1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.net;
18 
19 import android.annotation.UnsupportedAppUsage;
20 import android.os.SystemClock;
21 import android.util.Log;
22 
23 import com.android.internal.util.TrafficStatsConstants;
24 
25 import java.net.DatagramPacket;
26 import java.net.DatagramSocket;
27 import java.net.InetAddress;
28 import java.util.Arrays;
29 
30 /**
31  * {@hide}
32  *
33  * Simple SNTP client class for retrieving network time.
34  *
35  * Sample usage:
36  * <pre>SntpClient client = new SntpClient();
37  * if (client.requestTime("time.foo.com")) {
38  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
39  * }
40  * </pre>
41  */
42 public class SntpClient {
43     private static final String TAG = "SntpClient";
44     private static final boolean DBG = true;
45 
46     private static final int REFERENCE_TIME_OFFSET = 16;
47     private static final int ORIGINATE_TIME_OFFSET = 24;
48     private static final int RECEIVE_TIME_OFFSET = 32;
49     private static final int TRANSMIT_TIME_OFFSET = 40;
50     private static final int NTP_PACKET_SIZE = 48;
51 
52     private static final int NTP_PORT = 123;
53     private static final int NTP_MODE_CLIENT = 3;
54     private static final int NTP_MODE_SERVER = 4;
55     private static final int NTP_MODE_BROADCAST = 5;
56     private static final int NTP_VERSION = 3;
57 
58     private static final int NTP_LEAP_NOSYNC = 3;
59     private static final int NTP_STRATUM_DEATH = 0;
60     private static final int NTP_STRATUM_MAX = 15;
61 
62     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
63     // 70 years plus 17 leap days
64     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
65 
66     // system time computed from NTP server response
67     private long mNtpTime;
68 
69     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
70     private long mNtpTimeReference;
71 
72     // round trip time in milliseconds
73     private long mRoundTripTime;
74 
75     private static class InvalidServerReplyException extends Exception {
InvalidServerReplyException(String message)76         public InvalidServerReplyException(String message) {
77             super(message);
78         }
79     }
80 
81     /**
82      * Sends an SNTP request to the given host and processes the response.
83      *
84      * @param host host name of the server.
85      * @param timeout network timeout in milliseconds.
86      * @param network network over which to send the request.
87      * @return true if the transaction was successful.
88      */
requestTime(String host, int timeout, Network network)89     public boolean requestTime(String host, int timeout, Network network) {
90         final Network networkForResolv = network.getPrivateDnsBypassingCopy();
91         InetAddress address = null;
92         try {
93             address = networkForResolv.getByName(host);
94         } catch (Exception e) {
95             EventLogTags.writeNtpFailure(host, e.toString());
96             if (DBG) Log.d(TAG, "request time failed: " + e);
97             return false;
98         }
99         return requestTime(address, NTP_PORT, timeout, networkForResolv);
100     }
101 
requestTime(InetAddress address, int port, int timeout, Network network)102     public boolean requestTime(InetAddress address, int port, int timeout, Network network) {
103         DatagramSocket socket = null;
104         final int oldTag = TrafficStats.getAndSetThreadStatsTag(
105                 TrafficStatsConstants.TAG_SYSTEM_NTP);
106         try {
107             socket = new DatagramSocket();
108             network.bindSocket(socket);
109             socket.setSoTimeout(timeout);
110             byte[] buffer = new byte[NTP_PACKET_SIZE];
111             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port);
112 
113             // set mode = 3 (client) and version = 3
114             // mode is in low 3 bits of first byte
115             // version is in bits 3-5 of first byte
116             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
117 
118             // get current time and write it to the request packet
119             final long requestTime = System.currentTimeMillis();
120             final long requestTicks = SystemClock.elapsedRealtime();
121             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
122 
123             socket.send(request);
124 
125             // read the response
126             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
127             socket.receive(response);
128             final long responseTicks = SystemClock.elapsedRealtime();
129             final long responseTime = requestTime + (responseTicks - requestTicks);
130 
131             // extract the results
132             final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
133             final byte mode = (byte) (buffer[0] & 0x7);
134             final int stratum = (int) (buffer[1] & 0xff);
135             final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
136             final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
137             final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
138 
139             /* do sanity check according to RFC */
140             // TODO: validate originateTime == requestTime.
