/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | svdf.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches 135 golden_start = i * units * batches [all …]
|
D | svdf_bias_present.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches 135 golden_start = i * units * batches [all …]
|
D | svdf2.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 75 state_in: [0 for _ in range(batches * memory_size * features)], 142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 147 batch_start = i * input_size * batches 148 batch_end = batch_start + input_size * batches 150 golden_start = i * units * batches [all …]
|
D | rnn.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 184 input_sequence_size = int(len(test_inputs) / input_size / batches) 193 input0[hidden_state_in] = [0 for x in range(batches * units)] 195 hidden_state_out: [0 for x in range(batches * units)],
|
D | rnn_state.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
|
D | svdf_state.mod.py | 17 batches = 2 variable 24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | svdf_bias_present_float16.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches 135 golden_start = i * units * batches [all …]
|
D | svdf_float16.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units)) 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches 135 golden_start = i * units * batches [all …]
|
D | rnn_float16.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units)) 184 input_sequence_size = int(len(test_inputs) / input_size / batches) 193 input0[hidden_state_in] = [0 for x in range(batches * units)] 195 hidden_state_out: [0 for x in range(batches * units)],
|
D | svdf_state_float16.mod.py | 17 batches = 2 variable 24 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units)) 32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | svdf2_relaxed.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 76 state_in: [0 for _ in range(batches * memory_size * features)], 143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 148 batch_start = i * input_size * batches 149 batch_end = batch_start + input_size * batches 151 golden_start = i * units * batches [all …]
|
D | svdf_bias_present_relaxed.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 133 batch_start = i * input_size * batches 134 batch_end = batch_start + input_size * batches 136 golden_start = i * units * batches [all …]
|
D | svdf_relaxed.mod.py | 17 batches = 2 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 133 batch_start = i * input_size * batches 134 batch_end = batch_start + input_size * batches 136 golden_start = i * units * batches [all …]
|
D | rnn_relaxed.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 185 input_sequence_size = int(len(test_inputs) / input_size / batches) 194 input0[hidden_state_in] = [0 for x in range(batches * units)] 196 hidden_state_out: [0 for x in range(batches * units)],
|
D | rnn_state_relaxed.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
|
D | svdf_state_relaxed.mod.py | 17 batches = 2 variable 24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
|
/frameworks/ml/nn/runtime/test/generated/models/ |
D | bbox_graph.model.cpp | 35 auto batches = model->addOperand(&type7); in CreateModel_zero_sized() local 114 …chors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); in CreateModel_zero_sized() 115 …model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, … in CreateModel_zero_sized() 118 …model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo},… in CreateModel_zero_sized() 119 …model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15,… in CreateModel_zero_sized() 164 auto batches = model->addOperand(&type7); in CreateModel_zero_sized_relaxed() local 243 …chors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); in CreateModel_zero_sized_relaxed() 244 …model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, … in CreateModel_zero_sized_relaxed() 247 …model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo},… in CreateModel_zero_sized_relaxed() 248 …model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15,… in CreateModel_zero_sized_relaxed() [all …]
|
/frameworks/ml/nn/common/ |
D | OperationsUtils.cpp | 377 uint32_t batches = getSizeOfDimension(input, 0); in depthwiseConvPrepare() local 393 output->dimensions = {batches, outHeight, outWidth, channels_out}; in depthwiseConvPrepare() 452 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare() local 459 output->dimensions = {batches, in depthToSpacePrepare() 475 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare() local 484 output->dimensions = {batches, in spaceToDepthPrepare() 585 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare() local 590 NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0); in batchToSpacePrepare() 592 output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]), in batchToSpacePrepare() 623 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare() local [all …]
|
/frameworks/ml/nn/common/operations/ |
D | ResizeImageOps.cpp | 152 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local 185 output.dimensions = {batches, channels, (uint32_t)height, (uint32_t)width}; in prepare() 187 output.dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; in prepare()
|
D | RNNTest.cpp | 152 BasicRNNOpModel(uint32_t batches, uint32_t units, uint32_t size) in BasicRNNOpModel() argument 153 : batches_(batches), in BasicRNNOpModel()
|
D | SVDFTest.cpp | 186 SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, in SVDFOpModel() argument 188 : batches_(batches), in SVDFOpModel()
|
D | Pooling.cpp | 309 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local 324 output.dimensions = {batches, channels, outHeight, outWidth}; in prepare() 326 output.dimensions = {batches, outHeight, outWidth, channels}; in prepare()
|
D | TransposeConv2D.cpp | 487 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local 514 output.dimensions = {batches, channels_out, outHeight, outWidth}; in prepare() 516 output.dimensions = {batches, outHeight, outWidth, channels_out}; in prepare()
|
D | Conv2D.cpp | 511 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local 543 output.dimensions = {batches, channels_out, outHeight, outWidth}; in prepare() 545 output.dimensions = {batches, outHeight, outWidth, channels_out}; in prepare()
|
/frameworks/base/services/core/java/com/android/server/ |
D | AlarmManagerService.java | 1005 static int getAlarmCount(ArrayList<Batch> batches) { in getAlarmCount() argument 1008 final int size = batches.size(); in getAlarmCount() 1010 ret += batches.get(i).size(); in getAlarmCount() 1028 boolean haveBatchesTimeTickAlarm(ArrayList<Batch> batches) { in haveBatchesTimeTickAlarm() argument 1029 final int numBatches = batches.size(); in haveBatchesTimeTickAlarm() 1031 if (haveAlarmsTimeTickAlarm(batches.get(i).alarms)) { in haveBatchesTimeTickAlarm() 3759 void recordWakeupAlarms(ArrayList<Batch> batches, long nowELAPSED, long nowRTC) { in recordWakeupAlarms() argument 3760 final int numBatches = batches.size(); in recordWakeupAlarms() 3762 Batch b = batches.get(nextBatch); in recordWakeupAlarms()
|