1 /*
2 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <emmintrin.h>
14 #include "aom_dsp/x86/synonyms.h"
15
16 #include "config/av1_rtcd.h"
17 #include "av1/common/restoration.h"
18 #include "av1/encoder/pickrst.h"
19
acc_stat_sse41(int32_t * dst,const uint8_t * src,const __m128i * shuffle,const __m128i * kl)20 static INLINE void acc_stat_sse41(int32_t *dst, const uint8_t *src,
21 const __m128i *shuffle, const __m128i *kl) {
22 const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle);
23 const __m128i d0 = _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(s));
24 const __m128i d1 =
25 _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(_mm_srli_si128(s, 8)));
26 const __m128i dst0 = xx_loadu_128(dst);
27 const __m128i dst1 = xx_loadu_128(dst + 4);
28 const __m128i r0 = _mm_add_epi32(dst0, d0);
29 const __m128i r1 = _mm_add_epi32(dst1, d1);
30 xx_storeu_128(dst, r0);
31 xx_storeu_128(dst + 4, r1);
32 }
33
acc_stat_win7_one_line_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int32_t M_int[WIENER_WIN][WIENER_WIN],int32_t H_int[WIENER_WIN2][WIENER_WIN * 8])34 static INLINE void acc_stat_win7_one_line_sse4_1(
35 const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
36 int dgd_stride, const __m128i *shuffle, int32_t *sumX,
37 int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN],
38 int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
39 const int wiener_win = 7;
40 int j, k, l;
41 for (j = h_start; j < h_end; j += 2) {
42 const uint8_t *dgd_ij = dgd + j;
43 const uint8_t X1 = src[j];
44 const uint8_t X2 = src[j + 1];
45 *sumX += X1 + X2;
46 for (k = 0; k < wiener_win; k++) {
47 const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
48 for (l = 0; l < wiener_win; l++) {
49 int32_t *H_ = &H_int[(l * wiener_win + k)][0];
50 const uint8_t D1 = dgd_ijk[l];
51 const uint8_t D2 = dgd_ijk[l + 1];
52 sumY[k][l] += D1 + D2;
53 M_int[k][l] += D1 * X1 + D2 * X2;
54
55 const __m128i kl =
56 _mm_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l))));
57 acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
58 acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
59 acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
60 acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
61 acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
62 acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
63 acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
64 }
65 }
66 }
67 }
68
compute_stats_win7_opt_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H)69 static INLINE void compute_stats_win7_opt_sse4_1(
70 const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
71 int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
72 int i, j, k, l, m, n;
73 const int wiener_win = WIENER_WIN;
74 const int pixel_count = (h_end - h_start) * (v_end - v_start);
75 const int wiener_win2 = wiener_win * wiener_win;
76 const int wiener_halfwin = (wiener_win >> 1);
77 const uint8_t avg =
78 find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
79
80 int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
81 int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } };
82 int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
83 int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
84 int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
85 int32_t sumX = 0;
86 const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
87
88 const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
89 for (j = v_start; j < v_end; j += 64) {
90 const int vert_end = AOMMIN(64, v_end - j) + j;
91 for (i = j; i < vert_end; i++) {
92 acc_stat_win7_one_line_sse4_1(
93 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
94 dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32);
95 }
96 for (k = 0; k < wiener_win; ++k) {
97 for (l = 0; l < wiener_win; ++l) {
98 M_int64[k][l] += M_int32[k][l];
99 M_int32[k][l] = 0;
100 }
101 }
102 for (k = 0; k < WIENER_WIN2; ++k) {
103 for (l = 0; l < WIENER_WIN * 8; ++l) {
104 H_int64[k][l] += H_int32[k][l];
105 H_int32[k][l] = 0;
106 }
107 }
108 }
109
110 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
111 for (k = 0; k < wiener_win; k++) {
112 for (l = 0; l < wiener_win; l++) {
