1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 #include "protobuf.h"
32 
33 // This function is equivalent to rb_str_cat(), but unlike the real
34 // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
35 // For more information, see:
36 //   https://bugs.ruby-lang.org/issues/11328
noleak_rb_str_cat(VALUE rb_str,const char * str,long len)37 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
38   char *p;
39   size_t oldlen = RSTRING_LEN(rb_str);
40   rb_str_modify_expand(rb_str, len);
41   p = RSTRING_PTR(rb_str);
42   memcpy(p + oldlen, str, len);
43   rb_str_set_len(rb_str, oldlen + len);
44   return rb_str;
45 }
46 
47 // -----------------------------------------------------------------------------
48 // Parsing.
49 // -----------------------------------------------------------------------------
50 
51 #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
52 
53 // Creates a handlerdata that simply contains the offset for this field.
newhandlerdata(upb_handlers * h,uint32_t ofs)54 static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {
55   size_t* hd_ofs = ALLOC(size_t);
56   *hd_ofs = ofs;
57   upb_handlers_addcleanup(h, hd_ofs, free);
58   return hd_ofs;
59 }
60 
61 typedef struct {
62   size_t ofs;
63   const upb_msgdef *md;
64 } submsg_handlerdata_t;
65 
66 // Creates a handlerdata that contains offset and submessage type information.
newsubmsghandlerdata(upb_handlers * h,uint32_t ofs,const upb_fielddef * f)67 static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,
68                                         const upb_fielddef* f) {
69   submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
70   hd->ofs = ofs;
71   hd->md = upb_fielddef_msgsubdef(f);
72   upb_handlers_addcleanup(h, hd, free);
73   return hd;
74 }
75 
76 typedef struct {
77   size_t ofs;              // union data slot
78   size_t case_ofs;         // oneof_case field
79   uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
80   const upb_msgdef *md;    // msgdef, for oneof submessage handler
81 } oneof_handlerdata_t;
82 
newoneofhandlerdata(upb_handlers * h,uint32_t ofs,uint32_t case_ofs,const upb_fielddef * f)83 static const void *newoneofhandlerdata(upb_handlers *h,
84                                        uint32_t ofs,
85                                        uint32_t case_ofs,
86                                        const upb_fielddef *f) {
87   oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
88   hd->ofs = ofs;
89   hd->case_ofs = case_ofs;
90   // We reuse the field tag number as a oneof union discriminant tag. Note that
91   // we don't expose these numbers to the user, so the only requirement is that
92   // we have some unique ID for each union case/possibility. The field tag
93   // numbers are already present and are easy to use so there's no reason to
94   // create a separate ID space. In addition, using the field tag number here
95   // lets us easily look up the field in the oneof accessor.
96   hd->oneof_case_num = upb_fielddef_number(f);
97   if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
98     hd->md = upb_fielddef_msgsubdef(f);
99   } else {
100     hd->md = NULL;
101   }
102   upb_handlers_addcleanup(h, hd, free);
103   return hd;
104 }
105 
106 // A handler that starts a repeated field.  Gets the Repeated*Field instance for
107 // this field (such an instance always exists even in an empty message).
startseq_handler(void * closure,const void * hd)108 static void *startseq_handler(void* closure, const void* hd) {
109   MessageHeader* msg = closure;
110   const size_t *ofs = hd;
111   return (void*)DEREF(msg, *ofs, VALUE);
112 }
113 
114 // Handlers that append primitive values to a repeated field.
115 #define DEFINE_APPEND_HANDLER(type, ctype)                 \
116   static bool append##type##_handler(void *closure, const void *hd, \
117                                      ctype val) {                   \
118     VALUE ary = (VALUE)closure;                                     \
119     RepeatedField_push_native(ary, &val);                           \
120     return true;                                                    \
121   }
122 
DEFINE_APPEND_HANDLER(bool,bool)123 DEFINE_APPEND_HANDLER(bool,   bool)
124 DEFINE_APPEND_HANDLER(int32,  int32_t)
125 DEFINE_APPEND_HANDLER(uint32, uint32_t)
126 DEFINE_APPEND_HANDLER(float,  float)
127 DEFINE_APPEND_HANDLER(int64,  int64_t)
128 DEFINE_APPEND_HANDLER(uint64, uint64_t)
129 DEFINE_APPEND_HANDLER(double, double)
130 
131 // Appends a string to a repeated field.
132 static void* appendstr_handler(void *closure,
133                                const void *hd,
134                                size_t size_hint) {
135   VALUE ary = (VALUE)closure;
136   VALUE str = rb_str_new2("");
137   rb_enc_associate(str, kRubyStringUtf8Encoding);
138   RepeatedField_push(ary, str);
139   return (void*)str;
140 }
141 
142 // Appends a 'bytes' string to a repeated field.
appendbytes_handler(void * closure,const void * hd,size_t size_hint)143 static void* appendbytes_handler(void *closure,
144                                  const void *hd,
145                                  size_t size_hint) {
146   VALUE ary = (VALUE)closure;
147   VALUE str = rb_str_new2("");
148   rb_enc_associate(str, kRubyString8bitEncoding);
149   RepeatedField_push(ary, str);
150   return (void*)str;
151 }
152 
153 // Sets a non-repeated string field in a message.
str_handler(void * closure,const void * hd,size_t size_hint)154 static void* str_handler(void *closure,
155                          const void *hd,
156                          size_t size_hint) {
157   MessageHeader* msg = closure;
158   const size_t *ofs = hd;
159   VALUE str = rb_str_new2("");
160   rb_enc_associate(str, kRubyStringUtf8Encoding);
161   DEREF(msg, *ofs, VALUE) = str;
162   return (void*)str;
163 }
164 
165 // Sets a non-repeated 'bytes' field in a message.
