/external/tensorflow/tensorflow/python/keras/utils/ |
D | metrics_utils.py | 144 def assert_thresholds_range(thresholds): argument 145 if thresholds is not None: 146 invalid_thresholds = [t for t in thresholds if t is None or t < 0 or t > 1] 153 def parse_init_thresholds(thresholds, default_threshold=0.5): argument 154 if thresholds is not None: 155 assert_thresholds_range(to_list(thresholds)) 156 thresholds = to_list(default_threshold if thresholds is None else thresholds) 157 return thresholds 215 thresholds, argument 302 thresholds = to_list(thresholds) [all …]
|
/external/libaom/libaom/av1/encoder/ |
D | var_based_part.c | 356 static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q, in set_vbp_thresholds() argument 365 thresholds[0] = threshold_base; in set_vbp_thresholds() 366 thresholds[1] = threshold_base; in set_vbp_thresholds() 367 thresholds[2] = threshold_base >> 2; in set_vbp_thresholds() 368 thresholds[3] = threshold_base >> 2; in set_vbp_thresholds() 369 thresholds[4] = threshold_base << 2; in set_vbp_thresholds() 375 thresholds[1] = threshold_base; in set_vbp_thresholds() 376 thresholds[3] = threshold_base << cpi->oxcf.speed; in set_vbp_thresholds() 378 thresholds[3] = thresholds[3] << 1; in set_vbp_thresholds() 380 thresholds[1] = threshold_base >> 3; in set_vbp_thresholds() [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | metrics.py | 809 thresholds=None, argument 826 self.init_thresholds = thresholds 827 self.thresholds = metrics_utils.parse_init_thresholds( 828 thresholds, default_threshold=0.5) 831 shape=(len(self.thresholds),), 851 thresholds=self.thresholds, 855 if len(self.thresholds) == 1: 862 num_thresholds = len(to_list(self.thresholds)) 903 def __init__(self, thresholds=None, name=None, dtype=None): argument 917 thresholds=thresholds, [all …]
|
D | metrics_confusion_matrix_test.py | 41 fp_obj = metrics.FalsePositives(name='my_fp', thresholds=[0.4, 0.9]) 44 self.assertEqual(fp_obj.thresholds, [0.4, 0.9]) 50 self.assertEqual(fp_obj2.thresholds, [0.4, 0.9]) 78 fp_obj = metrics.FalsePositives(thresholds=[0.15, 0.5, 0.85]) 92 fp_obj = metrics.FalsePositives(thresholds=[0.15, 0.5, 0.85]) 109 metrics.FalsePositives(thresholds=[-1, 0.5, 2]) 114 metrics.FalsePositives(thresholds=[None]) 121 fn_obj = metrics.FalseNegatives(name='my_fn', thresholds=[0.4, 0.9]) 124 self.assertEqual(fn_obj.thresholds, [0.4, 0.9]) 130 self.assertEqual(fn_obj2.thresholds, [0.4, 0.9]) [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | logistic_regressor.py | 52 thresholds = params.get('thresholds') or [.5] 59 thresholds=thresholds) 79 model_fn, thresholds=None, model_dir=None, config=None, argument 129 params={'thresholds': thresholds}, 133 def _make_logistic_eval_metric_ops(labels, predictions, thresholds): argument 163 for threshold in thresholds:
|
D | head.py | 275 thresholds=None, argument 336 thresholds=thresholds, 345 thresholds=thresholds, 357 thresholds=None,): argument 384 thresholds=thresholds) 393 thresholds=None, argument 443 thresholds=thresholds, 819 thresholds=None): argument 846 self._thresholds = thresholds if thresholds else (.5,) 1000 thresholds=None, argument [all …]
|
/external/ImageMagick/MagickCore/ |
D | threshold.c | 924 const char *thresholds,ExceptionInfo *exception) in BlackThresholdImage() argument 953 if (thresholds == (const char *) NULL) in BlackThresholdImage() 960 flags=ParseGeometry(thresholds,&geometry_info); in BlackThresholdImage() 1330 *thresholds; in GetThresholdMapFile() local 1335 thresholds=NewXMLTree(xml,exception); in GetThresholdMapFile() 1336 if (thresholds == (XMLTreeInfo *) NULL) in GetThresholdMapFile() 1338 for (threshold=GetXMLTreeChild(thresholds,"threshold"); in GetThresholdMapFile() 1351 thresholds=DestroyXMLTree(thresholds); in GetThresholdMapFile() 1359 thresholds=DestroyXMLTree(thresholds); in GetThresholdMapFile() 1367 thresholds=DestroyXMLTree(thresholds); in GetThresholdMapFile() [all …]