113 const int32_t idx0 = l * wiener_win + k;
114 M[idx0] =
115 M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
116 int64_t *H_ = H + idx0 * wiener_win2;
117 int64_t *H_int_ = &H_int64[idx0][0];
118 for (m = 0; m < wiener_win; m++) {
119 for (n = 0; n < wiener_win; n++) {
120 H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
121 (int64_t)avg * (sumY[k][l] + sumY[n][m]);
122 }
123 }
124 }
125 }
126 }
127
acc_stat_highbd_sse41(int64_t * dst,const uint16_t * dgd,const __m128i * shuffle,const __m128i * dgd_ijkl)128 static INLINE void acc_stat_highbd_sse41(int64_t *dst, const uint16_t *dgd,
129 const __m128i *shuffle,
130 const __m128i *dgd_ijkl) {
131 // Load 256 bits from dgd in two chunks
132 const __m128i s0l = xx_loadu_128(dgd);
133 const __m128i s0h = xx_loadu_128(dgd + 4);
134 // s0l = [7 6 5 4 3 2 1 0] as u16 values (dgd indices)
135 // s0h = [11 10 9 8 7 6 5 4] as u16 values (dgd indices)
136 // (Slightly strange order so we can apply the same shuffle to both halves)
137
138 // Shuffle the u16 values in each half (actually using 8-bit shuffle mask)
139 const __m128i s1l = _mm_shuffle_epi8(s0l, *shuffle);
140 const __m128i s1h = _mm_shuffle_epi8(s0h, *shuffle);
141 // s1l = [4 3 3 2 2 1 1 0] as u16 values (dgd indices)
142 // s1h = [8 7 7 6 6 5 5 4] as u16 values (dgd indices)
143
144 // Multiply s1 by dgd_ijkl resulting in 8x u32 values
145 // Horizontally add pairs of u32 resulting in 4x u32
146 const __m128i dl = _mm_madd_epi16(*dgd_ijkl, s1l);
147 const __m128i dh = _mm_madd_epi16(*dgd_ijkl, s1h);
148 // dl = [d c b a] as u32 values
149 // dh = [h g f e] as u32 values
150
151 // Add these 8x u32 results on to dst in four parts
152 const __m128i dll = _mm_cvtepu32_epi64(dl);
153 const __m128i dlh = _mm_cvtepu32_epi64(_mm_srli_si128(dl, 8));
154 const __m128i dhl = _mm_cvtepu32_epi64(dh);
155 const __m128i dhh = _mm_cvtepu32_epi64(_mm_srli_si128(dh, 8));
156 // dll = [b a] as u64 values, etc.
157
158 const __m128i rll = _mm_add_epi64(xx_loadu_128(dst), dll);
159 xx_storeu_128(dst, rll);
160 const __m128i rlh = _mm_add_epi64(xx_loadu_128(dst + 2), dlh);
161 xx_storeu_128(dst + 2, rlh);
162 const __m128i rhl = _mm_add_epi64(xx_loadu_128(dst + 4), dhl);
163 xx_storeu_128(dst + 4, rhl);
164 const __m128i rhh = _mm_add_epi64(xx_loadu_128(dst + 6), dhh);
165 xx_storeu_128(dst + 6, rhh);
166 }
167
acc_stat_highbd_win7_one_line_sse4_1(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])168 static INLINE void acc_stat_highbd_win7_one_line_sse4_1(
169 const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
170 int dgd_stride, const __m128i *shuffle, int32_t *sumX,
171 int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
172 int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
173 int j, k, l;
174 const int wiener_win = WIENER_WIN;
175 for (j = h_start; j < h_end; j += 2) {
176 const uint16_t X1 = src[j];
177 const uint16_t X2 = src[j + 1];
178 *sumX += X1 + X2;
179 const uint16_t *dgd_ij = dgd + j;
180 for (k = 0; k < wiener_win; k++) {
181 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
182 for (l = 0; l < wiener_win; l++) {
183 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
184 const uint16_t D1 = dgd_ijk[l];
185 const uint16_t D2 = dgd_ijk[l + 1];
186 sumY[k][l] += D1 + D2;
187 M_int[k][l] += D1 * X1 + D2 * X2;
188
189 // Load two u16 values from dgd as a single u32
190 // Then broadcast to 4x u32 slots of a 128
191 const __m128i dgd_ijkl = _mm_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
192 // dgd_ijkl = [y x y x y x y x] as u16
193
194 acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
195 &dgd_ijkl);
196 acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
197 &dgd_ijkl);
198 acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
199 &dgd_ijkl);
200 acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
201 &dgd_ijkl);
202 acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
203 &dgd_ijkl);
204 acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
205 &dgd_ijkl);
206 acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
207 &dgd_ijkl);
208 }
209 }
210 }
211 }
212
compute_stats_highbd_win7_opt_sse4_1(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)213 static INLINE void compute_stats_highbd_win7_opt_sse4_1(