bytes_handler(void * closure,const void * hd,size_t size_hint)166 static void* bytes_handler(void *closure,
167                            const void *hd,
168                            size_t size_hint) {
169   MessageHeader* msg = closure;
170   const size_t *ofs = hd;
171   VALUE str = rb_str_new2("");
172   rb_enc_associate(str, kRubyString8bitEncoding);
173   DEREF(msg, *ofs, VALUE) = str;
174   return (void*)str;
175 }
176 
stringdata_handler(void * closure,const void * hd,const char * str,size_t len,const upb_bufhandle * handle)177 static size_t stringdata_handler(void* closure, const void* hd,
178                                  const char* str, size_t len,
179                                  const upb_bufhandle* handle) {
180   VALUE rb_str = (VALUE)closure;
181   noleak_rb_str_cat(rb_str, str, len);
182   return len;
183 }
184 
185 // Appends a submessage to a repeated field (a regular Ruby array for now).
appendsubmsg_handler(void * closure,const void * hd)186 static void *appendsubmsg_handler(void *closure, const void *hd) {
187   VALUE ary = (VALUE)closure;
188   const submsg_handlerdata_t *submsgdata = hd;
189   VALUE subdesc =
190       get_def_obj((void*)submsgdata->md);
191   VALUE subklass = Descriptor_msgclass(subdesc);
192   MessageHeader* submsg;
193 
194   VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
195   RepeatedField_push(ary, submsg_rb);
196 
197   TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
198   return submsg;
199 }
200 
201 // Sets a non-repeated submessage field in a message.
submsg_handler(void * closure,const void * hd)202 static void *submsg_handler(void *closure, const void *hd) {
203   MessageHeader* msg = closure;
204   const submsg_handlerdata_t* submsgdata = hd;
205   VALUE subdesc =
206       get_def_obj((void*)submsgdata->md);
207   VALUE subklass = Descriptor_msgclass(subdesc);
208   VALUE submsg_rb;
209   MessageHeader* submsg;
210 
211   if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
212     DEREF(msg, submsgdata->ofs, VALUE) =
213         rb_class_new_instance(0, NULL, subklass);
214   }
215 
216   submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
217   TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
218   return submsg;
219 }
220 
221 // Handler data for startmap/endmap handlers.
222 typedef struct {
223   size_t ofs;
224   upb_fieldtype_t key_field_type;
225   upb_fieldtype_t value_field_type;
226 
227   // We know that we can hold this reference because the handlerdata has the
228   // same lifetime as the upb_handlers struct, and the upb_handlers struct holds
229   // a reference to the upb_msgdef, which in turn has references to its subdefs.
230   const upb_def* value_field_subdef;
231 } map_handlerdata_t;
232 
233 // Temporary frame for map parsing: at the beginning of a map entry message, a
234 // submsg handler allocates a frame to hold (i) a reference to the Map object
235 // into which this message will be inserted and (ii) storage slots to
236 // temporarily hold the key and value for this map entry until the end of the
237 // submessage. When the submessage ends, another handler is called to insert the
238 // value into the map.
239 typedef struct {
240   VALUE map;
241   char key_storage[NATIVE_SLOT_MAX_SIZE];
242   char value_storage[NATIVE_SLOT_MAX_SIZE];
243 } map_parse_frame_t;
244 
245 // Handler to begin a map entry: allocates a temporary frame. This is the
246 // 'startsubmsg' handler on the msgdef that contains the map field.
startmapentry_handler(void * closure,const void * hd)247 static void *startmapentry_handler(void *closure, const void *hd) {
248   MessageHeader* msg = closure;
249   const map_handlerdata_t* mapdata = hd;
250   VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
251 
252   map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
253   frame->map = map_rb;
254 
255   native_slot_init(mapdata->key_field_type, &frame->key_storage);
256   native_slot_init(mapdata->value_field_type, &frame->value_storage);
257 
258   return frame;
259 }
260 
261 // Handler to end a map entry: inserts the value defined during the message into
262 // the map. This is the 'endmsg' handler on the map entry msgdef.
endmap_handler(void * closure,const void * hd,upb_status * s)263 static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
264   map_parse_frame_t* frame = closure;
265   const map_handlerdata_t* mapdata = hd;
266 
267   VALUE key = native_slot_get(
268       mapdata->key_field_type, Qnil,
269       &frame->key_storage);
270 
271   VALUE value_field_typeclass = Qnil;
272   VALUE value;
273 
274   if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||
275       mapdata->value_field_type == UPB_TYPE_ENUM) {
276     value_field_typeclass = get_def_obj(mapdata->value_field_subdef);
277   }
278 
279   value = native_slot_get(
280       mapdata->value_field_type, value_field_typeclass,
281       &frame->value_storage);
282 
283   Map_index_set(frame->map, key, value);
284   free(frame);
285 
286   return true;
287 }
288 
289 // Allocates a new map_handlerdata_t given the map entry message definition. If
290 // the offset of the field within the parent message is also given, that is
291 // added to the handler data as well. Note that this is called *twice* per map
292 // field: once in the parent message handler setup when setting the startsubmsg
293 // handler and once in the map entry message handler setup when setting the
294 // key/value and endmsg handlers. The reason is that there is no easy way to
295 // pass the handlerdata down to the sub-message handler setup.
new_map_handlerdata(size_t ofs,const upb_msgdef * mapentry_def,Descriptor * desc)296 static map_handlerdata_t* new_map_handlerdata(
297     size_t ofs,
298     const upb_msgdef* mapentry_def,
299     Descriptor* desc) {
300   const upb_fielddef* key_field;
301   const upb_fielddef* value_field;
302   map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
303   hd->ofs = ofs;
304   key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
305   assert(key_field != NULL);
306   hd->key_field_type = upb_fielddef_type(key_field);
307   value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
308   assert(value_field != NULL);
309   hd->value_field_type = upb_fielddef_type(value_field);
310   hd->value_field_subdef = upb_fielddef_subdef(value_field);
311 
312   return hd;
313 }
314 
315 // Handlers that set primitive values in oneofs.
