1 /*############################################################################
2   # Copyright 2016 Intel Corporation
3   #
4   # Licensed under the Apache License, Version 2.0 (the "License");
5   # you may not use this file except in compliance with the License.
6   # You may obtain a copy of the License at
7   #
8   #     http://www.apache.org/licenses/LICENSE-2.0
9   #
10   # Unless required by applicable law or agreed to in writing, software
11   # distributed under the License is distributed on an "AS IS" BASIS,
12   # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   # See the License for the specific language governing permissions and
14   # limitations under the License.
15   ############################################################################*/
16 
17 /*!
18  * \file
19  * \brief NrVerfy implementation.
20  */
21 
22 #include "epid/common/src/memory.h"
23 #include "epid/verifier/api.h"
24 #include "epid/verifier/src/context.h"
25 
26 /// Handle SDK Error with Break
27 #define BREAK_ON_EPID_ERROR(ret) \
28   if (kEpidNoErr != (ret)) {     \
29     break;                       \
30   }
31 
32 #pragma pack(1)
33 /// Storage for values to create commitment in NrVerify algorithm
34 typedef struct NrVerifyCommitValues {
35   BigNumStr p;     //!< A large prime (256-bit)
36   G1ElemStr g1;    //!< Generator of G1 (512-bit)
37   G1ElemStr b;     //!< (element of G1): part of basic signature Sigma0
38   G1ElemStr k;     //!< (element of G1): part of basic signature Sigma0
39   G1ElemStr bp;    //!< (element of G1): one entry in SigRL
40   G1ElemStr kp;    //!< (element of G1): one entry in SigRL
41   G1ElemStr t;     //!< element of G1
42   G1ElemStr r1;    //!< element of G1
43   G1ElemStr r2;    //!< element of G1
44   uint8_t msg[1];  //!< message
45 } NrVerifyCommitValues;
46 #pragma pack()
47 
EpidNrVerify(VerifierCtx const * ctx,BasicSignature const * sig,void const * msg,size_t msg_len,SigRlEntry const * sigrl_entry,NrProof const * proof)48 EpidStatus EpidNrVerify(VerifierCtx const* ctx, BasicSignature const* sig,
49                         void const* msg, size_t msg_len,
50                         SigRlEntry const* sigrl_entry, NrProof const* proof) {
51   size_t const cv_header_len = sizeof(NrVerifyCommitValues) - sizeof(uint8_t);
52   EpidStatus sts = kEpidErr;
53   NrVerifyCommitValues* commit_values = NULL;
54   size_t const commit_len = sizeof(*commit_values) + msg_len - 1;
55   EcPoint* t_pt = NULL;
56   EcPoint* k_pt = NULL;
57   EcPoint* b_pt = NULL;
58   EcPoint* kp_pt = NULL;
59   EcPoint* bp_pt = NULL;
60   EcPoint* r1_pt = NULL;
61   EcPoint* r2_pt = NULL;
62   FfElement* c_el = NULL;
63   FfElement* nc_el = NULL;
64   FfElement* smu_el = NULL;
65   FfElement* snu_el = NULL;
66   FfElement* commit_hash = NULL;
67   if (!ctx || !sig || !proof || !sigrl_entry) {
68     return kEpidBadArgErr;
69   }
70   if (!msg && (0 != msg_len)) {
71     return kEpidBadArgErr;
72   }
73   if (msg_len > (SIZE_MAX - cv_header_len)) {
74     return kEpidBadArgErr;
75   }
76   if (!ctx->epid2_params || !ctx->epid2_params->G1 || !ctx->epid2_params->Fp) {
77     return kEpidBadArgErr;
78   }
79   do {
80     EcGroup* G1 = ctx->epid2_params->G1;
81     FiniteField* Fp = ctx->epid2_params->Fp;
82     G1ElemStr const* b = &sig->B;
83     G1ElemStr const* k = &sig->K;
84     G1ElemStr const* bp = &sigrl_entry->b;
85     G1ElemStr const* kp = &sigrl_entry->k;
86     EcPoint const* r1p[2];
87     FpElemStr const* r1b[2];
88     EcPoint const* r2p[3];
89     FpElemStr const* r2b[3];
90     FpElemStr nc_str;
91     bool t_is_identity;
92     bool c_is_equal;
93 
94     commit_values = SAFE_ALLOC(commit_len);
95     if (commit_values == NULL) {
96       sts = kEpidMemAllocErr;
97       break;
98     }
99 
100     // allocate local memory
101     sts = NewEcPoint(G1, &t_pt);
102     BREAK_ON_EPID_ERROR(sts);
103     sts = NewEcPoint(G1, &k_pt);
104     BREAK_ON_EPID_ERROR(sts);
105     sts = NewEcPoint(G1, &b_pt);
106     BREAK_ON_EPID_ERROR(sts);
107     sts = NewEcPoint(G1, &kp_pt);
108     BREAK_ON_EPID_ERROR(sts);
109     sts = NewEcPoint(G1, &bp_pt);
110     BREAK_ON_EPID_ERROR(sts);
111     sts = NewEcPoint(G1, &r1_pt);
112     BREAK_ON_EPID_ERROR(sts);
113     sts = NewEcPoint(G1, &r2_pt);
114     BREAK_ON_EPID_ERROR(sts);
115     sts = NewFfElement(Fp, &c_el);
116     BREAK_ON_EPID_ERROR(sts);
117     sts = NewFfElement(Fp, &nc_el);
118     BREAK_ON_EPID_ERROR(sts);
119     sts = NewFfElement(Fp, &smu_el);
120     BREAK_ON_EPID_ERROR(sts);
121     sts = NewFfElement(Fp, &snu_el);
122     BREAK_ON_EPID_ERROR(sts);
123     sts = NewFfElement(Fp, &commit_hash);
124     BREAK_ON_EPID_ERROR(sts);
125 
126     // 1. The verifier verifies that G1.inGroup(T) = true.
