1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "sparse.h"
11
12 template<typename T>
13 typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type
innervec(T & A,Index i)14 innervec(T& A, Index i)
15 {
16 return A.row(i);
17 }
18
19 template<typename T>
20 typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type
innervec(T & A,Index i)21 innervec(T& A, Index i)
22 {
23 return A.col(i);
24 }
25
sparse_block(const SparseMatrixType & ref)26 template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref)
27 {
28 const Index rows = ref.rows();
29 const Index cols = ref.cols();
30 const Index inner = ref.innerSize();
31 const Index outer = ref.outerSize();
32
33 typedef typename SparseMatrixType::Scalar Scalar;
34 typedef typename SparseMatrixType::StorageIndex StorageIndex;
35
36 double density = (std::max)(8./(rows*cols), 0.01);
37 typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix;
38 typedef Matrix<Scalar,Dynamic,1> DenseVector;
39 typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
40 typedef SparseVector<Scalar> SparseVectorType;
41
42 Scalar s1 = internal::random<Scalar>();
43 {
44 SparseMatrixType m(rows, cols);
45 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
46 initSparse<Scalar>(density, refMat, m);
47
48 VERIFY_IS_APPROX(m, refMat);
49
50 // test InnerIterators and Block expressions
51 for (int t=0; t<10; ++t)
52 {
53 Index j = internal::random<Index>(0,cols-2);
54 Index i = internal::random<Index>(0,rows-2);
55 Index w = internal::random<Index>(1,cols-j);
56 Index h = internal::random<Index>(1,rows-i);
57
58 VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
59 for(Index c=0; c<w; c++)
60 {
61 VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
62 for(Index r=0; r<h; r++)
63 {
64 VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
65 VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
66 }
67 }
68 for(Index r=0; r<h; r++)
69 {
70 VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
71 for(Index c=0; c<w; c++)
72 {
73 VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
74 VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
75 }
76 }
77
78 VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
79 VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
80 for(Index r=0; r<h; r++)
81 {
82 VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
83 VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
84 for(Index c=0; c<w; c++)
85 {
86 VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
87 VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
88
89 VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
90 VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
91 if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
92 {
93 VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
94 }
95 if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
96 {
97 VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
98 }
99 }
100 }
101 for(Index c=0; c<w; c++)
102 {
103 VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
104 VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
105 }
106 }
107
108 for(Index c=0; c<cols; c++)
109 {
110 VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
111 VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
112 }
113
114 for(Index r=0; r<rows; r++)
115 {
116 VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
117 VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
118 }
119 }
120
121 // test innerVector()
122 {
123 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
124 SparseMatrixType m2(rows, cols);
125 initSparse<Scalar>(density, refMat2, m2);
126 Index j0 = internal::random<Index>(0,outer-1);
127 Index j1 = internal::random<Index>(0,outer-1);
128 Index r0 = internal::random<Index>(0,rows-1);
129 Index c0 = internal::random<Index>(0,cols-1);
130
131 VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0));
132 VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1));
133
134 m2.innerVector(j0) *= Scalar(2);
135 innervec(refMat2,j0) *= Scalar(2);
136 VERIFY_IS_APPROX(m2, refMat2);
137
138 m2.row(r0) *= Scalar(3);
139 refMat2.row(r0) *= Scalar(3);
140 VERIFY_IS_APPROX(m2, refMat2);
141
142 m2.col(c0) *= Scalar(4);
143 refMat2.col(c0) *= Scalar(4);
144 VERIFY_IS_APPROX(m2, refMat2);
145
146 m2.row(r0) /= Scalar(3);
147 refMat2.row(r0) /= Scalar(3);
148 VERIFY_IS_APPROX(m2, refMat2);
149
150 m2.col(c0) /= Scalar(4);
151 refMat2.col(c0) /= Scalar(4);
152 VERIFY_IS_APPROX(m2, refMat2);
153
154 SparseVectorType v1;
155 VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4);
156 VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4);
157
158 SparseMatrixType m3(rows,cols);
159 m3.reserve(VectorXi::Constant(outer,int(inner/2)));
160 for(Index j=0; j<outer; ++j)
161 for(Index k=0; k<(std::min)(j,inner); ++k)
162 m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1);
163 for(Index j=0; j<(std::min)(outer, inner); ++j)
164 {
165 VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
166 if(j>0)
167 VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
168 }
169 m3.makeCompressed();
170 for(Index j=0; j<(std::min)(outer, inner); ++j)