316 #define DEFINE_ONEOF_HANDLER(type, ctype)                           \
317   static bool oneof##type##_handler(void *closure, const void *hd,  \
318                                      ctype val) {                   \
319     const oneof_handlerdata_t *oneofdata = hd;                      \
320     DEREF(closure, oneofdata->case_ofs, uint32_t) =                 \
321         oneofdata->oneof_case_num;                                  \
322     DEREF(closure, oneofdata->ofs, ctype) = val;                    \
323     return true;                                                    \
324   }
325 
DEFINE_ONEOF_HANDLER(bool,bool)326 DEFINE_ONEOF_HANDLER(bool,   bool)
327 DEFINE_ONEOF_HANDLER(int32,  int32_t)
328 DEFINE_ONEOF_HANDLER(uint32, uint32_t)
329 DEFINE_ONEOF_HANDLER(float,  float)
330 DEFINE_ONEOF_HANDLER(int64,  int64_t)
331 DEFINE_ONEOF_HANDLER(uint64, uint64_t)
332 DEFINE_ONEOF_HANDLER(double, double)
333 
334 #undef DEFINE_ONEOF_HANDLER
335 
336 // Handlers for strings in a oneof.
337 static void *oneofstr_handler(void *closure,
338                               const void *hd,
339                               size_t size_hint) {
340   MessageHeader* msg = closure;
341   const oneof_handlerdata_t *oneofdata = hd;
342   VALUE str = rb_str_new2("");
343   rb_enc_associate(str, kRubyStringUtf8Encoding);
344   DEREF(msg, oneofdata->case_ofs, uint32_t) =
345       oneofdata->oneof_case_num;
346   DEREF(msg, oneofdata->ofs, VALUE) = str;
347   return (void*)str;
348 }
349 
oneofbytes_handler(void * closure,const void * hd,size_t size_hint)350 static void *oneofbytes_handler(void *closure,
351                                 const void *hd,
352                                 size_t size_hint) {
353   MessageHeader* msg = closure;
354   const oneof_handlerdata_t *oneofdata = hd;
355   VALUE str = rb_str_new2("");
356   rb_enc_associate(str, kRubyString8bitEncoding);
357   DEREF(msg, oneofdata->case_ofs, uint32_t) =
358       oneofdata->oneof_case_num;
359   DEREF(msg, oneofdata->ofs, VALUE) = str;
360   return (void*)str;
361 }
362 
363 // Handler for a submessage field in a oneof.
oneofsubmsg_handler(void * closure,const void * hd)364 static void *oneofsubmsg_handler(void *closure,
365                                  const void *hd) {
366   MessageHeader* msg = closure;
367   const oneof_handlerdata_t *oneofdata = hd;
368   uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
369 
370   VALUE subdesc =
371       get_def_obj((void*)oneofdata->md);
372   VALUE subklass = Descriptor_msgclass(subdesc);
373   VALUE submsg_rb;
374   MessageHeader* submsg;
375 
376   if (oldcase != oneofdata->oneof_case_num ||
377       DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
378     DEREF(msg, oneofdata->ofs, VALUE) =
379         rb_class_new_instance(0, NULL, subklass);
380   }
381   // Set the oneof case *after* allocating the new class instance -- otherwise,
382   // if the Ruby GC is invoked as part of a call into the VM, it might invoke
383   // our mark routines, and our mark routines might see the case value
384   // indicating a VALUE is present and expect a valid VALUE. See comment in
385   // layout_set() for more detail: basically, the change to the value and the
386   // case must be atomic w.r.t. the Ruby VM.
387   DEREF(msg, oneofdata->case_ofs, uint32_t) =
388       oneofdata->oneof_case_num;
389 
390   submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
391   TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
392   return submsg;
393 }
394 
395 // Set up handlers for a repeated field.
add_handlers_for_repeated_field(upb_handlers * h,const upb_fielddef * f,size_t offset)396 static void add_handlers_for_repeated_field(upb_handlers *h,
397                                             const upb_fielddef *f,
398                                             size_t offset) {
399   upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
400   upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
401   upb_handlers_setstartseq(h, f, startseq_handler, &attr);
402   upb_handlerattr_uninit(&attr);
403 
404   switch (upb_fielddef_type(f)) {
405 
406 #define SET_HANDLER(utype, ltype)                                 \
407   case utype:                                                     \
408     upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
409     break;
410 
411     SET_HANDLER(UPB_TYPE_BOOL,   bool);
412     SET_HANDLER(UPB_TYPE_INT32,  int32);
413     SET_HANDLER(UPB_TYPE_UINT32, uint32);
414     SET_HANDLER(UPB_TYPE_ENUM,   int32);
415     SET_HANDLER(UPB_TYPE_FLOAT,  float);
416     SET_HANDLER(UPB_TYPE_INT64,  int64);
417     SET_HANDLER(UPB_TYPE_UINT64, uint64);
418     SET_HANDLER(UPB_TYPE_DOUBLE, double);
419 
420 #undef SET_HANDLER
421 
422     case UPB_TYPE_STRING:
423     case UPB_TYPE_BYTES: {
424       bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
425       upb_handlers_setstartstr(h, f, is_bytes ?
