/external/eigen/Eigen/src/SVD/ |
D | JacobiSVD.h | 76 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) in allocate() argument 78 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) in allocate() 81 ::new (&m_qr) QRType(svd.rows(), svd.cols()); in allocate() 83 if (svd.m_computeFullU) m_workspace.resize(svd.rows()); in allocate() 86 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) in run() argument 91 …svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<… in run() 92 if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); in run() 93 if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); in run() 122 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) in allocate() argument 124 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) in allocate() [all …]
|
/external/eigen/test/ |
D | svd_common.h | 24 void svd_check_full(const MatrixType& m, const SvdType& svd) in svd_check_full() argument 41 sigma.diagonal() = svd.singularValues().template cast<Scalar>(); in svd_check_full() 42 MatrixUType u = svd.matrixU(); in svd_check_full() 43 MatrixVType v = svd.matrixV(); in svd_check_full() 69 SvdType svd(m, computationOptions); in svd_compare_to_full() 71 VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); in svd_compare_to_full() 75 VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) ); in svd_compare_to_full() 76 …VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matri… in svd_compare_to_full() 82 VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) ); in svd_compare_to_full() 83 …VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal()… in svd_compare_to_full() [all …]
|
D | qr_colpivoting.cpp | 57 JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV); in cod() local 58 MatrixType svd_solution = svd.solve(rhs); in cod() 89 JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV); in cod_fixedsize() local 90 Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs); in cod_fixedsize()
|
/external/eigen/lapack/ |
D | svd.cpp | 56 BDCSVD<PlainMatrixType> svd(mat,option); 58 make_vector(s,diag_size) = svd.singularValues().head(diag_size); 62 matrix(u,*m,*m,*ldu) = svd.matrixU(); 63 matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); 67 matrix(u,*m,diag_size,*ldu) = svd.matrixU(); 68 matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); 72 matrix(a,*m,*n,*lda) = svd.matrixU(); 73 matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); 77 matrix(u,*m,*m,*ldu) = svd.matrixU(); 78 matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); [all …]
|
D | CMakeLists.txt | 171 add_lapack_test(ssvd.out svd.in xeigtsts) 238 add_lapack_test(dsvd.out svd.in xeigtstd) 303 add_lapack_test(csvd.out svd.in xeigtstc) 370 add_lapack_test(zsvd.out svd.in xeigtstz)
|
/external/eigen/doc/snippets/ |
D | JacobiSVD_basic.cpp | 3 JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV); variable 4 cout << "Its singular values are:" << endl << svd.singularValues() << endl; 5 cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() … 6 cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV()… 9 cout << "A least-squares solution of m*x = rhs is:" << endl << svd.solve(rhs) << endl;
|
/external/eigen/Eigen/src/Geometry/ |
D | Umeyama.h | 131 JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); 139 if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) 143 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); 148 const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
|
D | Transform.h | 1081 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); 1083 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 1084 VectorType sv(svd.singularValues()); 1086 if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); 1089 LinearMatrixType m(svd.matrixU()); 1091 rotation->lazyAssign(m * svd.matrixV().adjoint()); 1110 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); 1112 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 1113 VectorType sv(svd.singularValues()); 1115 if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); [all …]
|
D | Hyperplane.h | 109 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); in Through() 110 result.normal() = svd.matrixV().col(2); in Through()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | svd_op_test.py | 50 linalg_ops.svd(scalar) 54 linalg_ops.svd(vector) 65 s1, u1, v1 = linalg_ops.svd( 67 s2, u2, v2 = linalg_ops.svd( 71 s1 = linalg_ops.svd( 73 s2 = linalg_ops.svd( 156 s_tf, u_tf, v_tf = linalg_ops.svd( 164 s_tf = linalg_ops.svd( 172 u_np, s_np, v_np = np.linalg.svd( 175 s_np = np.linalg.svd( [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | svd_op_impl.h | 91 Eigen::BDCSVD<Matrix> svd(inputs[0], options); in ComputeMatrix() 92 outputs->at(0) = svd.singularValues().template cast<Scalar>(); in ComputeMatrix() 94 outputs->at(1) = svd.matrixU(); in ComputeMatrix() 95 outputs->at(2) = svd.matrixV(); in ComputeMatrix()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | svd_op_test.py | 47 _, s_np, _ = np.linalg.svd(x_np) 51 s, u, v = linalg_ops.svd(x_tf, full_matrices=True)
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
D | spectral_normalization_test.py | 47 s = linalg_ops.svd( 80 unnormalized_sigma = linalg_ops.svd( 83 normalized_sigma = linalg_ops.svd( 157 _, s, _ = np.linalg.svd(w_initial.reshape([-1, 3]))
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Svd.pbtxt | 58 s, u, v = svd(a) 59 s, _, _ = svd(a, compute_uv=False)
|
/external/tensorflow/tensorflow/python/ops/ |
D | linalg_ops.py | 357 def svd(tensor, full_matrices=False, compute_uv=True, name=None): function 417 s, u, v = gen_linalg_ops.svd( 613 math_ops.abs(gen_linalg_ops.svd(permed, compute_uv=False)[0]),
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | BUILD | 450 name = "svd", 451 srcs = ["svd.cc"], 452 hdrs = ["svd.h"], 486 ":svd",
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | matrix_functions_test.py | 32 mat_u, diag_d, mat_v = np.linalg.svd(mat_g)
|
D | ggt_test.py | 50 u, sigma, _ = np.linalg.svd(mm + damping)
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 170 tf.svd(mat, False, True).eval(), 171 tf.svd(mat, compute_uv=False, full_matrices=True).eval())
|
/external/tensorflow/tensorflow/compiler/xla/python/ |
D | local_computation_builder.cc | 740 auto svd = xla::SVD(a.op()); in SVD() local 741 return xla::Tuple(builder, {svd.u, svd.d, svd.v}); in SVD()
|
D | BUILD | 75 "//tensorflow/compiler/xla/client/lib:svd",
|
/external/eigen/doc/ |
D | UsingBlasLapackBackends.dox | 104 JacobiSVD<MatrixXd> svd; 105 svd.compute(m1, ComputeThinV);
|
D | AsciiQuickReference.txt | 202 x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD> 207 // .svd() -> .matrixU(), .singularValues(), and .matrixV()
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linalg_impl.py | 56 svd = linalg_ops.svd variable
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | sliced_wasserstein_impl.py | 191 sig, u = linalg_ops.svd(array_ops.concat([a, b], 0))[:2]
|