214 const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
215 int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
216 int64_t *H, aom_bit_depth_t bit_depth) {
217 int i, j, k, l, m, n;
218 const int wiener_win = WIENER_WIN;
219 const int pixel_count = (h_end - h_start) * (v_end - v_start);
220 const int wiener_win2 = wiener_win * wiener_win;
221 const int wiener_halfwin = (wiener_win >> 1);
222 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
223 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
224 const uint16_t avg =
225 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
226
227 int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
228 int64_t H_int[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
229 int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
230 int32_t sumX = 0;
231 const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
232
233 // Load just half of the 256-bit shuffle control used for the AVX2 version
234 const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
235 for (j = v_start; j < v_end; j += 64) {
236 const int vert_end = AOMMIN(64, v_end - j) + j;
237 for (i = j; i < vert_end; i++) {
238 acc_stat_highbd_win7_one_line_sse4_1(
239 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
240 dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
241 }
242 }
243
244 uint8_t bit_depth_divider = 1;
245 if (bit_depth == AOM_BITS_12)
246 bit_depth_divider = 16;
247 else if (bit_depth == AOM_BITS_10)
248 bit_depth_divider = 4;
249
250 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
251 for (k = 0; k < wiener_win; k++) {
252 for (l = 0; l < wiener_win; l++) {
253 const int32_t idx0 = l * wiener_win + k;
254 M[idx0] = (M_int[k][l] +
255 (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
256 bit_depth_divider;
257 int64_t *H_ = H + idx0 * wiener_win2;
258 int64_t *H_int_ = &H_int[idx0][0];
259 for (m = 0; m < wiener_win; m++) {
260 for (n = 0; n < wiener_win; n++) {
261 H_[m * wiener_win + n] =
262 (H_int_[n * 8 + m] +
263 (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
264 bit_depth_divider;
265 }
266 }
267 }
268 }
269 }
270
acc_stat_highbd_win5_one_line_sse4_1(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])271 static INLINE void acc_stat_highbd_win5_one_line_sse4_1(
272 const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
273 int dgd_stride, const __m128i *shuffle, int32_t *sumX,
274 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
275 int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
276 int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
277 int j, k, l;
278 const int wiener_win = WIENER_WIN_CHROMA;
279 for (j = h_start; j < h_end; j += 2) {
280 const uint16_t X1 = src[j];
281 const uint16_t X2 = src[j + 1];
282 *sumX += X1 + X2;
283 const uint16_t *dgd_ij = dgd + j;
284 for (k = 0; k < wiener_win; k++) {
285 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
286 for (l = 0; l < wiener_win; l++) {
287 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
288 const uint16_t D1 = dgd_ijk[l];
289 const uint16_t D2 = dgd_ijk[l + 1];
290 sumY[k][l] += D1 + D2;
291 M_int[k][l] += D1 * X1 + D2 * X2;
292
293 // Load two u16 values from dgd as a single u32
294 // then broadcast to 4x u32 slots of a 128
295 const __m128i dgd_ijkl = _mm_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
296 // dgd_ijkl = [y x y x y x y x] as u16
297
298 acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
299 &dgd_ijkl);
300 acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
301 &dgd_ijkl);
302 acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
303 &dgd_ijkl);
304 acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
305 &dgd_ijkl);
306 acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
307 &dgd_ijkl);
308 }
309 }
310 }
311 }
312
compute_stats_highbd_win5_opt_sse4_1(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)313 static INLINE void compute_stats_highbd_win5_opt_sse4_1(
314 const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
315 int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
316 int64_t *H, aom_bit_depth_t bit_depth) {
317 int i, j, k, l, m, n;
318 const int wiener_win = WIENER_WIN_CHROMA;