426                                appendbytes_handler : appendstr_handler,
427                                NULL);
428       upb_handlers_setstring(h, f, stringdata_handler, NULL);
429       break;
430     }
431     case UPB_TYPE_MESSAGE: {
432       upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
433       upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
434       upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
435       upb_handlerattr_uninit(&attr);
436       break;
437     }
438   }
439 }
440 
441 // Set up handlers for a singular field.
add_handlers_for_singular_field(upb_handlers * h,const upb_fielddef * f,size_t offset)442 static void add_handlers_for_singular_field(upb_handlers *h,
443                                             const upb_fielddef *f,
444                                             size_t offset) {
445   switch (upb_fielddef_type(f)) {
446     case UPB_TYPE_BOOL:
447     case UPB_TYPE_INT32:
448     case UPB_TYPE_UINT32:
449     case UPB_TYPE_ENUM:
450     case UPB_TYPE_FLOAT:
451     case UPB_TYPE_INT64:
452     case UPB_TYPE_UINT64:
453     case UPB_TYPE_DOUBLE:
454       upb_shim_set(h, f, offset, -1);
455       break;
456     case UPB_TYPE_STRING:
457     case UPB_TYPE_BYTES: {
458       bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
459       upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
460       upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
461       upb_handlers_setstartstr(h, f,
462                                is_bytes ? bytes_handler : str_handler,
463                                &attr);
464       upb_handlers_setstring(h, f, stringdata_handler, &attr);
465       upb_handlerattr_uninit(&attr);
466       break;
467     }
468     case UPB_TYPE_MESSAGE: {
469       upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
470       upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));
471       upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
472       upb_handlerattr_uninit(&attr);
473       break;
474     }
475   }
476 }
477 
478 // Adds handlers to a map field.
add_handlers_for_mapfield(upb_handlers * h,const upb_fielddef * fielddef,size_t offset,Descriptor * desc)479 static void add_handlers_for_mapfield(upb_handlers* h,
480                                       const upb_fielddef* fielddef,
481                                       size_t offset,
482                                       Descriptor* desc) {
483   const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
484   map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
485   upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
486 
487   upb_handlers_addcleanup(h, hd, free);
488   upb_handlerattr_sethandlerdata(&attr, hd);
489   upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
490   upb_handlerattr_uninit(&attr);
491 }
492 
493 // Adds handlers to a map-entry msgdef.
add_handlers_for_mapentry(const upb_msgdef * msgdef,upb_handlers * h,Descriptor * desc)494 static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
495                                       upb_handlers* h,
496                                       Descriptor* desc) {
497   const upb_fielddef* key_field = map_entry_key(msgdef);
498   const upb_fielddef* value_field = map_entry_value(msgdef);
499   map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
500   upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
501 
502   upb_handlers_addcleanup(h, hd, free);
503   upb_handlerattr_sethandlerdata(&attr, hd);
504   upb_handlers_setendmsg(h, endmap_handler, &attr);
505 
506   add_handlers_for_singular_field(
507       h, key_field,
508       offsetof(map_parse_frame_t, key_storage));
509   add_handlers_for_singular_field(
510       h, value_field,
511       offsetof(map_parse_frame_t, value_storage));
512 }
513 
514 // Set up handlers for a oneof field.
add_handlers_for_oneof_field(upb_handlers * h,const upb_fielddef * f,size_t offset,size_t oneof_case_offset)515 static void add_handlers_for_oneof_field(upb_handlers *h,
516                                          const upb_fielddef *f,
517                                          size_t offset,
518                                          size_t oneof_case_offset) {
519 
520   upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
521   upb_handlerattr_sethandlerdata(
522       &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));
523 
524   switch (upb_fielddef_type(f)) {
525 
526 #define SET_HANDLER(utype, ltype)                                 \
527   case utype:                                                     \
528     upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
529     break;
530 
531     SET_HANDLER(UPB_TYPE_BOOL,   bool);
532     SET_HANDLER(UPB_TYPE_INT32,  int32);
533     SET_HANDLER(UPB_TYPE_UINT32, uint32);
534     SET_HANDLER(UPB_TYPE_ENUM,   int32);
535     SET_HANDLER(UPB_TYPE_FLOAT,  float);
536     SET_HANDLER(UPB_TYPE_INT64,  int64);
537     SET_HANDLER(UPB_TYPE_UINT64, uint64);
538     SET_HANDLER(UPB_TYPE_DOUBLE, double);
539 
540 #undef SET_HANDLER
541 
542     case UPB_TYPE_STRING:
543     case UPB_TYPE_BYTES: {
544       bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
545       upb_handlers_setstartstr(h, f, is_bytes ?
546                                oneofbytes_handler : oneofstr_handler,
547                                &attr);
548       upb_handlers_setstring(h, f, stringdata_handler, NULL);
549       break;
550     }
551     case UPB_TYPE_MESSAGE: {
552       upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
553       break;
554     }
555   }
556 
557   upb_handlerattr_uninit(&attr);
558 }
559 
560 
add_handlers_for_message(const void * closure,upb_handlers * h)561 static void add_handlers_for_message(const void *closure, upb_handlers *h) {
562   const upb_msgdef* msgdef = upb_handlers_msgdef(h);
563   Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
564   upb_msg_field_iter i;
565 
566   // If this is a mapentry message type, set up a special set of handlers and
567   // bail out of the normal (user-defined) message type handling.
568   if (upb_msgdef_mapentry(msgdef)) {
569     add_handlers_for_mapentry(msgdef, h, desc);
570     return;
571   }
572 
573   // Ensure layout exists. We may be invoked to create handlers for a given
574   // message if we are included as a submsg of another message type before our
575   // class is actually built, so to work around this, we just create the layout
576   // (and handlers, in the class-building function) on-demand.
