
D | keras_multi_worker_test.py | 261 steps = 10 264 train_ds, _ = _mnist_synthetic_dataset(batch_size, steps) 267 orig_loss, orig_acc = model.evaluate(train_ds, steps=steps) 273 model.fit(x=train_ds, epochs=2, steps_per_epoch=steps) 277 trained_loss, trained_acc = model.evaluate(train_ds, steps=steps) 362 steps = 10 363 train_ds, _ = _mnist_synthetic_dataset(batch_size, steps) 366 orig_loss, _ = model.evaluate(train_ds, steps=steps) 372 steps_per_epoch=steps, 375 trained_loss, _ = model.evaluate(train_ds, steps=steps) [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | estimator_test.py | 159 classifier.fit(input_fn=_train_input_fn, steps=15) 160 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 179 classifier.fit(input_fn=_train_input_fn, steps=15) 206 model.fit(input_fn=_train_input_fn, steps=15) 207 model.evaluate(input_fn=_eval_input_fn, steps=1) 226 classifier.fit(input_fn=_train_input_fn, steps=15) 227 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 246 regressor.fit(input_fn=_train_input_fn, steps=15) 247 regressor.evaluate(input_fn=_eval_input_fn, steps=1) 274 model.fit(input_fn=_ranking_train_input_fn, steps=1000) [all …]
|
D | dnn_tree_combined_estimator_test.py | 86 classifier.fit(input_fn=_train_input_fn, steps=5) 108 classifier.fit(input_fn=_train_input_fn, steps=15) 109 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 132 classifier.fit(input_fn=_train_input_fn, steps=15) 133 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 166 est.train(input_fn=_train_input_fn, steps=1000) 169 res = est.evaluate(input_fn=_eval_input_fn, steps=1) 197 est.train(input_fn=_train_input_fn, steps=1000) 198 res = est.evaluate(input_fn=_eval_input_fn, steps=1) 228 est.train(input_fn=_train_input_fn, steps=1000) [all …]
|
/external/skia/src/core/ |
D | SkConvertPixels.cpp | 19 const SkColorSpaceXformSteps& steps) { in rect_memcpy() argument 25 && steps.flags.mask() != 0b00000) { in rect_memcpy() 36 const SkColorSpaceXformSteps& steps) { in swizzle_or_premul() argument 42 steps.flags.linearize || in swizzle_or_premul() 43 steps.flags.gamut_transform || in swizzle_or_premul() 44 steps.flags.unpremul || in swizzle_or_premul() 45 steps.flags.encode) { in swizzle_or_premul() 53 if (steps.flags.premul) { in swizzle_or_premul() 166 const SkColorSpaceXformSteps& steps) { in convert_with_pipeline() argument 173 steps.apply(&pipeline, srcInfo.colorType()); in convert_with_pipeline() [all …]
|
/external/skqp/src/core/ |
D | SkConvertPixels.cpp | 19 const SkColorSpaceXformSteps& steps) { in rect_memcpy() argument 25 && steps.flags.mask() != 0b00000) { in rect_memcpy() 36 const SkColorSpaceXformSteps& steps) { in swizzle_or_premul() argument 42 steps.flags.linearize || in swizzle_or_premul() 43 steps.flags.gamut_transform || in swizzle_or_premul() 44 steps.flags.unpremul || in swizzle_or_premul() 45 steps.flags.encode) { in swizzle_or_premul() 53 if (steps.flags.premul) { in swizzle_or_premul() 165 const SkColorSpaceXformSteps& steps) { in convert_with_pipeline() argument 172 steps.apply(&pipeline, srcInfo.colorType()); in convert_with_pipeline() [all …]
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
D | random_forest_test.py | 75 classifier.fit(input_fn=input_fn, steps=100) 76 res = classifier.evaluate(input_fn=input_fn, steps=10) 100 regressor.fit(input_fn=input_fn, steps=100) 101 res = regressor.evaluate(input_fn=input_fn, steps=10) 133 classifier.fit(input_fn=input_fn, steps=100) 162 classifier.fit(input_fn=input_fn, steps=100) 186 est.train(input_fn=input_fn, steps=100) 187 res = est.evaluate(input_fn=input_fn, steps=1) 215 regressor.train(input_fn=input_fn, steps=100) 216 res = regressor.evaluate(input_fn=input_fn, steps=10) [all …]
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | estimators_test.py | 71 first_estimator.train(input_fn=train_input_fn, steps=1) 73 input_fn=eval_input_fn, steps=1) 77 first_estimator.train(input_fn=train_input_fn, steps=1) 79 input_fn=eval_input_fn, steps=1)["loss"] 82 second_estimator.train(input_fn=train_input_fn, steps=1) 86 input_fn=whole_dataset_input_fn, steps=1) 94 steps=10) 109 steps=10, 131 steps=1, 227 steps=1) [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
D | experiment.py | 418 steps=self._eval_steps, 536 steps=self._eval_steps, 639 steps=self._eval_steps, 684 steps=self._eval_steps, 777 steps=train_steps_per_iteration, 786 steps=self._eval_steps, 832 steps=1, 838 steps=1, 866 steps=None, argument 880 steps=steps, [all …]
|