/external/tensorflow/tensorflow/python/keras/ |
D | integration_test.py | 40 (x_train, y_train), _ = testing_utils.get_test_data( 51 input_shape=x_train.shape[1:]) 57 history = model.fit(x_train, y_train, epochs=10, batch_size=10, 58 validation_data=(x_train, y_train), 61 _, val_acc = model.evaluate(x_train, y_train) 63 predictions = model.predict(x_train) 64 self.assertEqual(predictions.shape, (x_train.shape[0], 2)) 70 (x_train, y_train), _ = testing_utils.get_test_data( 83 input_shape=x_train.shape[1:]) 84 x = keras.layers.Input(x_train.shape[1:]) [all …]
|
D | callbacks_v1_test.py | 53 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( 63 max_batch_index = len(x_train) // BATCH_SIZE 69 yield (x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE], 100 x_train, 110 x_train, 121 len(x_train), 132 len(x_train), 141 len(x_train), 150 data_generator(True), len(x_train), epochs=2, callbacks=cbks) 162 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( [all …]
|
D | regularizers_test.py | 44 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( 51 return (x_train, y_train), (x_test, y_test) 60 (x_train, y_train), _ = self.get_data() 64 model.fit(x_train, y_train, batch_size=10, 75 (x_train, y_train), _ = self.get_data() 79 model.fit(x_train, y_train, batch_size=10,
|
D | callbacks_test.py | 283 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( 311 x_train, 331 x_train, 352 x_train, 372 x_train, 390 x_train, 415 x_train, 439 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( 465 x_train, 568 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( [all …]
|
D | optimizers_test.py | 47 (x_train, y_train), _ = testing_utils.get_test_data( 50 model = _get_model(x_train.shape[1], 20, y_train.shape[1]) 55 history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) 79 input_shape=(x_train.shape[1],), 92 model.train_on_batch(x_train[:10], y_train[:10])
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | keras_correctness_test_base.py | 158 with_distribution, x_train, y_train, x_predict): argument 167 'x': x_train, 175 training_inputs['validation_data'] = (x_train, y_train) 179 'x': x_train, 186 training_data_size = get_data_size(x_train) 194 train_dataset = dataset_ops.Dataset.from_tensor_slices((x_train, y_train)) 208 eval_dataset = dataset_ops.Dataset.from_tensor_slices((x_train, y_train)) 344 x_train = np.random.randint(0, 2, num_samples) 345 x_train = np.reshape(x_train, (num_samples, 1)) 346 y_train = x_train [all …]
|
D | keras_dnn_correctness_test.py | 69 x_train = np.random.rand(num_samples, 1) 70 y_train = 3 * x_train 71 x_train = x_train.astype('float32') 74 return x_train, y_train, x_predict 106 x_train, y_train, _ = self.get_data() 112 train_dataset = dataset_ops.Dataset.from_tensor_slices((x_train, y_train))
|
D | keras_backward_compat_test.py | 93 (x_train, y_train), _ = testing_utils.get_test_data( 100 dataset = dataset_ops.Dataset.from_tensor_slices((x_train, y_train)) 213 x_train, y_train, x_predict): argument 229 'x': x_train, 237 training_inputs['validation_data'] = (x_train, y_train) 241 'x': x_train, 251 (x_train, y_train)) 261 'steps_per_epoch': len(x_train) // global_batch_size, 266 (x_train, y_train)) 923 x_train = np.random.randint(0, 2, num_samples) [all …]
|
D | keras_image_model_correctness_test.py | 74 x_train = np.asarray(features, dtype=np.float32) 76 x_predict = x_train 77 return x_train, y_train, x_predict
|
D | keras_embedding_model_correctness_test.py | 134 x_train = { 138 x_predict = x_train 140 return x_train, y_train, x_predict
|
/external/libopus/scripts/ |
D | rnn_train.py | 45 x_train = all_data[:nb_sequences*window_size, :-2] variable 46 x_train = np.reshape(x_train, (nb_sequences, window_size, 25)) variable 52 x_train = x_train.astype('float32') variable 55 print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape) 63 model.fit(x_train, y_train, 66 validation_data=(x_train, y_train))