577   if (desc->layout == NULL) {
578     desc->layout = create_layout(desc->msgdef);
579   }
580 
581   for (upb_msg_field_begin(&i, desc->msgdef);
582        !upb_msg_field_done(&i);
583        upb_msg_field_next(&i)) {
584     const upb_fielddef *f = upb_msg_iter_field(&i);
585     size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
586         sizeof(MessageHeader);
587 
588     if (upb_fielddef_containingoneof(f)) {
589       size_t oneof_case_offset =
590           desc->layout->fields[upb_fielddef_index(f)].case_offset +
591           sizeof(MessageHeader);
592       add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
593     } else if (is_map_field(f)) {
594       add_handlers_for_mapfield(h, f, offset, desc);
595     } else if (upb_fielddef_isseq(f)) {
596       add_handlers_for_repeated_field(h, f, offset);
597     } else {
598       add_handlers_for_singular_field(h, f, offset);
599     }
600   }
601 }
602 
603 // Creates upb handlers for populating a message.
new_fill_handlers(Descriptor * desc,const void * owner)604 static const upb_handlers *new_fill_handlers(Descriptor* desc,
605                                              const void* owner) {
606   // TODO(cfallin, haberman): once upb gets a caching/memoization layer for
607   // handlers, reuse subdef handlers so that e.g. if we already parse
608   // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
609   // parse A-with-field-of-type-B-with-field-of-type-C.
610   return upb_handlers_newfrozen(desc->msgdef, owner,
611                                 add_handlers_for_message, NULL);
612 }
613 
614 // Constructs the handlers for filling a message's data into an in-memory
615 // object.
get_fill_handlers(Descriptor * desc)616 const upb_handlers* get_fill_handlers(Descriptor* desc) {
617   if (!desc->fill_handlers) {
618     desc->fill_handlers =
619         new_fill_handlers(desc, &desc->fill_handlers);
620   }
621   return desc->fill_handlers;
622 }
623 
624 // Constructs the upb decoder method for parsing messages of this type.
625 // This is called from the message class creation code.
new_fillmsg_decodermethod(Descriptor * desc,const void * owner)626 const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
627                                                      const void* owner) {
628   const upb_handlers* handlers = get_fill_handlers(desc);
629   upb_pbdecodermethodopts opts;
630   upb_pbdecodermethodopts_init(&opts, handlers);
631 
632   return upb_pbdecodermethod_new(&opts, owner);
633 }
634 
msgdef_decodermethod(Descriptor * desc)635 static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
636   if (desc->fill_method == NULL) {
637     desc->fill_method = new_fillmsg_decodermethod(
638         desc, &desc->fill_method);
639   }
640   return desc->fill_method;
641 }
642 
msgdef_jsonparsermethod(Descriptor * desc)643 static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
644   if (desc->json_fill_method == NULL) {
645     desc->json_fill_method =
646         upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method);
647   }
648   return desc->json_fill_method;
649 }
650 
651 
652 // Stack-allocated context during an encode/decode operation. Contains the upb
653 // environment and its stack-based allocator, an initial buffer for allocations
654 // to avoid malloc() when possible, and a template for Ruby exception messages
655 // if any error occurs.
656 #define STACK_ENV_STACKBYTES 4096
657 typedef struct {
658   upb_env env;
659   const char* ruby_error_template;
660   char allocbuf[STACK_ENV_STACKBYTES];
661 } stackenv;
662 
663 static void stackenv_init(stackenv* se, const char* errmsg);
664 static void stackenv_uninit(stackenv* se);
665 
666 // Callback invoked by upb if any error occurs during parsing or serialization.
env_error_func(void * ud,const upb_status * status)667 static bool env_error_func(void* ud, const upb_status* status) {
668   stackenv* se = ud;
669   // Free the env -- rb_raise will longjmp up the stack past the encode/decode
670   // function so it would not otherwise have been freed.
671   stackenv_uninit(se);
672 
673   // TODO(haberman): have a way to verify that this is actually a parse error,
674   // instead of just throwing "parse error" unconditionally.
675   rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status));
676   // Never reached: rb_raise() always longjmp()s up the stack, past all of our
677   // code, back to Ruby.
678   return false;
679 }
680 
stackenv_init(stackenv * se,const char * errmsg)681 static void stackenv_init(stackenv* se, const char* errmsg) {
682   se->ruby_error_template = errmsg;
683   upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL);
684   upb_env_seterrorfunc(&se->env, env_error_func, se);
685 }
686 
stackenv_uninit(stackenv * se)687 static void stackenv_uninit(stackenv* se) {
688   upb_env_uninit(&se->env);
689 }
690 
691 /*
692  * call-seq:
693  *     MessageClass.decode(data) => message
694  *
695  * Decodes the given data (as a string containing bytes in protocol buffers wire
696  * format) under the interpretration given by this message class's definition
697  * and returns a message object with the corresponding field values.
698  */
Message_decode(VALUE klass,VALUE data)699 VALUE Message_decode(VALUE klass, VALUE data) {
700   VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
701   Descriptor* desc = ruby_to_Descriptor(descriptor);
702   VALUE msgklass = Descriptor_msgclass(descriptor);
703   VALUE msg_rb;
704   MessageHeader* msg;
705 
706   if (TYPE(data) != T_STRING) {
707     rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
708   }
709 
710   msg_rb = rb_class_new_instance(0, NULL, msgklass);
711   TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
712 
713   {
714     const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
715     const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
716     stackenv se;
717     upb_sink sink;
718     upb_pbdecoder* decoder;
719     stackenv_init(&se, "Error occurred during parsing: %s");
720 
721     upb_sink_reset(&sink, h, msg);
722     decoder = upb_pbdecoder_create(&se.env, method, &sink);
723     upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
724                       upb_pbdecoder_input(decoder));
725 
726     stackenv_uninit(&se);
727   }
728 
729   return msg_rb;
730 }
731 
732 /*
733  * call-seq:
734  *     MessageClass.decode_json(data) => message
735  *
736  * Decodes the given data (as a string containing bytes in protocol buffers wire
737  * format) under the interpretration given by this message class's definition
738  * and returns a message object with the corresponding field values.