|
/external/skia/src/gpu/gradients/ |
D | GrUnrolledBinaryGradientColorizer.fp | 38 // is worth it. It is assumed thresholds are provided in increasing value, mapped as: 141 SkScalar thresholds[kMaxIntervals]; 170 thresholds[intervalCount] = t1; 178 thresholds[i] = 0.0; 185 SkRect::MakeLTRB(thresholds[0], thresholds[1], thresholds[2], thresholds[3]), 186 SkRect::MakeLTRB(thresholds[4], thresholds[5], thresholds[6], 0.0)));
|
D | GrUnrolledBinaryGradientColorizer.cpp | 334 SkScalar thresholds[kMaxIntervals]; in Make() local 363 thresholds[intervalCount] = t1; in Make() 371 thresholds[i] = 0.0; in Make() 378 SkRect::MakeLTRB(thresholds[0], thresholds[1], thresholds[2], thresholds[3]), in Make() 379 SkRect::MakeLTRB(thresholds[4], thresholds[5], thresholds[6], 0.0))); in Make()
|
/external/skqp/src/gpu/gradients/ |
D | GrUnrolledBinaryGradientColorizer.fp | 38 // is worth it. It is assumed thresholds are provided in increasing value, mapped as: 141 SkScalar thresholds[kMaxIntervals]; 170 thresholds[intervalCount] = t1; 178 thresholds[i] = 0.0; 185 SkRect::MakeLTRB(thresholds[0], thresholds[1], thresholds[2], thresholds[3]), 186 SkRect::MakeLTRB(thresholds[4], thresholds[5], thresholds[6], 0.0)));
|
D | GrUnrolledBinaryGradientColorizer.cpp | 334 SkScalar thresholds[kMaxIntervals]; in Make() local 363 thresholds[intervalCount] = t1; in Make() 371 thresholds[i] = 0.0; in Make() 378 SkRect::MakeLTRB(thresholds[0], thresholds[1], thresholds[2], thresholds[3]), in Make() 379 SkRect::MakeLTRB(thresholds[4], thresholds[5], thresholds[6], 0.0))); in Make()
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | metric_ops.py | 686 thresholds, 744 num_thresholds = len(thresholds) 758 array_ops.expand_dims(array_ops.constant(thresholds), [1]), 839 thresholds, 842 predictions, labels, thresholds, weights=weights, includes=('tp',)) 848 thresholds, 851 predictions, labels, thresholds, weights=weights, includes=('fn',)) 857 thresholds, 860 predictions, labels, thresholds, weights=weights, includes=('fp',)) 866 thresholds, [all …]
|
D | metric_ops_test.py | 872 (0.0, 1.0, 0.0), (0, 1, 1), thresholds=(0.15, 0.5, 0.85)) 880 predictions, labels, thresholds=(0.15, 0.5, 0.85)) 893 predictions, labels, weights=37.0, thresholds=(0.15, 0.5, 0.85)) 910 (0.0, 1.0, 0.0), (0, 1, 1), thresholds=( 922 predictions, labels, thresholds=(0.15, 0.5, 0.85)) 938 thresholds=(0.15, 0.5, 0.85)) 955 (0.0, 1.0, 0.0), (0, 1, 1), thresholds=(0.15, 0.5, 0.85)) 963 predictions, labels, thresholds=(0.15, 0.5, 0.85)) 980 thresholds=(0.15, 0.5, 0.85)) 997 (0.0, 1.0, 0.0), (0, 1, 1), thresholds=(0.15, 0.5, 0.85)) [all …]
|
/external/tensorflow/tensorflow/contrib/metrics/python/metrics/ |
D | classification.py | 151 thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) 153 thresholds = [0.0 - epsilon] + thresholds + [1.0 + epsilon] 157 labels, predictions, thresholds, weights, includes=('tp', 'fp', 'fn'))
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | statistical_testing_test.py | 31 thresholds = [1e-5, 1e-2, 1.1e-1, 0.9, 1., 1.02, 2., 10., 1e2, 1e5, 1e10] 41 thresholds, low=0., high=1., false_fail_rate=false_fail_rate, 51 below_threshold = discrepancies <= thresholds 58 thresholds = [1e-5, 1e-2, 1.1e-1, 0.9, 1., 1.02, 2., 10., 1e2, 1e5, 1e10] 71 thresholds, low1=0., high1=1., low2=0., high2=1., 89 below_threshold = discrepancies <= thresholds
