1 /* deflate.c - deflate/inflate code for gzip and friends
2  *
3  * Copyright 2014 Rob Landley <rob@landley.net>
4  *
5  * See RFCs 1950 (zlib), 1951 (deflate), and 1952 (gzip)
6  * LSB 4.1 has gzip, gunzip, and zcat
7  *
8  * TODO: zip -d DIR -x LIST -list -quiet -no overwrite -overwrite -p to stdout
9  */
10 
11 #include "toys.h"
12 
13 struct deflate {
14   // Huffman codes: base offset and extra bits tables (length and distance)
15   char lenbits[29], distbits[30];
16   unsigned short lenbase[29], distbase[30];
17   void *fixdisthuff, *fixlithuff;
18 
19   // CRC
20   void (*crcfunc)(struct deflate *dd, char *data, int len);
21   unsigned crctable[256], crc;
22 
23 
24   // Tables only used for deflation
25   unsigned short *hashhead, *hashchain;
26 
27   // Compressed data buffer (extra space malloced at end)
28   unsigned pos, len;
29   int infd, outfd;
30   char data[];
31 };
32 
33 // little endian bit buffer
34 struct bitbuf {
35   int fd, bitpos, len, max;
36   char buf[];
37 };
38 
39 // malloc a struct bitbuf
bitbuf_init(int fd,int size)40 struct bitbuf *bitbuf_init(int fd, int size)
41 {
42   struct bitbuf *bb = xzalloc(sizeof(struct bitbuf)+size);
43 
44   bb->max = size;
45   bb->fd = fd;
46 
47   return bb;
48 }
49 
50 // Advance bitpos without the overhead of recording bits
51 // Loads more data when input buffer empty
bitbuf_skip(struct bitbuf * bb,int bits)52 void bitbuf_skip(struct bitbuf *bb, int bits)
53 {
54   int pos = bb->bitpos + bits, len = bb->len << 3;
55 
56   while (pos >= len) {
57     pos -= len;
58     len = (bb->len = read(bb->fd, bb->buf, bb->max)) << 3;
59     if (bb->len < 1) perror_exit("inflate EOF");
60   }
61   bb->bitpos = pos;
62 }
63 
64 // Optimized single bit inlined version
bitbuf_bit(struct bitbuf * bb)65 static inline int bitbuf_bit(struct bitbuf *bb)
66 {
67   int bufpos = bb->bitpos>>3;
68 
69   if (bufpos == bb->len) {
70     bitbuf_skip(bb, 0);
71     bufpos = 0;
72   }
73 
74   return (bb->buf[bufpos]>>(bb->bitpos++&7))&1;
75 }
76 
77 // Fetch the next X bits from the bitbuf, little endian
bitbuf_get(struct bitbuf * bb,int bits)78 unsigned bitbuf_get(struct bitbuf *bb, int bits)
79 {
80   int result = 0, offset = 0;
81 
82   while (bits) {
83     int click = bb->bitpos >> 3, blow, blen;
84 
85     // Load more data if buffer empty
86     if (click == bb->len) bitbuf_skip(bb, click = 0);
87 
88     // grab bits from next byte
89     blow = bb->bitpos & 7;
90     blen = 8-blow;
91     if (blen > bits) blen = bits;
92     result |= ((bb->buf[click] >> blow) & ((1<<blen)-1)) << offset;
93     offset += blen;
94     bits -= blen;
95     bb->bitpos += blen;
96   }
97 
98   return result;
99 }
100 
bitbuf_flush(struct bitbuf * bb)101 void bitbuf_flush(struct bitbuf *bb)
102 {
103   if (!bb->bitpos) return;
104 
105   xwrite(bb->fd, bb->buf, (bb->bitpos+7)>>3);
106   memset(bb->buf, 0, bb->max);
107   bb->bitpos = 0;
108 }
109 
bitbuf_put(struct bitbuf * bb,int data,int len)110 void bitbuf_put(struct bitbuf *bb, int data, int len)
111 {
112   while (len) {
113     int click = bb->bitpos >> 3, blow, blen;
114 
115     // Flush buffer if necessary
116     if (click == bb->max) {
117       bitbuf_flush(bb);
118       click = 0;
119     }
120     blow = bb->bitpos & 7;
121     blen = 8-blow;
122     if (blen > len) blen = len;
123     bb->buf[click] |= data << blow;
124     bb->bitpos += blen;
125     data >>= blen;
126     len -= blen;
127   }
128 }
129 
output_byte(struct deflate * dd,char sym)130 static void output_byte(struct deflate *dd, char sym)
131 {
132   int pos = dd->pos++ & 32767;
133 
134   dd->data[pos] = sym;
135 
136   if (pos == 32767) {
137     xwrite(dd->outfd, dd->data, 32768);
138     if (dd->crcfunc) dd->crcfunc(dd, dd->data, 32768);
139   }
140 }
141 
142 // Huffman coding uses bits to traverse a binary tree to a leaf node,
143 // By placing frequently occurring symbols at shorter paths, frequently
144 // used symbols may be represented in fewer bits than uncommon symbols.