319 const int pixel_count = (h_end - h_start) * (v_end - v_start);
320 const int wiener_win2 = wiener_win * wiener_win;
321 const int wiener_halfwin = (wiener_win >> 1);
322 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
323 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
324 const uint16_t avg =
325 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
326
327 int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
328 int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
329 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
330 int32_t sumX = 0;
331 const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
332
333 // Load just half of the 256-bit shuffle control used for the AVX2 version
334 const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
335 for (j = v_start; j < v_end; j += 64) {
336 const int vert_end = AOMMIN(64, v_end - j) + j;
337 for (i = j; i < vert_end; i++) {
338 acc_stat_highbd_win5_one_line_sse4_1(
339 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
340 dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
341 }
342 }
343
344 uint8_t bit_depth_divider = 1;
345 if (bit_depth == AOM_BITS_12)
346 bit_depth_divider = 16;
347 else if (bit_depth == AOM_BITS_10)
348 bit_depth_divider = 4;
349
350 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
351 for (k = 0; k < wiener_win; k++) {
352 for (l = 0; l < wiener_win; l++) {
353 const int32_t idx0 = l * wiener_win + k;
354 M[idx0] = (M_int[k][l] +
355 (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
356 bit_depth_divider;
357 int64_t *H_ = H + idx0 * wiener_win2;
358 int64_t *H_int_ = &H_int[idx0][0];
359 for (m = 0; m < wiener_win; m++) {
360 for (n = 0; n < wiener_win; n++) {
361 H_[m * wiener_win + n] =
362 (H_int_[n * 8 + m] +
363 (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
364 bit_depth_divider;
365 }
366 }
367 }
368 }
369 }
370
av1_compute_stats_highbd_sse4_1(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)371 void av1_compute_stats_highbd_sse4_1(int wiener_win, const uint8_t *dgd8,
372 const uint8_t *src8, int h_start,
373 int h_end, int v_start, int v_end,
374 int dgd_stride, int src_stride, int64_t *M,
375 int64_t *H, aom_bit_depth_t bit_depth) {
376 if (wiener_win == WIENER_WIN) {
377 compute_stats_highbd_win7_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
378 v_end, dgd_stride, src_stride, M, H,
379 bit_depth);
380 } else if (wiener_win == WIENER_WIN_CHROMA) {
381 compute_stats_highbd_win5_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
382 v_end, dgd_stride, src_stride, M, H,
383 bit_depth);
384 } else {
385 av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
386 v_end, dgd_stride, src_stride, M, H, bit_depth);
387 }
388 }
389
acc_stat_win5_one_line_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])390 static INLINE void acc_stat_win5_one_line_sse4_1(
391 const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
392 int dgd_stride, const __m128i *shuffle, int32_t *sumX,
393 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
394 int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
395 int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
396 const int wiener_win = WIENER_WIN_CHROMA;
397 int j, k, l;
398 for (j = h_start; j < h_end; j += 2) {
399 const uint8_t *dgd_ij = dgd + j;
400 const uint8_t X1 = src[j];
401 const uint8_t X2 = src[j + 1];
402 *sumX += X1 + X2;
403 for (k = 0; k < wiener_win; k++) {
404 const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
405 for (l = 0; l < wiener_win; l++) {
406 int32_t *H_ = &H_int[(l * wiener_win + k)][0];
407 const uint8_t D1 = dgd_ijk[l];
408 const uint8_t D2 = dgd_ijk[l + 1];
409 sumY[k][l] += D1 + D2;
410 M_int[k][l] += D1 * X1 + D2 * X2;
411
412 const __m128i kl =
413 _mm_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l))));
414 acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
415 acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
416 acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
417 acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
418 acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
419 }
420 }
421 }
422 }
423