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | io_utils_test.py | 63 x_train = keras.utils.io_utils.HDF5Matrix( 89 model.fit(x_train, y_train, batch_size=32, shuffle='batch', verbose=False) 100 self.assertEqual(len(x_train[0:]), len(x_train)) 104 _ = x_train[1000] 106 _ = x_train[1000: 1001] 108 _ = x_train[[1000, 1001]] 110 _ = x_train[six.moves.range(1000, 1001)] 112 _ = x_train[np.array([1000])] 114 _ = x_train[None] 120 self.assertAllClose(normalized_x_train[0][0], x_train[0][0] + 1)
|
/external/tensorflow/tensorflow/contrib/distribute/python/examples/ |
D | keras_mnist.py | 45 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() 48 x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) 52 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) 56 x_train = x_train.astype('float32') 58 x_train /= 255 66 train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train))
|
D | mnist_eager_multigpu.py | 74 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() 76 x_train, x_test = x_train / np.float32(255), x_test / np.float32(255) 80 train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
|
D | mnist_tf1_tpu.py | 72 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() 74 x_train, x_test = x_train / np.float32(255), x_test / np.float32(255) 78 train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
|
/external/tensorflow/tensorflow/python/keras/datasets/ |
D | imdb.py | 86 x_train, labels_train = f['x_train'], f['y_train'] 90 indices = np.arange(len(x_train)) 92 x_train = x_train[indices] 100 xs = np.concatenate([x_train, x_test]) 127 idx = len(x_train) 128 x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx]) 131 return (x_train, y_train), (x_test, y_test)
|
D | cifar10.py | 44 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') 49 (x_train[(i - 1) * 10000:i * 10000, :, :, :], 59 x_train = x_train.transpose(0, 2, 3, 1) 62 return (x_train, y_train), (x_test, y_test)
|
D | cifar100.py | 52 x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') 61 x_train = x_train.transpose(0, 2, 3, 1) 64 return (x_train, y_train), (x_test, y_test)
|
D | mnist.py | 51 x_train, y_train = f['x_train'], f['y_train'] 54 return (x_train, y_train), (x_test, y_test)
|
D | boston_housing.py | 58 x_train = np.array(x[:int(len(x) * (1 - test_split))]) 62 return (x_train, y_train), (x_test, y_test)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | lstm_v2_test.py | 316 (x_train, y_train), _ = testing_utils.get_test_data( 330 y_1 = lstm_model.predict(x_train) 332 lstm_model.fit(x_train, y_train) 333 y_2 = lstm_model.predict(x_train) 339 y_3 = cudnn_model.predict(x_train) 341 cudnn_model.fit(x_train, y_train) 342 y_4 = cudnn_model.predict(x_train) 416 x_train = np.random.random((batch, timestep, input_shape)) 437 y_ref = lstm_model.predict(x_train) 442 y = unified_lstm_model.predict(x_train) [all …]
|
D | gru_v2_test.py | 89 (x_train, y_train), _ = testing_utils.get_test_data( 104 model.fit(x_train, y_train, epochs=epoch) 105 model.evaluate(x_train, y_train) 106 model.predict(x_train) 148 (x_train, y_train), _ = testing_utils.get_test_data( 163 y_1 = gru_model.predict(x_train) 165 gru_model.fit(x_train, y_train) 166 y_2 = gru_model.predict(x_train) 174 y_3 = cudnn_model.predict(x_train) 176 cudnn_model.fit(x_train, y_train) [all …]
|
/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn_test.py | 51 (x_train, y_train), (x_test, _) = testing_utils.get_test_data( 57 clf.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS) 59 score = clf.score(x_train, y_train, batch_size=BATCH_SIZE) 87 (x_train, y_train), (x_test, _) = testing_utils.get_test_data( 93 reg.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS) 95 score = reg.score(x_train, y_train, batch_size=BATCH_SIZE)
|
/external/tensorflow/tensorflow/examples/get_started/regression/ |
D | imports85.py | 197 x_train = data.sample(frac=train_fraction, random_state=seed) 198 x_test = data.drop(x_train.index) 201 y_train = x_train.pop(y_name) 204 return (x_train, y_train), (x_test, y_test)
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
D | mnist_util.py | 32 x_train = x_test = np.zeros((num_fakes, 28, 28), dtype=np.uint8) 37 (x_train, y_train), (x_test, y_test) = mnist.load_data() 38 return ((_prepare_image(x_train), _prepare_label(y_train)),
|