/frameworks/base/cmds/statsd/src/metrics/ |
D | MetricProducer.cpp | 123 std::shared_ptr<Activation> activation = in addActivation() local 125 mEventActivationMap.emplace(activationTrackerIndex, activation); in addActivation() 128 deactivationList.push_back(activation); in addActivation() 137 auto& activation = it->second; in activateLocked() local 138 if (ACTIVATE_ON_BOOT == activation->activationType) { in activateLocked() 139 if (ActivationState::kNotActive == activation->state) { in activateLocked() 140 activation->state = ActivationState::kActiveOnBoot; in activateLocked() 145 activation->start_ns = elapsedTimestampNs; in activateLocked() 146 activation->state = ActivationState::kActive; in activateLocked() 170 const auto& activeEventActivation = activeMetric.activation(i); in loadActiveMetricLocked() [all …]
|
/frameworks/ml/nn/common/operations/ |
D | Broadcast.cpp | 46 switch (activation) { \ 66 int32_t activation, float* out, const Shape& shapeOut)>; 69 const Shape& shape2, int32_t activation, _Float16* out, in binaryOperationFloat16() argument 77 operationFloat32(in1_float32.data(), shape1, in2_float32.data(), shape2, activation, in binaryOperationFloat16() 85 int32_t activation, float* out, const Shape& shapeOut) { in addFloat32() argument 90 #define ANDROID_NN_BROADCAST_ADD(activation) \ in addFloat32() argument 91 tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \ in addFloat32() 99 #define ANDROID_NN_ADD(activation) \ in addFloat32() argument 100 tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \ in addFloat32() 112 int32_t activation, _Float16* out, const Shape& shapeOut) { in addFloat16() argument [all …]
|
D | Activation.cpp | 29 namespace activation { namespace 111 #define ANDROID_NN_RELUX_QUANT8(activation) \ argument 116 CalculateActivationRangeUint8(activation, inputShape, &output_activation_min, \ 377 NN_REGISTER_OPERATION(RELU, "RELU", std::bind(activation::validate, OperationType::RELU, _1), 378 std::bind(activation::prepare, OperationType::RELU, _1), 379 activation::executeRelu, .allowZeroSizedInput = true); 380 NN_REGISTER_OPERATION(RELU1, "RELU1", std::bind(activation::validate, OperationType::RELU1, _1), 381 std::bind(activation::prepare, OperationType::RELU1, _1), 382 activation::executeRelu1, .allowZeroSizedInput = true); 383 NN_REGISTER_OPERATION(RELU6, "RELU6", std::bind(activation::validate, OperationType::RELU6, _1), [all …]
|
D | Conv2D.cpp | 55 int32_t activation; member 66 activation = context->getInputValue<int32_t>(6); in initialize() 82 activation = context->getInputValue<int32_t>(9); in initialize() 114 NN_RET_CHECK_GE(activation, 0); in initialize() 168 int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, in convNhwc() argument 175 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in convNhwc() 193 int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, in convNhwc() argument 214 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in convNhwc() 240 int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, in convNhwc() argument 256 dilation_height_factor, activation, outputData_float32.data(), outputShape); in convNhwc() [all …]
|
D | DepthwiseConv2D.cpp | 33 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, in depthwiseConvFloat16() argument 47 dilationHeightFactor, depthMultiplier, activation, in depthwiseConvFloat16() 70 int32_t depthMultiplier, int32_t activation, float* outputData, in depthwiseConvFloat32() argument 77 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in depthwiseConvFloat32() 103 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, in depthwiseConvQuant8() argument 120 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in depthwiseConvQuant8() 154 int32_t depthMultiplier, int32_t activation, uint8_t* outputData, in depthwiseConvQuant8PerChannel() argument 192 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in depthwiseConvQuant8PerChannel()
|
D | GroupedConv2D.cpp | 46 int32_t numGroups, int32_t activation, float* outputData, in groupedConvFloat32() argument 52 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in groupedConvFloat32() 103 int32_t numGroups, int32_t activation, uint8_t* outputData, in groupedConvQuant8() argument 122 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in groupedConvQuant8() 182 int32_t activation, uint8_t* outputData, in groupedConvQuant8PerChannel() argument 208 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in groupedConvQuant8PerChannel() 267 int32_t activation, _Float16* outputData, const Shape& outputShape) { in groupedConvFloat16() argument 281 padding_bottom, stride_width, stride_height, numGroups, activation, in groupedConvFloat16()
|
D | FullyConnected.cpp | 49 const float* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedFloat32() argument 53 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in fullyConnectedFloat32() 79 const _Float16* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedFloat16() argument 91 weightsShape, biasDataFloat32.data(), biasShape, activation, in fullyConnectedFloat16() 100 const int32_t* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedQuant8() argument 118 CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin, in fullyConnectedQuant8()
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | sub_v1_2_broadcast.mod.py | 20 activation = Int32Scalar("act", 0) variable 23 model = Model().Operation("SUB", input0, input1, activation).To(output0) 35 }).AddVariations("float16").AddAllActivations(output0, activation) 41 activation = 0 variable 44 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0)
|
D | unidirectional_sequence_rnn.mod.py | 20 activation, time_major, output, input_data, weights_data, argument 22 activation = Int32Scalar("activation", activation) 25 recurrent_weights, bias, hidden_state, activation, 152 activation=1, 174 activation=1,
