/frameworks/ml/nn/common/operations/ |
D | SVDF.cpp | 70 const uint32_t memory_size = SizeOfDimension(weights_time, 1); in Prepare() local 83 stateShape->dimensions = { batch_size, memory_size * num_filters }; in Prepare() 158 const int memory_size = SizeOfDimension(weights_time_, 1); in EvalFloat32() local 160 memcpy(outputStateData, inputStateData, sizeof(float) * batch_size * memory_size * num_filters); in EvalFloat32() 163 float* state_ptr_batch = outputStateData + b * memory_size * num_filters; in EvalFloat32() 165 float* state_ptr = state_ptr_batch + c * memory_size; in EvalFloat32() 166 state_ptr[memory_size - 1] = 0.0; in EvalFloat32() 174 &outputStateData[memory_size - 1], memory_size); in EvalFloat32() 182 float* state_out_ptr_batch = outputStateData + b * memory_size * num_filters; in EvalFloat32() 185 weightsTimeData, state_out_ptr_batch, memory_size, num_filters, scratch_ptr_batch, in EvalFloat32() [all …]
|
D | SVDFTest.cpp | 187 uint32_t memory_size, uint32_t rank) in SVDFOpModel() argument 191 memory_size_(memory_size), in SVDFOpModel() 198 {batches_, memory_size * units_ * rank_}, // state in tensor in SVDFOpModel()
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | svdf.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_bias_present.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf2.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 75 state_in: [0 for _ in range(batches * memory_size * features)], 142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_state.mod.py | 20 memory_size = 10 variable 26 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (units, memory_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | svdf_bias_present_float16.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_float16.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_state_float16.mod.py | 20 memory_size = 10 variable 26 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (units, memory_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | svdf2_relaxed.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 76 state_in: [0 for _ in range(batches * memory_size * features)], 143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_bias_present_relaxed.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_relaxed.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_state_relaxed.mod.py | 20 memory_size = 10 variable 26 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (units, memory_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
|
/frameworks/native/libs/vr/libbroadcastring/include/libbroadcastring/ |
D | broadcast_ring.h | 499 size_t memory_size = record_count() * record_size(); in ValidateGeometry() local 500 if (memory_size / record_size() != record_count()) return false; in ValidateGeometry() 501 if (memory_size + sizeof(Header) < memory_size) return false; in ValidateGeometry() 502 if (memory_size + sizeof(Header) > mmap_size) return false; in ValidateGeometry()
|
/frameworks/minikin/tests/util/ |
D | FreeTypeMinikinFontForTest.cpp | 80 args.memory_size = mFontSize; in FreeTypeMinikinFontForTest()
|