compute_stats_win5_opt_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H)424 static INLINE void compute_stats_win5_opt_sse4_1(
425 const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
426 int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
427 int i, j, k, l, m, n;
428 const int wiener_win = WIENER_WIN_CHROMA;
429 const int pixel_count = (h_end - h_start) * (v_end - v_start);
430 const int wiener_win2 = wiener_win * wiener_win;
431 const int wiener_halfwin = (wiener_win >> 1);
432 const uint8_t avg =
433 find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
434
435 int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
436 int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
437 int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
438 int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
439 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
440 int32_t sumX = 0;
441 const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
442
443 const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
444 for (j = v_start; j < v_end; j += 64) {
445 const int vert_end = AOMMIN(64, v_end - j) + j;
446 for (i = j; i < vert_end; i++) {
447 acc_stat_win5_one_line_sse4_1(
448 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
449 dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32);
450 }
451 for (k = 0; k < wiener_win; ++k) {
452 for (l = 0; l < wiener_win; ++l) {
453 M_int64[k][l] += M_int32[k][l];
454 M_int32[k][l] = 0;
455 }
456 }
457 for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
458 for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
459 H_int64[k][l] += H_int32[k][l];
460 H_int32[k][l] = 0;
461 }
462 }
463 }
464
465 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
466 for (k = 0; k < wiener_win; k++) {
467 for (l = 0; l < wiener_win; l++) {
468 const int32_t idx0 = l * wiener_win + k;
469 M[idx0] =
470 M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
471 int64_t *H_ = H + idx0 * wiener_win2;
472 int64_t *H_int_ = &H_int64[idx0][0];
473 for (m = 0; m < wiener_win; m++) {
474 for (n = 0; n < wiener_win; n++) {
475 H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
476 (int64_t)avg * (sumY[k][l] + sumY[n][m]);
477 }
478 }
479 }
480 }
481 }
av1_compute_stats_sse4_1(int wiener_win,const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H)482 void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd,
483 const uint8_t *src, int h_start, int h_end,
484 int v_start, int v_end, int dgd_stride,
485 int src_stride, int64_t *M, int64_t *H) {
486 if (wiener_win == WIENER_WIN) {
487 compute_stats_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
488 dgd_stride, src_stride, M, H);
489 } else if (wiener_win == WIENER_WIN_CHROMA) {
490 compute_stats_win5_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
491 dgd_stride, src_stride, M, H);
492 } else {
493 av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
494 dgd_stride, src_stride, M, H);
495 }
496 }
497
pair_set_epi16(uint16_t a,uint16_t b)498 static INLINE __m128i pair_set_epi16(uint16_t a, uint16_t b) {
499 return _mm_set1_epi32((int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
500 }
501
av1_lowbd_pixel_proj_error_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)502 int64_t av1_lowbd_pixel_proj_error_sse4_1(
503 const uint8_t *src8, int width, int height, int src_stride,
504 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
505 int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
506 int i, j, k;
507 const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
508 const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
509 __m128i sum64 = _mm_setzero_si128();
510 const uint8_t *src = src8;
511 const uint8_t *dat = dat8;
512 int64_t err = 0;
513 if (params->r[0] > 0 && params->r[1] > 0) {
514 __m128i xq_coeff = pair_set_epi16(xq[0], xq[1]);
515 for (i = 0; i < height; ++i) {
516 __m128i sum32 = _mm_setzero_si128();
517 for (j = 0; j <= width - 8; j += 8) {
518 const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
519 const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
520 const __m128i flt0_16b =
521 _mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4));
522 const __m128i flt1_16b =
523 _mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4));