|
/external/tensorflow/tensorflow/python/ops/ |
D | metrics_impl.py | 463 thresholds, 531 num_thresholds = len(thresholds) 545 array_ops.expand_dims(array_ops.constant(thresholds), [1]), 717 thresholds = [ 720 thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] 723 labels, predictions, thresholds, weights) 1548 thresholds, 1591 labels, predictions, thresholds, weights=weights, includes=('fn',)) 1657 thresholds, 1700 labels, predictions, thresholds, weights=weights, includes=('fp',)) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 75 thresholds=[ 266 thresholds=[ 446 thresholds=[feature1_thresholds], 601 thresholds=[ 741 thresholds=[], 870 thresholds=[ 964 thresholds=[feature1_thresholds, feature2_thresholds], 1040 thresholds=[feature1_thresholds], 1148 thresholds=[feature1_thresholds], 1299 thresholds=[feature1_thresholds, feature2_thresholds], [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.metrics.pbtxt | 21 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 29 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 77 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 93 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 125 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 133 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',…
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/ |
D | pruning.py | 497 thresholds = get_thresholds() 499 if len(masks) != len(thresholds): 502 (len(masks), len(thresholds))) 505 threshold = thresholds[index] 566 thresholds = get_thresholds() 567 for mask, threshold in zip(masks, thresholds):
|
/external/aac/libSBRenc/src/ |
D | tran_det.cpp | 472 FIXP_DBL *RESTRICT thresholds, in calculateThresholds() argument 538 ? fMult(FL2FXCONST_DBL(0.66f), thresholds[i]) + in calculateThresholds() 542 thresholds[i] = fixMax(ABS_THRES, temp); in calculateThresholds() 553 FIXP_DBL *RESTRICT thresholds, FIXP_DBL *RESTRICT transients, in extractTransientCandidates() argument 591 FIXP_DBL thres = thresholds[i]; in extractTransientCandidates() 593 if ((LONG)thresholds[i] >= 256) in extractTransientCandidates() 594 i_thres = (LONG)((LONG)MAXVAL_DBL / ((((LONG)thresholds[i])) + 1)) in extractTransientCandidates() 678 calculateThresholds(Energies, scaleEnergies, h_sbrTran->thresholds, in FDKsbrEnc_transientDetect() 683 Energies, scaleEnergies, h_sbrTran->thresholds, h_sbrTran->transients, in FDKsbrEnc_transientDetect()
|
/external/ImageMagick/config/ |
D | Makefile.am | 41 config/thresholds.xml \ 66 config/thresholds.xml \
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | metrics_test.py | 1693 thresholds=[0, 0.5, 1.0]) 1705 thresholds=[0, 0.5, 1.0], 1710 thresholds=[0, 0.5, 1.0], 1720 thresholds=[0, 0.5, 1.0], 1725 thresholds=[0, 0.5, 1.0], 1736 thresholds = [0, 0.5, 1.0] 1738 thresholds) 1739 rec, rec_op = metrics.recall_at_thresholds(labels, predictions, thresholds) 1761 thresholds = [0.5] 1763 thresholds) [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | target_column.py | 315 return get_default_binary_metrics_for_eval(thresholds=[.5]) 447 def get_default_binary_metrics_for_eval(thresholds): argument 466 for threshold in thresholds: 515 thresholds=[threshold],
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
D | eval_metrics.py | 104 thresholds=np.arange(0, 1, 0.01, dtype=np.float32), 117 thresholds=np.arange(0, 1, 0.01, dtype=np.float32),
|
/external/python/cpython2/Lib/test/ |
D | test_gc.py | 219 thresholds = gc.get_threshold() 230 gc.set_threshold(*thresholds) 234 thresholds = gc.get_threshold() 245 gc.set_threshold(*thresholds)
|