Home
last modified time | relevance | path

Searched refs:batches (Results 1 – 25 of 25) sorted by relevance

/frameworks/ml/nn/runtime/test/specs/V1_0/
Dsvdf.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf_bias_present.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf2.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
75 state_in: [0 for _ in range(batches * memory_size * features)],
142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
147 batch_start = i * input_size * batches
148 batch_end = batch_start + input_size * batches
150 golden_start = i * units * batches
[all …]
Drnn.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
184 input_sequence_size = int(len(test_inputs) / input_size / batches)
193 input0[hidden_state_in] = [0 for x in range(batches * units)]
195 hidden_state_out: [0 for x in range(batches * units)],
Drnn_state.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
Dsvdf_state.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
/frameworks/ml/nn/runtime/test/specs/V1_2/
Dsvdf_bias_present_float16.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf_float16.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Drnn_float16.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
184 input_sequence_size = int(len(test_inputs) / input_size / batches)
193 input0[hidden_state_in] = [0 for x in range(batches * units)]
195 hidden_state_out: [0 for x in range(batches * units)],
Dsvdf_state_float16.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
/frameworks/ml/nn/runtime/test/specs/V1_1/
Dsvdf2_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
76 state_in: [0 for _ in range(batches * memory_size * features)],
143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
148 batch_start = i * input_size * batches
149 batch_end = batch_start + input_size * batches
151 golden_start = i * units * batches
[all …]
Dsvdf_bias_present_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
61 state_in: [0 for _ in range(batches * memory_size * features)],
128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
133 batch_start = i * input_size * batches
134 batch_end = batch_start + input_size * batches
136 golden_start = i * units * batches
[all …]
Dsvdf_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
61 state_in: [0 for _ in range(batches * memory_size * features)],
128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
133 batch_start = i * input_size * batches
134 batch_end = batch_start + input_size * batches
136 golden_start = i * units * batches
[all …]
Drnn_relaxed.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
185 input_sequence_size = int(len(test_inputs) / input_size / batches)
194 input0[hidden_state_in] = [0 for x in range(batches * units)]
196 hidden_state_out: [0 for x in range(batches * units)],
Drnn_state_relaxed.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
Dsvdf_state_relaxed.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
/frameworks/ml/nn/runtime/test/generated/models/
Dbbox_graph.model.cpp35 auto batches = model->addOperand(&type7); in CreateModel_zero_sized() local
114 …chors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); in CreateModel_zero_sized()
115 …model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, … in CreateModel_zero_sized()
118 …model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo},… in CreateModel_zero_sized()
119 …model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15,… in CreateModel_zero_sized()
164 auto batches = model->addOperand(&type7); in CreateModel_zero_sized_relaxed() local
243 …chors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); in CreateModel_zero_sized_relaxed()
244 …model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, … in CreateModel_zero_sized_relaxed()
247 …model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo},… in CreateModel_zero_sized_relaxed()
248 …model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15,… in CreateModel_zero_sized_relaxed()
[all …]
/frameworks/ml/nn/common/
DOperationsUtils.cpp377 uint32_t batches = getSizeOfDimension(input, 0); in depthwiseConvPrepare() local
393 output->dimensions = {batches, outHeight, outWidth, channels_out}; in depthwiseConvPrepare()
452 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare() local
459 output->dimensions = {batches, in depthToSpacePrepare()
475 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare() local
484 output->dimensions = {batches, in spaceToDepthPrepare()
585 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare() local
590 NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0); in batchToSpacePrepare()
592 output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]), in batchToSpacePrepare()
623 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare() local
[all …]
/frameworks/ml/nn/common/operations/
DResizeImageOps.cpp152 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
185 output.dimensions = {batches, channels, (uint32_t)height, (uint32_t)width}; in prepare()
187 output.dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; in prepare()
DRNNTest.cpp152 BasicRNNOpModel(uint32_t batches, uint32_t units, uint32_t size) in BasicRNNOpModel() argument
153 : batches_(batches), in BasicRNNOpModel()
DSVDFTest.cpp186 SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, in SVDFOpModel() argument
188 : batches_(batches), in SVDFOpModel()
DPooling.cpp309 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
324 output.dimensions = {batches, channels, outHeight, outWidth}; in prepare()
326 output.dimensions = {batches, outHeight, outWidth, channels}; in prepare()
DTransposeConv2D.cpp487 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
514 output.dimensions = {batches, channels_out, outHeight, outWidth}; in prepare()
516 output.dimensions = {batches, outHeight, outWidth, channels_out}; in prepare()
DConv2D.cpp511 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
543 output.dimensions = {batches, channels_out, outHeight, outWidth}; in prepare()
545 output.dimensions = {batches, outHeight, outWidth, channels_out}; in prepare()
/frameworks/base/services/core/java/com/android/server/
DAlarmManagerService.java1005 static int getAlarmCount(ArrayList<Batch> batches) { in getAlarmCount() argument
1008 final int size = batches.size(); in getAlarmCount()
1010 ret += batches.get(i).size(); in getAlarmCount()
1028 boolean haveBatchesTimeTickAlarm(ArrayList<Batch> batches) { in haveBatchesTimeTickAlarm() argument
1029 final int numBatches = batches.size(); in haveBatchesTimeTickAlarm()
1031 if (haveAlarmsTimeTickAlarm(batches.get(i).alarms)) { in haveBatchesTimeTickAlarm()
3759 void recordWakeupAlarms(ArrayList<Batch> batches, long nowELAPSED, long nowRTC) { in recordWakeupAlarms() argument
3760 final int numBatches = batches.size(); in recordWakeupAlarms()
3762 Batch b = batches.get(nextBatch); in recordWakeupAlarms()