145 // (length[0] isn't used but code's clearer if it's there.)
146 
147 struct huff {
148   unsigned short length[16];  // How many symbols have this bit length?
149   unsigned short symbol[288]; // sorted by bit length, then ascending order
150 };
151 
152 // Create simple huffman tree from array of bit lengths.
153 
154 // The symbols in the huffman trees are sorted (first by bit length
155 // of the code to reach them, then by symbol number). This means that given
156 // the bit length of each symbol, we can construct a unique tree.
len2huff(struct huff * huff,char bitlen[],int len)157 static void len2huff(struct huff *huff, char bitlen[], int len)
158 {
159   int offset[16];
160   int i;
161 
162   // Count number of codes at each bit length
163   memset(huff, 0, sizeof(struct huff));
164   for (i = 0; i<len; i++) huff->length[bitlen[i]]++;
165 
166   // Sort symbols by bit length, then symbol. Get list of starting positions
167   // for each group, then write each symbol to next position within its group.
168   *huff->length = *offset = 0;
169   for (i = 1; i<16; i++) offset[i] = offset[i-1] + huff->length[i-1];
170   for (i = 0; i<len; i++) if (bitlen[i]) huff->symbol[offset[bitlen[i]]++] = i;
171 }
172 
173 // Fetch and decode next huffman coded symbol from bitbuf.
174 // This takes advantage of the sorting to navigate the tree as an array:
175 // each time we fetch a bit we have all the codes at that bit level in
176 // order with no gaps.
huff_and_puff(struct bitbuf * bb,struct huff * huff)177 static unsigned huff_and_puff(struct bitbuf *bb, struct huff *huff)
178 {
179   unsigned short *length = huff->length;
180   int start = 0, offset = 0;
181 
182   // Traverse through the bit lengths until our code is in this range
183   for (;;) {
184     offset = (offset << 1) | bitbuf_bit(bb);
185     start += *++length;
186     if ((offset -= *length) < 0) break;
187     if ((length - huff->length) & 16) error_exit("bad symbol");
188   }
189 
190   return huff->symbol[start + offset];
191 }
192 
193 // Decompress deflated data from bitbuf to dd->outfd.
inflate(struct deflate * dd,struct bitbuf * bb)194 static void inflate(struct deflate *dd, struct bitbuf *bb)
195 {
196   dd->crc = ~0;
197   // repeat until spanked
198   for (;;) {
199     int final, type;
200 
201     final = bitbuf_get(bb, 1);
202     type = bitbuf_get(bb, 2);
203 
204     if (type == 3) error_exit("bad type");
205 
206     // Uncompressed block?
207     if (!type) {
208       int len, nlen;
209 
210       // Align to byte, read length
211       bitbuf_skip(bb, (8-bb->bitpos)&7);
212       len = bitbuf_get(bb, 16);
213       nlen = bitbuf_get(bb, 16);
214       if (len != (0xffff & ~nlen)) error_exit("bad len");
215 
216       // Dump literal output data
217       while (len) {
218         int pos = bb->bitpos >> 3, bblen = bb->len - pos;
219         char *p = bb->buf+pos;
220 
221         // dump bytes until done or end of current bitbuf contents
222         if (bblen > len) bblen = len;
223         pos = bblen;
224         while (pos--) output_byte(dd, *(p++));
225         bitbuf_skip(bb, bblen << 3);
226         len -= bblen;
227       }
228 
229     // Compressed block
230     } else {
231       struct huff *disthuff, *lithuff;
232 
233       // Dynamic huffman codes?