171 {
172 VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
173 if(j>0)
174 VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
175 }
176
177 VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
178
179 // m2.innerVector(j0) = 2*m2.innerVector(j1);
180 // refMat2.col(j0) = 2*refMat2.col(j1);
181 // VERIFY_IS_APPROX(m2, refMat2);
182 }
183
184 // test innerVectors()
185 {
186 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
187 SparseMatrixType m2(rows, cols);
188 initSparse<Scalar>(density, refMat2, m2);
189 if(internal::random<float>(0,1)>0.5f) m2.makeCompressed();
190 Index j0 = internal::random<Index>(0,outer-2);
191 Index j1 = internal::random<Index>(0,outer-2);
192 Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
193 if(SparseMatrixType::IsRowMajor)
194 VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
195 else
196 VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
197 if(SparseMatrixType::IsRowMajor)
198 VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
199 refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
200 else
201 VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
202 refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
203
204 VERIFY_IS_APPROX(m2, refMat2);
205
206 VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros());
207
208 m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
209 if(SparseMatrixType::IsRowMajor)
210 refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
211 else
212 refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
213
214 VERIFY_IS_APPROX(m2, refMat2);
215 }
216
217 // test generic blocks
218 {
219 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
220 SparseMatrixType m2(rows, cols);
221 initSparse<Scalar>(density, refMat2, m2);
222 Index j0 = internal::random<Index>(0,outer-2);
223 Index j1 = internal::random<Index>(0,outer-2);
224 Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
225 if(SparseMatrixType::IsRowMajor)
226 VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
227 else
228 VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
229
230 if(SparseMatrixType::IsRowMajor)
231 VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
232 refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
233 else
234 VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
235 refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
236
237 Index i = internal::random<Index>(0,m2.outerSize()-1);
238 if(SparseMatrixType::IsRowMajor) {
239 m2.innerVector(i) = m2.innerVector(i) * s1;
240 refMat2.row(i) = refMat2.row(i) * s1;
241 VERIFY_IS_APPROX(m2,refMat2);
242 } else {
243 m2.innerVector(i) = m2.innerVector(i) * s1;
244 refMat2.col(i) = refMat2.col(i) * s1;
245 VERIFY_IS_APPROX(m2,refMat2);
246 }
247
248 Index r0 = internal::random<Index>(0,rows-2);
249 Index c0 = internal::random<Index>(0,cols-2);
250 Index r1 = internal::random<Index>(1,rows-r0);
251 Index c1 = internal::random<Index>(1,cols-c0);
252
253 VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
254 VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
255
256 VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
257 VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));
258
259 VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1));
260 VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1));
261
262 if(m2.nonZeros()>0)
263 {
264 VERIFY_IS_APPROX(m2, refMat2);
265 SparseMatrixType m3(rows, cols);
266 DenseMatrix refMat3(rows, cols); refMat3.setZero();
267 Index n = internal::random<Index>(1,10);
268 for(Index k=0; k<n; ++k)
269 {
270 Index o1 = internal::random<Index>(0,outer-1);
271 Index o2 = internal::random<Index>(0,outer-1);
272 if(SparseMatrixType::IsRowMajor)
273 {
274 m3.innerVector(o1) = m2.row(o2);
275 refMat3.row(o1) = refMat2.row(o2);
276 }
277 else
278 {
279 m3.innerVector(o1) = m2.col(o2);
280 refMat3.col(o1) = refMat2.col(o2);
281 }
282 if(internal::random<bool>())
283 m3.makeCompressed();
284 }
285 if(m3.nonZeros()>0)
286 VERIFY_IS_APPROX(m3, refMat3);
287 }
288 }
289 }
290
test_sparse_block()291 void test_sparse_block()
292 {
293 for(int i = 0; i < g_repeat; i++) {
294 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
295 if(Eigen::internal::random<int>(0,4) == 0) {
296 r = c; // check square matrices in 25% of tries
297 }
298 EIGEN_UNUSED_VARIABLE(r+c);
299 CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) ));
300 CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) ));
301 CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) ));
302 CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
303 CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
304
305 CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) ));
306 CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) ));
307
308 r = Eigen::internal::random<int>(1,100);
309 c = Eigen::internal::random<int>(1,100);
310 if(Eigen::internal::random<int>(0,4) == 0) {
311 r = c; // check square matrices in 25% of tries
312 }
313
314 CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
315 CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
316 }
317 }
318