127     sts = ReadEcPoint(G1, &proof->T, sizeof(proof->T), t_pt);
128     if (kEpidNoErr != sts) {
129       sts = kEpidBadArgErr;
130       break;
131     }
132 
133     // 2. The verifier verifies that G1.isIdentity(T) = false.
134     sts = EcIsIdentity(G1, t_pt, &t_is_identity);
135     BREAK_ON_EPID_ERROR(sts);
136     if (t_is_identity) {
137       sts = kEpidBadArgErr;
138       break;
139     }
140 
141     // 3. The verifier verifies that c, smu, snu in [0, p-1].
142     sts = ReadFfElement(Fp, &proof->c, sizeof(proof->c), c_el);
143     BREAK_ON_EPID_ERROR(sts);
144     sts = ReadFfElement(Fp, &proof->smu, sizeof(proof->smu), smu_el);
145     BREAK_ON_EPID_ERROR(sts);
146     sts = ReadFfElement(Fp, &proof->snu, sizeof(proof->snu), snu_el);
147     BREAK_ON_EPID_ERROR(sts);
148 
149     // 4. The verifier computes nc = (- c) mod p.
150     sts = FfNeg(Fp, c_el, nc_el);
151     BREAK_ON_EPID_ERROR(sts);
152 
153     sts = WriteFfElement(Fp, nc_el, &nc_str, sizeof(nc_str));
154     BREAK_ON_EPID_ERROR(sts);
155 
156     // 5. The verifier computes R1 = G1.multiExp(K, smu, B, snu).
157     sts = ReadEcPoint(G1, k, sizeof(*k), k_pt);
158     if (kEpidNoErr != sts) {
159       sts = kEpidBadArgErr;
160       break;
161     }
162     sts = ReadEcPoint(G1, b, sizeof(*b), b_pt);
163     if (kEpidNoErr != sts) {
164       sts = kEpidBadArgErr;
165       break;
166     }
167     r1p[0] = k_pt;
168     r1p[1] = b_pt;
169     r1b[0] = &proof->smu;
170     r1b[1] = &proof->snu;
171     sts = EcMultiExp(G1, r1p, (const BigNumStr**)r1b, 2, r1_pt);
172     BREAK_ON_EPID_ERROR(sts);
173 
174     // 6. The verifier computes R2 = G1.multiExp(K', smu, B', snu, T, nc).
175     sts = ReadEcPoint(G1, kp, sizeof(*kp), kp_pt);
176     if (kEpidNoErr != sts) {
177       sts = kEpidBadArgErr;
178       break;
179     }
180     sts = ReadEcPoint(G1, bp, sizeof(*bp), bp_pt);
181     if (kEpidNoErr != sts) {
182       sts = kEpidBadArgErr;
183       break;
184     }
185     r2p[0] = kp_pt;
186     r2p[1] = bp_pt;
187     r2p[2] = t_pt;
188     r2b[0] = &proof->smu;
189     r2b[1] = &proof->snu;
190     r2b[2] = &nc_str;
191     sts = EcMultiExp(G1, r2p, (const BigNumStr**)r2b, 3, r2_pt);
192     BREAK_ON_EPID_ERROR(sts);
193 
194     // 7. The verifier verifies c = Fp.hash(p || g1 || B || K ||
195     //    B' || K' || T || R1 || R2 || m).
196     //    Refer to Section 7.1 for hash operation over a prime field.
197 
198     // commit_values is allocated such that there are msg_len bytes available
199     // starting at commit_values->msg
200     if (msg) {
201       // Memory copy is used to copy a message of variable length
202       if (0 != memcpy_S(&commit_values->msg[0], msg_len, msg, msg_len)) {
203         sts = kEpidBadArgErr;
204         break;
205       }
206     }
207     commit_values->p = ctx->commit_values.p;
208     commit_values->g1 = ctx->commit_values.g1;
209     commit_values->b = sig->B;
210     commit_values->k = sig->K;
211     commit_values->bp = sigrl_entry->b;
212     commit_values->kp = sigrl_entry->k;
213     commit_values->t = proof->T;
214     sts =
215         WriteEcPoint(G1, r1_pt, &commit_values->r1, sizeof(commit_values->r1));
216     BREAK_ON_EPID_ERROR(sts);
217     sts =
218         WriteEcPoint(G1, r2_pt, &commit_values->r2, sizeof(commit_values->r2));
219     BREAK_ON_EPID_ERROR(sts);
220     sts = FfHash(Fp, commit_values, commit_len, ctx->hash_alg, commit_hash);
221     BREAK_ON_EPID_ERROR(sts);
222     sts = FfIsEqual(Fp, c_el, commit_hash, &c_is_equal);
223     BREAK_ON_EPID_ERROR(sts);
224     if (!c_is_equal) {
225       sts = kEpidBadArgErr;
226       break;
227     }
228     sts = kEpidNoErr;
229   } while (0);
230   SAFE_FREE(commit_values);
231   DeleteFfElement(&commit_hash);
232   DeleteFfElement(&snu_el);
233   DeleteFfElement(&smu_el);
234   DeleteFfElement(&nc_el);
235   DeleteFfElement(&c_el);
236   DeleteEcPoint(&r2_pt);
237   DeleteEcPoint(&r1_pt);
238   DeleteEcPoint(&bp_pt);
239   DeleteEcPoint(&kp_pt);
240   DeleteEcPoint(&b_pt);
241   DeleteEcPoint(&k_pt);
242   DeleteEcPoint(&t_pt);
243   return sts;
244 }
245