1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #include "tensorflow/compiler/xla/service/tuple_simplifier.h" 17 18 #include <queue> 19 20 #include "tensorflow/compiler/xla/service/hlo_computation.h" 21 #include "tensorflow/compiler/xla/service/hlo_instruction.h" 22 #include "tensorflow/compiler/xla/service/hlo_opcode.h" 23 #include "tensorflow/compiler/xla/status_macros.h" 24 #include "tensorflow/compiler/xla/types.h" 25 #include "tensorflow/compiler/xla/util.h" 26 #include "tensorflow/core/lib/core/errors.h" 27 #include "tensorflow/core/lib/core/status.h" 28 #include "tensorflow/core/platform/logging.h" 29 #include "tensorflow/core/platform/types.h" 30 31 namespace xla { 32 TupleSimplifier(bool exclude_entry_computation)33TupleSimplifier::TupleSimplifier(bool exclude_entry_computation) : 34 exclude_entry_computation_(exclude_entry_computation) {} 35 Run(HloModule * module)36StatusOr<bool> TupleSimplifier::Run(HloModule* module) { 37 // Initially add all GTE and Tuple instructions to the worklist. 38 std::queue<HloInstruction*> worklist; 39 for (auto* computation : module->computations()) { 40 if (exclude_entry_computation_ && 41 computation == module->entry_computation()) { 42 continue; 43 } 44 for (auto* instruction : computation->instructions()) { 45 if (instruction->opcode() == HloOpcode::kTuple || 46 instruction->opcode() == HloOpcode::kGetTupleElement) { 47 worklist.push(instruction); 48 } 49 } 50 } 51 52 bool changed = false; 53 while (!worklist.empty()) { 54 HloInstruction* instruction = worklist.front(); 55 worklist.pop(); 56 57 if (instruction->user_count() == 0 && 58 instruction != instruction->parent()->root_instruction()) { 59 // Tuple simplification works by replacing users of optimized away 60 // instructions with a simpler form. If there is no user of the 61 // instruction (including being the root), then there is nothing to do. 62 continue; 63 } 64 65 if (instruction->opcode() == HloOpcode::kTuple) { 66 // Collapse the following structure into just 'Tuple-shaped Op': 67 // 68 // Tuple-shaped Op 69 // | 70 // +-----+-----+ 71 // | | | 72 // GTE GTE GTE 73 // | | | 74 // +-----+-----+ 75 // | 76 // Tuple 77 // 78 HloInstruction* top_tuple = nullptr; 79 bool can_simplify = true; 80 for (int64 operand_number = 0; 81 operand_number < instruction->operand_count(); ++operand_number) { 82 HloInstruction* operand = instruction->mutable_operand(operand_number); 83 if (operand->opcode() != HloOpcode::kGetTupleElement || 84 operand->tuple_index() != operand_number) { 85 can_simplify = false; 86 break; 87 } 88 if (top_tuple == nullptr) { 89 top_tuple = operand->mutable_operand(0); 90 if (!ShapeUtil::Compatible(top_tuple->shape(), 91 instruction->shape())) { 92 can_simplify = false; 93 break; 94 } 95 } else if (top_tuple != operand->operand(0)) { 96 can_simplify = false; 97 break; 98 } 99 } 100 if (can_simplify && top_tuple != nullptr) { 101 changed = true; 102 TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(top_tuple)); 103 // No need to add anything to the worklist. 104 } 105 } else { 106 CHECK_EQ(instruction->opcode(), HloOpcode::kGetTupleElement); 107 // If possible replace a GTE with the operation which produces the 108 // element. For example, replace uses of GTE with below with just 'Op' 109 // (assuming 'Op' is at the index of the GTE instruction): 110 // 111 // ... Op ... 112 // \ | / 113 // Tuple 114 // | 115 // GTE 116 if (instruction->operand(0)->opcode() == HloOpcode::kTuple) { 117 HloInstruction* element_source = 118 instruction->mutable_operand(0)->mutable_operand( 119 instruction->tuple_index()); 120 changed = true; 121 TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(element_source)); 122 for (HloInstruction* user : element_source->users()) { 123 if (user->opcode() == HloOpcode::kTuple || 124 user->opcode() == HloOpcode::kGetTupleElement) { 125 worklist.push(user); 126 } 127 } 128 } 129 } 130 } 131 132 return changed; 133 } 134 135 } // namespace xla 136