141             checkValidServerReply(leap, mode, stratum, transmitTime);
142 
143             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
144             // receiveTime = originateTime + transit + skew
145             // responseTime = transmitTime + transit - skew
146             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
147             //             = ((originateTime + transit + skew - originateTime) +
148             //                (transmitTime - (transmitTime + transit - skew)))/2
149             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
150             //             = (transit + skew - transit + skew)/2
151             //             = (2 * skew)/2 = skew
152             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
153             EventLogTags.writeNtpSuccess(address.toString(), roundTripTime, clockOffset);
154             if (DBG) {
155                 Log.d(TAG, "round trip: " + roundTripTime + "ms, " +
156                         "clock offset: " + clockOffset + "ms");
157             }
158 
159             // save our results - use the times on this side of the network latency
160             // (response rather than request time)
161             mNtpTime = responseTime + clockOffset;
162             mNtpTimeReference = responseTicks;
163             mRoundTripTime = roundTripTime;
164         } catch (Exception e) {
165             EventLogTags.writeNtpFailure(address.toString(), e.toString());
166             if (DBG) Log.d(TAG, "request time failed: " + e);
167             return false;
168         } finally {
169             if (socket != null) {
170                 socket.close();
171             }
172             TrafficStats.setThreadStatsTag(oldTag);
173         }
174 
175         return true;
176     }
177 
178     @Deprecated
179     @UnsupportedAppUsage
requestTime(String host, int timeout)180     public boolean requestTime(String host, int timeout) {
181         Log.w(TAG, "Shame on you for calling the hidden API requestTime()!");
182         return false;
183     }
184 
185     /**
186      * Returns the time computed from the NTP transaction.
187      *
188      * @return time value computed from NTP server response.
189      */
190     @UnsupportedAppUsage
getNtpTime()191     public long getNtpTime() {
192         return mNtpTime;
193     }
194 
195     /**
196      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
197      * corresponding to the NTP time.
198      *
199      * @return reference clock corresponding to the NTP time.
200      */
201     @UnsupportedAppUsage
getNtpTimeReference()202     public long getNtpTimeReference() {
203         return mNtpTimeReference;
204     }
205 
206     /**
207      * Returns the round trip time of the NTP transaction
208      *
209      * @return round trip time in milliseconds.
210      */
211     @UnsupportedAppUsage
getRoundTripTime()212     public long getRoundTripTime() {
213         return mRoundTripTime;
214     }
215 
checkValidServerReply( byte leap, byte mode, int stratum, long transmitTime)216     private static void checkValidServerReply(
217             byte leap, byte mode, int stratum, long transmitTime)
218             throws InvalidServerReplyException {
219         if (leap == NTP_LEAP_NOSYNC) {
220             throw new InvalidServerReplyException("unsynchronized server");
221         }
222         if ((mode != NTP_MODE_SERVER) && (mode != NTP_MODE_BROADCAST)) {
223             throw new InvalidServerReplyException("untrusted mode: " + mode);
224         }
225         if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
226             throw new InvalidServerReplyException("untrusted stratum: " + stratum);
227         }
228         if (transmitTime == 0) {
229             throw new InvalidServerReplyException("zero transmitTime");
230         }
231     }
232 
233     /**
234      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
235      */
read32(byte[] buffer, int offset)236     private long read32(byte[] buffer, int offset) {
237         byte b0 = buffer[offset];
238         byte b1 = buffer[offset+1];
239         byte b2 = buffer[offset+2];
240         byte b3 = buffer[offset+3];
241 
242         // convert signed bytes to unsigned values
243         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
244         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
245         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
246         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
247 
248         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
249     }
250 
251     /**
252      * Reads the NTP time stamp at the given offset in the buffer and returns
253      * it as a system time (milliseconds since January 1, 1970).
254      */
readTimeStamp(byte[] buffer, int offset)255     private long readTimeStamp(byte[] buffer, int offset) {
256         long seconds = read32(buffer, offset);
257         long fraction = read32(buffer, offset + 4);
258         // Special case: zero means zero.
259         if (seconds == 0 && fraction == 0) {
260             return 0;
261         }
262         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
263     }
264 
265     /**
266      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
267      * at the given offset in the buffer.
268      */
writeTimeStamp(byte[] buffer, int offset, long time)269     private void writeTimeStamp(byte[] buffer, int offset, long time) {
270         // Special case: zero means zero.
271         if (time == 0) {
272             Arrays.fill(buffer, offset, offset + 8, (byte) 0x00);
273             return;
274         }
275 
276         long seconds = time / 1000L;
277         long milliseconds = time - seconds * 1000L;
278         seconds += OFFSET_1900_TO_1970;
279 
280         // write seconds in big endian format
281         buffer[offset++] = (byte)(seconds >> 24);
282         buffer[offset++] = (byte)(seconds >> 16);
283         buffer[offset++] = (byte)(seconds >> 8);
284         buffer[offset++] = (byte)(seconds >> 0);
285 
286         long fraction = milliseconds * 0x100000000L / 1000L;
287         // write fraction in big endian format
288         buffer[offset++] = (byte)(fraction >> 24);
289         buffer[offset++] = (byte)(fraction >> 16);
290         buffer[offset++] = (byte)(fraction >> 8);
291         // low order bits should be random data
292         buffer[offset++] = (byte)(Math.random() * 255.0);
293     }
294 }
295