/frameworks/ml/nn/common/operations/ |
D | GroupedConv2D.cpp | 35 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 68 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvFloat32() 76 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvFloat32() 87 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvFloat32() 139 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvQuant8() 147 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvQuant8() 164 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvQuant8() 225 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvQuant8PerChannel() 233 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvQuant8PerChannel() 250 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvQuant8PerChannel()
|
D | TransposeConv2D.cpp | 66 int32_t filterWidth = getSizeOfDimension(filterShape, 2); in initialize() local 73 calculateExplicitPaddingTransposeConv(outputWidth, strideWidth, filterWidth, in initialize() 106 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 138 for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) { in transposeConvNhwc() 223 for (uint32_t j = 0; j < filterWidth; j++) { in transposeConvNhwc() 230 k * filterHeight * filterWidth * inputDepth + in transposeConvNhwc() 231 i * filterWidth * inputDepth + j * inputDepth + d; in transposeConvNhwc() 364 for (uint32_t j = 0; j < filterWidth; j++) { in transposeConvQuant8PerChannelNhwc() 371 k * filterHeight * filterWidth * inputDepth + in transposeConvQuant8PerChannelNhwc() 372 i * filterWidth * inputDepth + j * inputDepth + d; in transposeConvQuant8PerChannelNhwc() [all …]
|
D | DepthwiseConv2D.cpp | 58 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 166 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in depthwiseConvQuant8PerChannel() local 208 for (uint32_t j = 0; j < filterWidth; j++) { in depthwiseConvQuant8PerChannel() 217 i * filterWidth * filterDepth + j * filterDepth + oc; in depthwiseConvQuant8PerChannel()
|
D | Conv2D.cpp | 123 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 135 im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \ 297 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in convQuant8PerChannelNhwc() local 338 for (uint32_t j = 0; j < filterWidth; j++) { in convQuant8PerChannelNhwc() 348 i * filterWidth * filterDepth + j * filterDepth + k; in convQuant8PerChannelNhwc() 364 filterBase += filterHeight * filterWidth * filterDepth; in convQuant8PerChannelNhwc() 517 uint32_t filterWidth = getSizeOfDimension(filter, 2); in prepare() local 526 int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; in prepare() 534 computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, in prepare()
|
/frameworks/ml/nn/runtime/test/fuzzing/operation_signatures/ |
D | Poolings.cpp | 34 auto filterWidth = op->inputs[7]->value<RandomVariable>(); in poolingExplicitOpConstructor() local 59 explicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, /*dilation=*/1, in poolingExplicitOpConstructor() 73 auto filterWidth = op->inputs[4]->value<RandomVariable>(); in poolingImplicitOpConstructor() local 95 implicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, in poolingImplicitOpConstructor()
|
/frameworks/ml/nn/common/ |
D | OperationsUtils.cpp | 375 uint32_t filterWidth = getSizeOfDimension(filter, 2); in depthwiseConvPrepare() local 380 int32_t effectiveFilterWidth = (filterWidth - 1) * dilation_width_factor + 1; in depthwiseConvPrepare() 387 uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, dilation_width_factor, in depthwiseConvPrepare() 892 uint32_t filterWidth = getSizeOfDimension(filter, 2); in groupedConvPrepare() local 896 NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_left); in groupedConvPrepare() 897 NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_right); in groupedConvPrepare() 902 computeOutSize(width, filterWidth, stride_width, padding_left, padding_right); in groupedConvPrepare()
|
/frameworks/ml/nn/common/include/ |
D | OperationsUtils.h | 235 int32_t filterWidth, int32_t filterHeight, in getPaddingScheme() argument 245 calculateExplicitPadding(inWidth, strideWidth, filterWidth, kPaddingSame, in getPaddingScheme()
|
/frameworks/ml/nn/runtime/test/ |
D | TestValidateOperations.cpp | 1010 ANeuralNetworksOperandType filterWidth = scalar; in poolingOpTest() local 1016 strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest() 1023 {input, padImplicit, strideWidth, strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest() 1035 {input, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight, filterWidth, in poolingOpTest() 1042 filterWidth, filterHeight, activation, layout}, in poolingOpTest()
|