234       if (type == 2) {
235         struct huff *h2 = ((struct huff *)toybuf)+1;
236         int i, litlen, distlen, hufflen;
237         char *hufflen_order = "\x10\x11\x12\0\x08\x07\x09\x06\x0a\x05\x0b"
238                               "\x04\x0c\x03\x0d\x02\x0e\x01\x0f", *bits;
239 
240         // The huffman trees are stored as a series of bit lengths
241         litlen = bitbuf_get(bb, 5)+257;  // max 288
242         distlen = bitbuf_get(bb, 5)+1;   // max 32
243         hufflen = bitbuf_get(bb, 4)+4;   // max 19
244 
245         // The literal and distance codes are themselves compressed, in
246         // a complicated way: an array of bit lengths (hufflen many
247         // entries, each 3 bits) is used to fill out an array of 19 entries
248         // in a magic order, leaving the rest 0. Then make a tree out of it:
249         memset(bits = toybuf+1, 0, 19);
250         for (i=0; i<hufflen; i++) bits[hufflen_order[i]] = bitbuf_get(bb, 3);
251         len2huff(h2, bits, 19);
252 
253         // Use that tree to read in the literal and distance bit lengths
254         for (i = 0; i < litlen + distlen;) {
255           int sym = huff_and_puff(bb, h2);
256 
257           // 0-15 are literals, 16 = repeat previous code 3-6 times,
258           // 17 = 3-10 zeroes (3 bit), 18 = 11-138 zeroes (7 bit)
259           if (sym < 16) bits[i++] = sym;
260           else {
261             int len = sym & 2;
262 
263             len = bitbuf_get(bb, sym-14+len+(len>>1)) + 3 + (len<<2);
264             memset(bits+i, bits[i-1] * !(sym&3), len);
265             i += len;
266           }
267         }
268         if (i > litlen+distlen) error_exit("bad tree");
269 
270         len2huff(lithuff = h2, bits, litlen);
271         len2huff(disthuff = ((struct huff *)toybuf)+2, bits+litlen, distlen);
272 
273       // Static huffman codes
274       } else {
275         lithuff = dd->fixlithuff;
276         disthuff = dd->fixdisthuff;
277       }
278 
279       // Use huffman tables to decode block of compressed symbols
280       for (;;) {
281         int sym = huff_and_puff(bb, lithuff);
282 
283         // Literal?
284         if (sym < 256) output_byte(dd, sym);
285 
286         // Copy range?
287         else if (sym > 256) {
288           int len, dist;
289 
290           sym -= 257;
291           len = dd->lenbase[sym] + bitbuf_get(bb, dd->lenbits[sym]);
292           sym = huff_and_puff(bb, disthuff);
293           dist = dd->distbase[sym] + bitbuf_get(bb, dd->distbits[sym]);
294           sym = dd->pos & 32767;
295 
296           while (len--) output_byte(dd, dd->data[(dd->pos-dist) & 32767]);
297 
298         // End of block
299         } else break;
300       }
301     }
302 
303     // Was that the last block?
304     if (final) break;
305   }
306 
307   if (dd->pos & 32767) {
308     xwrite(dd->outfd, dd->data, dd->pos&32767);
309     if (dd->crcfunc) dd->crcfunc(dd, dd->data, dd->pos&32767);
310   }
311 }
312 
313 // Deflate from dd->infd to bitbuf
314 // For deflate, dd->len = input read, dd->pos = input consumed
deflate(struct deflate * dd,struct bitbuf * bb)315 static void deflate(struct deflate *dd, struct bitbuf *bb)
316 {
317   char *data = dd->data;
318   int len, final = 0;
319 
320   dd->crc = ~0;
321 
322   while (!final) {
323     // Read next half-window of data if we haven't hit EOF yet.
324     len = readall(dd->infd, data+(dd->len&32768), 32768);
325     if (len < 0) perror_exit("read"); // todo: add filename
326     if (len != 32768) final++;
327     if (dd->crcfunc) dd->crcfunc(dd, data+(dd->len&32768), len);
328     // dd->len += len;  crcfunc advances len TODO
329 
330     // store block as literal
331     bitbuf_put(bb, final, 1);
332     bitbuf_put(bb, 0, 1);
333 
334     bitbuf_put(bb, 0, (8-bb->bitpos)&7);
335     bitbuf_put(bb, len, 16);
336     bitbuf_put(bb, 0xffff & ~len, 16);
337 
338     // repeat until spanked
339     while (dd->pos != dd->len) {
340       unsigned pos = dd->pos&65535;
341 
342       bitbuf_put(bb, data[pos], 8);
343 
344       // need to refill buffer?
345       if (!(32767 & ++dd->pos) && !final) break;
346     }
347   }
348   bitbuf_flush(bb);
349 }
350 
351 // Allocate memory for deflate/inflate.
init_deflate(int compress)352 static struct deflate *init_deflate(int compress)
353 {
354   int i, n = 1;
355   struct deflate *dd = xmalloc(sizeof(struct deflate)+32768*(compress ? 4 : 1));
356 
357 // TODO sizeof and order of these?