524 const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
525 const __m128i flt0_0_sub_u = _mm_sub_epi16(flt0_16b, u0);
526 const __m128i flt1_0_sub_u = _mm_sub_epi16(flt1_16b, u0);
527 const __m128i v0 = _mm_madd_epi16(
528 xq_coeff, _mm_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
529 const __m128i v1 = _mm_madd_epi16(
530 xq_coeff, _mm_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
531 const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
532 const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
533 const __m128i e0 =
534 _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
535 const __m128i err0 = _mm_madd_epi16(e0, e0);
536 sum32 = _mm_add_epi32(sum32, err0);
537 }
538 for (k = j; k < width; ++k) {
539 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
540 int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
541 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
542 err += ((int64_t)e * e);
543 }
544 dat += dat_stride;
545 src += src_stride;
546 flt0 += flt0_stride;
547 flt1 += flt1_stride;
548 const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
549 const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
550 sum64 = _mm_add_epi64(sum64, sum64_0);
551 sum64 = _mm_add_epi64(sum64, sum64_1);
552 }
553 } else if (params->r[0] > 0 || params->r[1] > 0) {
554 const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
555 const __m128i xq_coeff =
556 pair_set_epi16(xq_active, -(xq_active << SGRPROJ_RST_BITS));
557 const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
558 const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
559 for (i = 0; i < height; ++i) {
560 __m128i sum32 = _mm_setzero_si128();
561 for (j = 0; j <= width - 8; j += 8) {
562 const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
563 const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
564 const __m128i flt_16b =
565 _mm_packs_epi32(xx_loadu_128(flt + j), xx_loadu_128(flt + j + 4));
566 const __m128i v0 =
567 _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt_16b, d0));
568 const __m128i v1 =
569 _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt_16b, d0));
570 const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
571 const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
572 const __m128i e0 =
573 _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
574 const __m128i err0 = _mm_madd_epi16(e0, e0);
575 sum32 = _mm_add_epi32(sum32, err0);
576 }
577 for (k = j; k < width; ++k) {
578 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
579 int32_t v = xq_active * (flt[k] - u);
580 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
581 err += ((int64_t)e * e);
582 }
583 dat += dat_stride;
584 src += src_stride;
585 flt += flt_stride;
586 const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
587 const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
588 sum64 = _mm_add_epi64(sum64, sum64_0);
589 sum64 = _mm_add_epi64(sum64, sum64_1);
590 }
591 } else {
592 __m128i sum32 = _mm_setzero_si128();
593 for (i = 0; i < height; ++i) {
594 for (j = 0; j <= width - 16; j += 16) {
595 const __m128i d = xx_loadu_128(dat + j);
596 const __m128i s = xx_loadu_128(src + j);
597 const __m128i d0 = _mm_cvtepu8_epi16(d);
598 const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8));
599 const __m128i s0 = _mm_cvtepu8_epi16(s);
600 const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8));
601 const __m128i diff0 = _mm_sub_epi16(d0, s0);
602 const __m128i diff1 = _mm_sub_epi16(d1, s1);
603 const __m128i err0 = _mm_madd_epi16(diff0, diff0);
604 const __m128i err1 = _mm_madd_epi16(diff1, diff1);
605 sum32 = _mm_add_epi32(sum32, err0);
606 sum32 = _mm_add_epi32(sum32, err1);
607 }
608 for (k = j; k < width; ++k) {
609 const int32_t e = (int32_t)(dat[k]) - src[k];
610 err += ((int64_t)e * e);
611 }
612 dat += dat_stride;
613 src += src_stride;
614 }
615 const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
616 const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
617 sum64 = _mm_add_epi64(sum64_0, sum64_1);
618 }
619 int64_t sum[2];
620 xx_storeu_128(sum, sum64);
621 err += sum[0] + sum[1];
622 return err;
623 }
624