739  */
Message_decode_json(VALUE klass,VALUE data)740 VALUE Message_decode_json(VALUE klass, VALUE data) {
741   VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
742   Descriptor* desc = ruby_to_Descriptor(descriptor);
743   VALUE msgklass = Descriptor_msgclass(descriptor);
744   VALUE msg_rb;
745   MessageHeader* msg;
746 
747   if (TYPE(data) != T_STRING) {
748     rb_raise(rb_eArgError, "Expected string for JSON data.");
749   }
750   // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
751   // convert, because string handlers pass data directly to message string
752   // fields.
753 
754   msg_rb = rb_class_new_instance(0, NULL, msgklass);
755   TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
756 
757   {
758     const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
759     stackenv se;
760     upb_sink sink;
761     upb_json_parser* parser;
762     stackenv_init(&se, "Error occurred during parsing: %s");
763 
764     upb_sink_reset(&sink, get_fill_handlers(desc), msg);
765     parser = upb_json_parser_create(&se.env, method, &sink);
766     upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
767                       upb_json_parser_input(parser));
768 
769     stackenv_uninit(&se);
770   }
771 
772   return msg_rb;
773 }
774 
775 // -----------------------------------------------------------------------------
776 // Serializing.
777 // -----------------------------------------------------------------------------
778 //
779 // The code below also comes from upb's prototype Ruby binding, developed by
780 // haberman@.
781 
782 /* stringsink *****************************************************************/
783 
784 // This should probably be factored into a common upb component.
785 
786 typedef struct {
787   upb_byteshandler handler;
788   upb_bytessink sink;
789   char *ptr;
790   size_t len, size;
791 } stringsink;
792 
stringsink_start(void * _sink,const void * hd,size_t size_hint)793 static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
794   stringsink *sink = _sink;
795   sink->len = 0;
796   return sink;
797 }
798 
stringsink_string(void * _sink,const void * hd,const char * ptr,size_t len,const upb_bufhandle * handle)799 static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
800                                 size_t len, const upb_bufhandle *handle) {
801   stringsink *sink = _sink;
802   size_t new_size = sink->size;
803 
804   UPB_UNUSED(hd);
805   UPB_UNUSED(handle);
806 
807   while (sink->len + len > new_size) {
808     new_size *= 2;
809   }
810 
811   if (new_size != sink->size) {
812     sink->ptr = realloc(sink->ptr, new_size);
813     sink->size = new_size;
814   }
815 
816   memcpy(sink->ptr + sink->len, ptr, len);
817   sink->len += len;
818 
819   return len;
820 }
821 
stringsink_init(stringsink * sink)822 void stringsink_init(stringsink *sink) {
823   upb_byteshandler_init(&sink->handler);
824   upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
825   upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
826 
827   upb_bytessink_reset(&sink->sink, &sink->handler, sink);
828 
829   sink->size = 32;
830   sink->ptr = malloc(sink->size);
831   sink->len = 0;
832 }
833 
stringsink_uninit(stringsink * sink)834 void stringsink_uninit(stringsink *sink) {
835   free(sink->ptr);
836 }
837 
838 /* msgvisitor *****************************************************************/
839 
840 // TODO: If/when we support proto2 semantics in addition to the current proto3
841 // semantics, which means that we have true field presence, we will want to
842 // modify msgvisitor so that it emits all present fields rather than all
843 // non-default-value fields.
844 //
845 // Likewise, when implementing JSON serialization, we may need to have a
846 // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only
847 // those with non-default values.
848 
849 static void putmsg(VALUE msg, const Descriptor* desc,
850                    upb_sink *sink, int depth);
851 
getsel(const upb_fielddef * f,upb_handlertype_t type)852 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
853   upb_selector_t ret;
854   bool ok = upb_handlers_getselector(f, type, &ret);
855   UPB_ASSERT_VAR(ok, ok);
856   return ret;
857 }
858 
putstr(VALUE str,const upb_fielddef * f,upb_sink * sink)859 static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
860   upb_sink subsink;
861 
862   if (str == Qnil) return;
863 
864   assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
865 
866   // Ensure that the string has the correct encoding. We also check at field-set
867   // time, but the user may have mutated the string object since then.