358   // decompress needs 32k history, compress adds 64k hashhead and 32k hashchain
359   if (compress) {
360     dd->hashhead = (unsigned short *)(dd->data+65536);
361     dd->hashchain = (unsigned short *)(dd->data+65536+32768);
362   }
363 
364   // Calculate lenbits, lenbase, distbits, distbase
365   *dd->lenbase = 3;
366   for (i = 0; i<sizeof(dd->lenbits)-1; i++) {
367     if (i>4) {
368       if (!(i&3)) {
369         dd->lenbits[i]++;
370         n <<= 1;
371       }
372       if (i == 27) n--;
373       else dd->lenbits[i+1] = dd->lenbits[i];
374     }
375     dd->lenbase[i+1] = n + dd->lenbase[i];
376   }
377   n = 0;
378   for (i = 0; i<sizeof(dd->distbits); i++) {
379     dd->distbase[i] = 1<<n;
380     if (i) dd->distbase[i] += dd->distbase[i-1];
381     if (i>3 && !(i&1)) n++;
382     dd->distbits[i] = n;
383   }
384 
385 // TODO layout and lifetime of this?
386   // Init fixed huffman tables
387   for (i=0; i<288; i++) toybuf[i] = 8 + (i>143) - ((i>255)<<1) + (i>279);
388   len2huff(dd->fixlithuff = ((struct huff *)toybuf)+3, toybuf, 288);
389   memset(toybuf, 5, 30);
390   len2huff(dd->fixdisthuff = ((struct huff *)toybuf)+4, toybuf, 30);
391 
392   return dd;
393 }
394 
395 // Return true/false whether we consumed a gzip header.
is_gzip(struct bitbuf * bb)396 static int is_gzip(struct bitbuf *bb)
397 {
398   int flags;
399 
400   // Confirm signature
401   if (bitbuf_get(bb, 24) != 0x088b1f || (flags = bitbuf_get(bb, 8)) > 31)
402     return 0;
403   bitbuf_skip(bb, 6*8);
404 
405   // Skip extra, name, comment, header CRC fields
406   if (flags & 4) bitbuf_skip(bb, 16);
407   if (flags & 8) while (bitbuf_get(bb, 8));
408   if (flags & 16) while (bitbuf_get(bb, 8));
409   if (flags & 2) bitbuf_skip(bb, 16);
410 
411   return 1;
412 }
413 
gzip_crc(struct deflate * dd,char * data,int len)414 void gzip_crc(struct deflate *dd, char *data, int len)
415 {
416   int i;
417   unsigned crc, *crc_table = dd->crctable;
418 
419   crc = dd->crc;
420   for (i=0; i<len; i++) crc = crc_table[(crc^data[i])&0xff] ^ (crc>>8);
421   dd->crc = crc;
422   dd->len += len;
423 }
424 
gzip_fd(int infd,int outfd)425 long long gzip_fd(int infd, int outfd)
426 {
427   struct bitbuf *bb = bitbuf_init(outfd, 4096);
428   struct deflate *dd = init_deflate(1);
429   long long rc;
430 
431   // Header from RFC 1952 section 2.2:
432   // 2 ID bytes (1F, 8b), gzip method byte (8=deflate), FLAG byte (none),
433   // 4 byte MTIME (zeroed), Extra Flags (2=maximum compression),
434   // Operating System (FF=unknown)
435 
436   dd->infd = infd;
437   xwrite(bb->fd, "\x1f\x8b\x08\0\0\0\0\0\x02\xff", 10);
438 
439   // Little endian crc table
440   crc_init(dd->crctable, 1);
441   dd->crcfunc = gzip_crc;
442 
443   deflate(dd, bb);
444 
445   // tail: crc32, len32
446 
447   bitbuf_put(bb, 0, (8-bb->bitpos)&7);
448   bitbuf_put(bb, ~dd->crc, 32);
449   bitbuf_put(bb, dd->len, 32);
450   rc = dd->len;
451 
452   bitbuf_flush(bb);
453   free(bb);
454   free(dd);
455 
456   return rc;
457 }
458 
gunzip_fd(int infd,int outfd)459 long long gunzip_fd(int infd, int outfd)
460 {
461   struct bitbuf *bb = bitbuf_init(infd, 4096);
462   struct deflate *dd = init_deflate(0);
463   long long rc;
464 
465   if (!is_gzip(bb)) error_exit("not gzip");
466   dd->outfd = outfd;
467 
468   // Little endian crc table
469   crc_init(dd->crctable, 1);
470   dd->crcfunc = gzip_crc;
471 
472   inflate(dd, bb);
473 
474   // tail: crc32, len32
475 
476   bitbuf_skip(bb, (8-bb->bitpos)&7);
477   if (~dd->crc != bitbuf_get(bb, 32) || dd->len != bitbuf_get(bb, 32))
478     error_exit("bad crc");
479 
480   rc = dd->len;
481   free(bb);
482   free(dd);
483 
484   return rc;
485 }
486