1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 #include "sparse.h"
10 #include <Eigen/SparseQR>
11 
12 template<typename MatrixType,typename DenseMat>
generate_sparse_rectangular_problem(MatrixType & A,DenseMat & dA,int maxRows=300,int maxCols=150)13 int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150)
14 {
15   eigen_assert(maxRows >= maxCols);
16   typedef typename MatrixType::Scalar Scalar;
17   int rows = internal::random<int>(1,maxRows);
18   int cols = internal::random<int>(1,maxCols);
19   double density = (std::max)(8./(rows*cols), 0.01);
20 
21   A.resize(rows,cols);
22   dA.resize(rows,cols);
23   initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
24   A.makeCompressed();
25   int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
26   for(int k=0; k<nop; ++k)
27   {
28     int j0 = internal::random<int>(0,cols-1);
29     int j1 = internal::random<int>(0,cols-1);
30     Scalar s = internal::random<Scalar>();
31     A.col(j0)  = s * A.col(j1);
32     dA.col(j0) = s * dA.col(j1);
33   }
34 
35 //   if(rows<cols) {
36 //     A.conservativeResize(cols,cols);
37 //     dA.conservativeResize(cols,cols);
38 //     dA.bottomRows(cols-rows).setZero();
39 //   }
40 
41   return rows;
42 }
43 
test_sparseqr_scalar()44 template<typename Scalar> void test_sparseqr_scalar()
45 {
46   typedef SparseMatrix<Scalar,ColMajor> MatrixType;
47   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
48   typedef Matrix<Scalar,Dynamic,1> DenseVector;
49   MatrixType A;
50   DenseMat dA;
51   DenseVector refX,x,b;
52   SparseQR<MatrixType, COLAMDOrdering<int> > solver;
53   generate_sparse_rectangular_problem(A,dA);
54 
55   b = dA * DenseVector::Random(A.cols());
56   solver.compute(A);
57   if(internal::random<float>(0,1)>0.5f)
58     solver.factorize(A);  // this checks that calling analyzePattern is not needed if the pattern do not change.
59   if (solver.info() != Success)
60   {
61     std::cerr << "sparse QR factorization failed\n";
62     exit(0);
63     return;
64   }
65   x = solver.solve(b);
66   if (solver.info() != Success)
67   {
68     std::cerr << "sparse QR factorization failed\n";
69     exit(0);
70     return;
71   }
72 
73   VERIFY_IS_APPROX(A * x, b);
74 
75   //Compare with a dense QR solver
76   ColPivHouseholderQR<DenseMat> dqr(dA);
77   refX = dqr.solve(b);
78 
79   VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
80   if(solver.rank()==A.cols()) // full rank
81     VERIFY_IS_APPROX(x, refX);
82 //   else
83 //     VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
84 
85   // Compute explicitly the matrix Q
86   MatrixType Q, QtQ, idM;
87   Q = solver.matrixQ();
88   //Check  ||Q' * Q - I ||
89   QtQ = Q * Q.adjoint();
90   idM.resize(Q.rows(), Q.rows()); idM.setIdentity();
91   VERIFY(idM.isApprox(QtQ));
92 
93   // Q to dense
94   DenseMat dQ;
95   dQ = solver.matrixQ();
96   VERIFY_IS_APPROX(Q, dQ);
97 }
test_sparseqr()98 void test_sparseqr()
99 {
100   for(int i=0; i<g_repeat; ++i)
101   {
102     CALL_SUBTEST_1(test_sparseqr_scalar<double>());
103     CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
104   }
105 }
106 
107