av1_highbd_pixel_proj_error_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)625 int64_t av1_highbd_pixel_proj_error_sse4_1(
626 const uint8_t *src8, int width, int height, int src_stride,
627 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
628 int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
629 int i, j, k;
630 const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
631 const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
632 __m128i sum64 = _mm_setzero_si128();
633 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
634 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
635 int64_t err = 0;
636 if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled
637 const __m128i xq0 = _mm_set1_epi32(xq[0]);
638 const __m128i xq1 = _mm_set1_epi32(xq[1]);
639
640 for (i = 0; i < height; ++i) {
641 __m128i sum32 = _mm_setzero_si128();
642 for (j = 0; j <= width - 8; j += 8) {
643 // Load 8x pixels from source image
644 const __m128i s0 = xx_loadu_128(src + j);
645 // s0 = [7 6 5 4 3 2 1 0] as i16 (indices of src[])
646
647 // Load 8x pixels from corrupted image
648 const __m128i d0 = xx_loadu_128(dat + j);
649 // d0 = [7 6 5 4 3 2 1 0] as i16 (indices of dat[])
650
651 // Shift each pixel value up by SGRPROJ_RST_BITS
652 const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
653
654 // Split u0 into two halves and pad each from u16 to i32
655 const __m128i u0l = _mm_cvtepu16_epi32(u0);
656 const __m128i u0h = _mm_cvtepu16_epi32(_mm_srli_si128(u0, 8));
657 // u0h = [7 6 5 4] as i32, u0l = [3 2 1 0] as i32, all dat[] indices
658
659 // Load 8 pixels from first and second filtered images
660 const __m128i flt0l = xx_loadu_128(flt0 + j);
661 const __m128i flt0h = xx_loadu_128(flt0 + j + 4);
662 const __m128i flt1l = xx_loadu_128(flt1 + j);
663 const __m128i flt1h = xx_loadu_128(flt1 + j + 4);
664 // flt0 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt0+j)
665 // flt1 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt1+j)
666
667 // Subtract shifted corrupt image from each filtered image
668 // This gives our two basis vectors for the projection
669 const __m128i flt0l_subu = _mm_sub_epi32(flt0l, u0l);
670 const __m128i flt0h_subu = _mm_sub_epi32(flt0h, u0h);
671 const __m128i flt1l_subu = _mm_sub_epi32(flt1l, u0l);
672 const __m128i flt1h_subu = _mm_sub_epi32(flt1h, u0h);
673 // flt?h_subu = [ f[7]-u[7] f[6]-u[6] f[5]-u[5] f[4]-u[4] ] as i32
674 // flt?l_subu = [ f[3]-u[3] f[2]-u[2] f[1]-u[1] f[0]-u[0] ] as i32
675
676 // Multiply each basis vector by the corresponding coefficient
677 const __m128i v0l = _mm_mullo_epi32(flt0l_subu, xq0);
678 const __m128i v0h = _mm_mullo_epi32(flt0h_subu, xq0);
679 const __m128i v1l = _mm_mullo_epi32(flt1l_subu, xq1);
680 const __m128i v1h = _mm_mullo_epi32(flt1h_subu, xq1);
681
682 // Add together the contribution from each scaled basis vector
683 const __m128i vl = _mm_add_epi32(v0l, v1l);
684 const __m128i vh = _mm_add_epi32(v0h, v1h);
685
686 // Right-shift v with appropriate rounding
687 const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
688 const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
689
690 // Saturate each i32 value to i16 and combine lower and upper halves
691 const __m128i vr = _mm_packs_epi32(vrl, vrh);
692
693 // Add twin-subspace-sgr-filter to corrupt image then subtract source
694 const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
695
696 // Calculate squared error and add adjacent values
697 const __m128i err0 = _mm_madd_epi16(e0, e0);
698
699 sum32 = _mm_add_epi32(sum32, err0);
700 }
701
702 const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
703 sum64 = _mm_add_epi64(sum64, sum32l);
704 const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
705 sum64 = _mm_add_epi64(sum64, sum32h);
706
707 // Process remaining pixels in this row (modulo 8)
708 for (k = j; k < width; ++k) {
709 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
710 int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
711 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
712 err += ((int64_t)e * e);
713 }
714 dat += dat_stride;
715 src += src_stride;
716 flt0 += flt0_stride;
717 flt1 += flt1_stride;
718 }
719 } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled
720 const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
721 const __m128i xq_active = _mm_set1_epi32(xq_on);
722 const __m128i xq_inactive =
723 _mm_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
724 const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
725 const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
726 for (i = 0; i < height; ++i) {
727 __m128i sum32 = _mm_setzero_si128();
728 for (j = 0; j <= width - 8; j += 8) {
729 // Load 8x pixels from source image
730 const __m128i s0 = xx_loadu_128(src + j);
731 // s0 = [7 6 5 4 3 2 1 0] as u16 (indices of src[])
732
733 // Load 8x pixels from corrupted image and pad each u16 to i32
734 const __m128i d0 = xx_loadu_128(dat + j);
735 const __m128i d0h = _mm_cvtepu16_epi32(_mm_srli_si128(d0, 8));
736 const __m128i d0l = _mm_cvtepu16_epi32(d0);
737 // d0h, d0l = [7 6 5 4], [3 2 1 0] as u32 (indices of dat[])
738
739 // Load 8 pixels from the filtered image
740 const __m128i flth = xx_loadu_128(flt + j + 4);
741 const __m128i fltl = xx_loadu_128(flt + j);
742 // flth, fltl = [7 6 5 4], [3 2 1 0] as i32 (indices of flt+j)
743
744 const __m128i flth_xq = _mm_mullo_epi32(flth, xq_active);
745 const __m128i fltl_xq = _mm_mullo_epi32(fltl, xq_active);
746 const __m128i d0h_xq = _mm_mullo_epi32(d0h, xq_inactive);
747 const __m128i d0l_xq = _mm_mullo_epi32(d0l, xq_inactive);
748
749 const __m128i vh = _mm_add_epi32(flth_xq, d0h_xq);
750 const __m128i vl = _mm_add_epi32(fltl_xq, d0l_xq);
751 // vh = [ xq0(f[7]-d[7]) xq0(f[6]-d[6]) xq0(f[5]-d[5]) xq0(f[4]-d[4]) ]
752 // vl = [ xq0(f[3]-d[3]) xq0(f[2]-d[2]) xq0(f[1]-d[1]) xq0(f[0]-d[0]) ]
753
754 // Shift this down with appropriate rounding
755 const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
756 const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
757
758 // Saturate vr0 and vr1 from i32 to i16 then pack together
759 const __m128i vr = _mm_packs_epi32(vrl, vrh);
760
761 // Subtract twin-subspace-sgr filtered from source image to get error
762 const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
763
764 // Calculate squared error and add adjacent values
765 const __m128i err0 = _mm_madd_epi16(e0, e0);
766
767 sum32 = _mm_add_epi32(sum32, err0);
768 }
769
770 const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
771 sum64 = _mm_add_epi64(sum64, sum32l);
772 const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
773 sum64 = _mm_add_epi64(sum64, sum32h);
774
775 // Process remaining pixels in this row (modulo 8)
776 for (k = j; k < width; ++k) {
777 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
778 int32_t v = xq_on * (flt[k] - u);
779 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
780 err += ((int64_t)e * e);
781 }
782 dat += dat_stride;
783 src += src_stride;
784 flt += flt_stride;
785 }
786 } else { // Neither filter is enabled
787 for (i = 0; i < height; ++i) {
788 __m128i sum32 = _mm_setzero_si128();
789 for (j = 0; j <= width - 16; j += 16) {
790 // Load 2x8 u16 from source image
791 const __m128i s0 = xx_loadu_128(src + j);
792 const __m128i s1 = xx_loadu_128(src + j + 8);
793 // Load 2x8 u16 from corrupted image
794 const __m128i d0 = xx_loadu_128(dat + j);
795 const __m128i d1 = xx_loadu_128(dat + j + 8);
796
797 // Subtract corrupted image from source image
798 const __m128i diff0 = _mm_sub_epi16(d0, s0);
799 const __m128i diff1 = _mm_sub_epi16(d1, s1);
800
801 // Square error and add adjacent values
802 const __m128i err0 = _mm_madd_epi16(diff0, diff0);
803 const __m128i err1 = _mm_madd_epi16(diff1, diff1);
804
805 sum32 = _mm_add_epi32(sum32, err0);
806 sum32 = _mm_add_epi32(sum32, err1);
807 }
808
809 const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
810 sum64 = _mm_add_epi64(sum64, sum32l);
811 const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
812 sum64 = _mm_add_epi64(sum64, sum32h);
813
814 // Process remaining pixels (modulu 8)
815 for (k = j; k < width; ++k) {
816 const int32_t e = (int32_t)(dat[k]) - src[k];
817 err += ((int64_t)e * e);
818 }
819 dat += dat_stride;
820 src += src_stride;
821 }
822 }
823
824 // Sum 4 values from sum64l and sum64h into err
825 int64_t sum[2];
826 xx_storeu_128(sum, sum64);
827 err += sum[0] + sum[1];
828 return err;
829 }
830