|
D | sub_v1_2.mod.py | 24 activation = Int32Scalar("act", 0) variable 27 model = Model().Operation("SUB", input0, input1, activation).To(output0) 33 }).AddVariations("float16").AddAllActivations(output0, activation) 40 activation = 0 variable 43 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0)
|
D | bidirectional_sequence_rnn.mod.py | 40 bw_hidden_state, aux_input, fw_aux_weights, bw_aux_weights, activation, argument 47 activation = Int32Scalar("activation", activation) 53 bw_hidden_state, aux_input, fw_aux_weights, bw_aux_weights, activation, 238 activation=1, 288 activation=1, 339 activation=1, 395 activation=1, 449 activation=1, 511 activation=1,
|
/frameworks/ml/nn/runtime/test/ |
D | TestTrivialModel.cpp | 63 int32_t activation(ANEURALNETWORKS_FUSED_NONE); in CreateAddTwoTensorModel() local 68 model->setOperandValue(d, &activation, sizeof(activation)); in CreateAddTwoTensorModel() 80 int32_t activation(ANEURALNETWORKS_FUSED_NONE); in CreateAddThreeTensorModel() local 88 model->setOperandValue(f, &activation, sizeof(activation)); in CreateAddThreeTensorModel() 162 auto activation = modelBroadcastAdd2.addOperand(&scalarType); in TEST_F() local 163 modelBroadcastAdd2.setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in TEST_F() 171 modelBroadcastAdd2.addOperation(ANEURALNETWORKS_ADD, {a, b, activation}, {c}); in TEST_F() 194 auto activation = modelBroadcastMul2.addOperand(&scalarType); in TEST_F() local 195 modelBroadcastMul2.setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in TEST_F() 203 modelBroadcastMul2.addOperation(ANEURALNETWORKS_MUL, {a, b, activation}, {c}); in TEST_F()
|
D | TestMemory.cpp | 62 int32_t activation(0); in TEST_F() local 72 model.setOperandValue(f, &activation, sizeof(activation)); in TEST_F() 120 int32_t activation(0); in TEST_F() local 130 model.setOperandValue(f, &activation, sizeof(activation)); in TEST_F()
|
/frameworks/ml/nn/runtime/test/generated/models/ |
D | max_pool_quant8_2.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 45 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 56 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | avg_pool_quant8_2.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 45 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 56 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | max_pool_float_2.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 45 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 56 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | avg_pool_quant8_3.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 45 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 56 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | avg_pool_float_2.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 45 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 56 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | avg_pool_float_3.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 45 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 56 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | avg_pool_float_3_relaxed.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 47 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 57 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 58 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | avg_pool_float_2_relaxed.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 47 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 57 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 58 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | max_pool_float_2_relaxed.model.cpp | 12 auto activation = model->addOperand(&type1); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 23 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel() 47 auto activation = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 57 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape() 58 …D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); in CreateModel_dynamic_output_shape()
|
D | unidirectional_sequence_rnn.model.cpp | 17 auto activation = model->addOperand(&type6); in CreateModel() local 22 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel() 25 …_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {o… in CreateModel() 52 auto activation = model->addOperand(&type6); in CreateModel_relaxed() local 57 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_relaxed() 60 …_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {o… in CreateModel_relaxed() 89 auto activation = model->addOperand(&type6); in CreateModel_float16() local 94 model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); in CreateModel_float16() 97 …_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {o… in CreateModel_float16() 124 auto activation = model->addOperand(&type6); in CreateModel_dynamic_output_shape() local [all …]
|
/frameworks/ml/nn/common/include/ |
D | Operations.h | 54 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, 61 int32_t depthMultiplier, int32_t activation, float* outputData, 68 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, 77 int32_t depthMultiplier, int32_t activation, uint8_t* outputData, 146 int32_t activation, _Float16* outputData, const Shape& outputShape); 152 int32_t stride_height, int32_t activation, float* outputData, 159 int32_t stride_height, int32_t activation, uint8_t* outputData, 168 int32_t activation, uint8_t* outputData, const Shape& outputShape);
|
/frameworks/base/cmds/statsd/src/ |
D | active_config_list.proto | 27 // Time left in activation. When this proto is loaded after device boot, 28 // the activation should be set to active for this duration. 45 repeated ActiveEventActivation activation = 2; field
|