868   native_slot_validate_string_encoding(upb_fielddef_type(f), str);
869 
870   upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
871                     &subsink);
872   upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
873                      RSTRING_LEN(str), NULL);
874   upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
875 }
876 
putsubmsg(VALUE submsg,const upb_fielddef * f,upb_sink * sink,int depth)877 static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
878                       int depth) {
879   upb_sink subsink;
880   VALUE descriptor;
881   Descriptor* subdesc;
882 
883   if (submsg == Qnil) return;
884 
885   descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
886   subdesc = ruby_to_Descriptor(descriptor);
887 
888   upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
889   putmsg(submsg, subdesc, &subsink, depth + 1);
890   upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
891 }
892 
putary(VALUE ary,const upb_fielddef * f,upb_sink * sink,int depth)893 static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
894                    int depth) {
895   upb_sink subsink;
896   upb_fieldtype_t type = upb_fielddef_type(f);
897   upb_selector_t sel = 0;
898   int size;
899 
900   if (ary == Qnil) return;
901 
902   upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
903 
904   if (upb_fielddef_isprimitive(f)) {
905     sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
906   }
907 
908   size = NUM2INT(RepeatedField_length(ary));
909   for (int i = 0; i < size; i++) {
910     void* memory = RepeatedField_index_native(ary, i);
911     switch (type) {
912 #define T(upbtypeconst, upbtype, ctype)                         \
913   case upbtypeconst:                                            \
914     upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory));   \
915     break;
916 
917       T(UPB_TYPE_FLOAT,  float,  float)
918       T(UPB_TYPE_DOUBLE, double, double)
919       T(UPB_TYPE_BOOL,   bool,   int8_t)
920       case UPB_TYPE_ENUM:
921       T(UPB_TYPE_INT32,  int32,  int32_t)
922       T(UPB_TYPE_UINT32, uint32, uint32_t)
923       T(UPB_TYPE_INT64,  int64,  int64_t)
924       T(UPB_TYPE_UINT64, uint64, uint64_t)
925 
926       case UPB_TYPE_STRING:
927       case UPB_TYPE_BYTES:
928         putstr(*((VALUE *)memory), f, &subsink);
929         break;
930       case UPB_TYPE_MESSAGE:
931         putsubmsg(*((VALUE *)memory), f, &subsink, depth);
932         break;
933 
934 #undef T
935 
936     }
937   }
938   upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
939 }
940 
put_ruby_value(VALUE value,const upb_fielddef * f,VALUE type_class,int depth,upb_sink * sink)941 static void put_ruby_value(VALUE value,
942                            const upb_fielddef *f,
943                            VALUE type_class,
944                            int depth,
945                            upb_sink *sink) {
946   upb_selector_t sel = 0;
947   if (upb_fielddef_isprimitive(f)) {
948     sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
949   }
950 
951   switch (upb_fielddef_type(f)) {
952     case UPB_TYPE_INT32:
953       upb_sink_putint32(sink, sel, NUM2INT(value));
954       break;
955     case UPB_TYPE_INT64:
956       upb_sink_putint64(sink, sel, NUM2LL(value));
957       break;
958     case UPB_TYPE_UINT32:
959       upb_sink_putuint32(sink, sel, NUM2UINT(value));
960       break;
961     case UPB_TYPE_UINT64:
962       upb_sink_putuint64(sink, sel, NUM2ULL(value));
963       break;
964     case UPB_TYPE_FLOAT:
965       upb_sink_putfloat(sink, sel, NUM2DBL(value));
966       break;
967     case UPB_TYPE_DOUBLE:
968       upb_sink_putdouble(sink, sel, NUM2DBL(value));
969       break;
970     case UPB_TYPE_ENUM: {
971       if (TYPE(value) == T_SYMBOL) {
972         value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
973       }
974       upb_sink_putint32(sink, sel, NUM2INT(value));
975       break;
976     }
977     case UPB_TYPE_BOOL:
978       upb_sink_putbool(sink, sel, value == Qtrue);
979       break;
980     case UPB_TYPE_STRING:
981     case UPB_TYPE_BYTES:
982       putstr(value, f, sink);
983       break;
984     case UPB_TYPE_MESSAGE:
985       putsubmsg(value, f, sink, depth);
986   }
987 }
988 
putmap(VALUE map,const upb_fielddef * f,upb_sink * sink,int depth)989 static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
990                    int depth) {
991   Map* self;
992   upb_sink subsink;
993   const upb_fielddef* key_field;
994   const upb_fielddef* value_field;
995   Map_iter it;
996 
997   if (map == Qnil) return;
998   self = ruby_to_Map(map);
999 
1000   upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
1001 
1002   assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
1003   key_field = map_field_key(f);
1004   value_field = map_field_value(f);
1005 
1006   for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
1007     VALUE key = Map_iter_key(&it);
1008     VALUE value = Map_iter_value(&it);
1009     upb_status status;
1010 
1011     upb_sink entry_sink;
1012     upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
1013                          &entry_sink);
1014     upb_sink_startmsg(&entry_sink);
1015 
1016     put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink);
1017     put_ruby_value(value, value_field, self->value_type_class, depth + 1,
1018                    &entry_sink);
1019 
1020     upb_sink_endmsg(&entry_sink, &status);
1021     upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
1022   }
1023 
1024   upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
1025 }
1026 
putmsg(VALUE msg_rb,const Descriptor * desc,upb_sink * sink,int depth)1027 static void putmsg(VALUE msg_rb, const Descriptor* desc,
1028                    upb_sink *sink, int depth) {
1029   MessageHeader* msg;
1030   upb_msg_field_iter i;
1031   upb_status status;
1032 
1033   upb_sink_startmsg(sink);
1034 
1035   // Protect against cycles (possible because users may freely reassign message
1036   // and repeated fields) by imposing a maximum recursion depth.
1037   if (depth > ENCODE_MAX_NESTING) {
1038     rb_raise(rb_eRuntimeError,
1039              "Maximum recursion depth exceeded during encoding.");
1040   }
1041 
1042   TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1043 
1044   for (upb_msg_field_begin(&i, desc->msgdef);
1045        !upb_msg_field_done(&i);
1046        upb_msg_field_next(&i)) {
1047     upb_fielddef *f = upb_msg_iter_field(&i);
1048     bool is_matching_oneof = false;
1049     uint32_t offset =
1050         desc->layout->fields[upb_fielddef_index(f)].offset +
1051         sizeof(MessageHeader);
1052 
1053     if (upb_fielddef_containingoneof(f)) {
1054       uint32_t oneof_case_offset =
1055           desc->layout->fields[upb_fielddef_index(f)].case_offset +
1056           sizeof(MessageHeader);
1057       // For a oneof, check that this field is actually present -- skip all the
1058       // below if not.
1059       if (DEREF(msg, oneof_case_offset, uint32_t) !=
1060           upb_fielddef_number(f)) {
1061         continue;
1062       }
1063       // Otherwise, fall through to the appropriate singular-field handler
1064       // below.
