1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Tests for advanced activation layers."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import numpy as np
22
23from tensorflow.python import keras
24from tensorflow.python.eager import context
25from tensorflow.python.keras import keras_parameterized
26from tensorflow.python.keras import testing_utils
27from tensorflow.python.platform import test
28
29
30@keras_parameterized.run_all_keras_modes
31class AdvancedActivationsTest(keras_parameterized.TestCase):
32
33  def test_leaky_relu(self):
34    for alpha in [0., .5, -1.]:
35      testing_utils.layer_test(keras.layers.LeakyReLU,
36                               kwargs={'alpha': alpha},
37                               input_shape=(2, 3, 4))
38
39  def test_prelu(self):
40    testing_utils.layer_test(keras.layers.PReLU, kwargs={},
41                             input_shape=(2, 3, 4))
42
43  def test_prelu_share(self):
44    testing_utils.layer_test(keras.layers.PReLU,
45                             kwargs={'shared_axes': 1},
46                             input_shape=(2, 3, 4))
47
48  def test_elu(self):
49    for alpha in [0., .5, -1.]:
50      testing_utils.layer_test(keras.layers.ELU,
51                               kwargs={'alpha': alpha},
52                               input_shape=(2, 3, 4))
53
54  def test_thresholded_relu(self):
55    testing_utils.layer_test(keras.layers.ThresholdedReLU,
56                             kwargs={'theta': 0.5},
57                             input_shape=(2, 3, 4))
58
59  def test_softmax(self):
60    testing_utils.layer_test(keras.layers.Softmax,
61                             kwargs={'axis': 1},
62                             input_shape=(2, 3, 4))
63
64  def test_relu(self):
65    testing_utils.layer_test(keras.layers.ReLU,
66                             kwargs={'max_value': 10},
67                             input_shape=(2, 3, 4))
68    x = keras.backend.ones((3, 4))
69    if not context.executing_eagerly():
70      # Test that we use `leaky_relu` when appropriate in graph mode.
71      self.assertTrue(
72          'LeakyRelu' in keras.layers.ReLU(negative_slope=0.2)(x).name)
73      # Test that we use `relu` when appropriate in graph mode.
74      self.assertTrue('Relu' in keras.layers.ReLU()(x).name)
75      # Test that we use `relu6` when appropriate in graph mode.
76      self.assertTrue('Relu6' in keras.layers.ReLU(max_value=6)(x).name)
77
78  def test_relu_with_invalid_arg(self):
79    with self.assertRaisesRegexp(
80        ValueError, 'max_value of Relu layer cannot be negative value: -10'):
81      testing_utils.layer_test(keras.layers.ReLU,
82                               kwargs={'max_value': -10},
83                               input_shape=(2, 3, 4))
84    with self.assertRaisesRegexp(
85        ValueError,
86        'negative_slope of Relu layer cannot be negative value: -2'):
87      with self.cached_session():
88        testing_utils.layer_test(
89            keras.layers.ReLU,
90            kwargs={'negative_slope': -2},
91            input_shape=(2, 3, 4))
92
93  @keras_parameterized.run_with_all_model_types
94  def test_layer_as_activation(self):
95    layer = keras.layers.Dense(1, activation=keras.layers.ReLU())
96    model = testing_utils.get_model_from_layers([layer], input_shape=(10,))
97    model.compile('sgd', 'mse', run_eagerly=testing_utils.should_run_eagerly())
98    model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2)
99
100
101if __name__ == '__main__':
102  test.main()
103