Home
last modified time | relevance | path

Searched refs:training_steps (Results 1 – 6 of 6) sorted by relevance

/external/tensorflow/tensorflow/contrib/timeseries/examples/
Dpredict.py55 return train_and_predict(structural, csv_file_name, training_steps=150)
69 return train_and_predict(ar, csv_file_name, training_steps=600)
72 def train_and_predict(estimator, csv_file_name, training_steps): argument
80 estimator.train(input_fn=train_input_fn, steps=training_steps)
Dmultivariate.py48 csv_file_name=_DATA_FILE, export_directory=None, training_steps=500): argument
59 estimator.train(input_fn=train_input_fn, steps=training_steps)
Dmultivariate_test.py30 export_directory=self.get_temp_dir(), training_steps=5)
Dlstm_test.py39 training_steps=2, estimator_config=_SeedRunConfig(),
Dlstm.py188 csv_file_name=_DATA_FILE, training_steps=200, estimator_config=None, argument
219 estimator.train(input_fn=train_input_fn, steps=training_steps)
/external/tensorflow/tensorflow/tools/docker/notebooks/
D2_getting_started.ipynb165 "training_steps = 50\n",
182 " for _ in range(training_steps):\n",
199 "ax2.plot(range(0, training_steps), losses)\n",
591 "training_steps = 50\n",
635 " for _ in range(training_steps):\n",
655 "ax2.plot(range(0, training_steps), losses)\n",
768 " for _ in range(training_steps):\n",
787 "ax2.plot(range(0, training_steps), losses)\n",