1065       is_matching_oneof = true;
1066     }
1067 
1068     if (is_map_field(f)) {
1069       VALUE map = DEREF(msg, offset, VALUE);
1070       if (map != Qnil) {
1071         putmap(map, f, sink, depth);
1072       }
1073     } else if (upb_fielddef_isseq(f)) {
1074       VALUE ary = DEREF(msg, offset, VALUE);
1075       if (ary != Qnil) {
1076         putary(ary, f, sink, depth);
1077       }
1078     } else if (upb_fielddef_isstring(f)) {
1079       VALUE str = DEREF(msg, offset, VALUE);
1080       if (is_matching_oneof || RSTRING_LEN(str) > 0) {
1081         putstr(str, f, sink);
1082       }
1083     } else if (upb_fielddef_issubmsg(f)) {
1084       putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth);
1085     } else {
1086       upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
1087 
1088 #define T(upbtypeconst, upbtype, ctype, default_value)                \
1089   case upbtypeconst: {                                                \
1090       ctype value = DEREF(msg, offset, ctype);                        \
1091       if (is_matching_oneof || value != default_value) {              \
1092         upb_sink_put##upbtype(sink, sel, value);                      \
1093       }                                                               \
1094     }                                                                 \
1095     break;
1096 
1097       switch (upb_fielddef_type(f)) {
1098         T(UPB_TYPE_FLOAT,  float,  float, 0.0)
1099         T(UPB_TYPE_DOUBLE, double, double, 0.0)
1100         T(UPB_TYPE_BOOL,   bool,   uint8_t, 0)
1101         case UPB_TYPE_ENUM:
1102         T(UPB_TYPE_INT32,  int32,  int32_t, 0)
1103         T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
1104         T(UPB_TYPE_INT64,  int64,  int64_t, 0)
1105         T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
1106 
1107         case UPB_TYPE_STRING:
1108         case UPB_TYPE_BYTES:
1109         case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
1110       }
1111 
1112 #undef T
1113 
1114     }
1115   }
1116 
1117   upb_sink_endmsg(sink, &status);
1118 }
1119 
msgdef_pb_serialize_handlers(Descriptor * desc)1120 static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
1121   if (desc->pb_serialize_handlers == NULL) {
1122     desc->pb_serialize_handlers =
1123         upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
1124   }
1125   return desc->pb_serialize_handlers;
1126 }
1127 
msgdef_json_serialize_handlers(Descriptor * desc,bool preserve_proto_fieldnames)1128 static const upb_handlers* msgdef_json_serialize_handlers(
1129     Descriptor* desc, bool preserve_proto_fieldnames) {
1130   if (preserve_proto_fieldnames) {
1131     if (desc->json_serialize_handlers == NULL) {
1132       desc->json_serialize_handlers =
1133           upb_json_printer_newhandlers(
1134               desc->msgdef, true, &desc->json_serialize_handlers);
1135     }
1136     return desc->json_serialize_handlers;
1137   } else {
1138     if (desc->json_serialize_handlers_preserve == NULL) {
1139       desc->json_serialize_handlers_preserve =
1140           upb_json_printer_newhandlers(
1141               desc->msgdef, false, &desc->json_serialize_handlers_preserve);
1142     }
1143     return desc->json_serialize_handlers_preserve;
1144   }
1145 }
1146 
1147 /*
1148  * call-seq:
1149  *     MessageClass.encode(msg) => bytes
1150  *
1151  * Encodes the given message object to its serialized form in protocol buffers
1152  * wire format.
1153  */
Message_encode(VALUE klass,VALUE msg_rb)1154 VALUE Message_encode(VALUE klass, VALUE msg_rb) {
1155   VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1156   Descriptor* desc = ruby_to_Descriptor(descriptor);
1157 
1158   stringsink sink;
1159   stringsink_init(&sink);
1160 
1161   {
1162     const upb_handlers* serialize_handlers =
1163         msgdef_pb_serialize_handlers(desc);
1164 
1165     stackenv se;
1166     upb_pb_encoder* encoder;
1167     VALUE ret;
1168 
1169     stackenv_init(&se, "Error occurred during encoding: %s");
1170     encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);
1171 
1172     putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0);
1173 
1174     ret = rb_str_new(sink.ptr, sink.len);
1175 
1176     stackenv_uninit(&se);
1177     stringsink_uninit(&sink);
1178 
1179     return ret;
1180   }
1181 }
1182 
1183 /*
1184  * call-seq:
1185  *     MessageClass.encode_json(msg) => json_string
1186  *
1187  * Encodes the given message object into its serialized JSON representation.
1188  */
Message_encode_json(int argc,VALUE * argv,VALUE klass)1189 VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
1190   VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1191   Descriptor* desc = ruby_to_Descriptor(descriptor);
1192   VALUE msg_rb;
1193   VALUE preserve_proto_fieldnames = Qfalse;
1194   stringsink sink;
1195 
1196   if (argc < 1 || argc > 2) {
1197     rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
1198   }
1199 
1200   msg_rb = argv[0];
1201 
1202   if (argc == 2) {
1203     VALUE hash_args = argv[1];
1204     if (TYPE(hash_args) != T_HASH) {
1205       rb_raise(rb_eArgError, "Expected hash arguments.");
1206     }
1207     preserve_proto_fieldnames = rb_hash_lookup2(
1208         hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
1209   }
1210 
1211   stringsink_init(&sink);
1212 
1213   {
1214     const upb_handlers* serialize_handlers =
1215         msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
1216     upb_json_printer* printer;
1217     stackenv se;
1218     VALUE ret;
1219 
1220     stackenv_init(&se, "Error occurred during encoding: %s");
1221     printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);
1222 
1223     putmsg(msg_rb, desc, upb_json_printer_input(printer), 0);
1224 
1225     ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
1226 
1227     stackenv_uninit(&se);
1228     stringsink_uninit(&sink);
1229 
1230     return ret;
1231   }
1232 }
1233 
1234