1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14 
15 #include "./vp9_rtcd.h"
16 #include "./vpx_dsp_rtcd.h"
17 #include "./vpx_config.h"
18 
19 #include "vpx_dsp/vpx_dsp_common.h"
20 #include "vpx_ports/mem.h"
21 #include "vpx_ports/vpx_timer.h"
22 #include "vpx_ports/system_state.h"
23 
24 #include "vp9/common/vp9_common.h"
25 #include "vp9/common/vp9_entropy.h"
26 #include "vp9/common/vp9_entropymode.h"
27 #include "vp9/common/vp9_idct.h"
28 #include "vp9/common/vp9_mvref_common.h"
29 #include "vp9/common/vp9_pred_common.h"
30 #include "vp9/common/vp9_quant_common.h"
31 #include "vp9/common/vp9_reconintra.h"
32 #include "vp9/common/vp9_reconinter.h"
33 #include "vp9/common/vp9_seg_common.h"
34 #include "vp9/common/vp9_tile_common.h"
35 
36 #include "vp9/encoder/vp9_aq_360.h"
37 #include "vp9/encoder/vp9_aq_complexity.h"
38 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
39 #include "vp9/encoder/vp9_aq_variance.h"
40 #include "vp9/encoder/vp9_encodeframe.h"
41 #include "vp9/encoder/vp9_encodemb.h"
42 #include "vp9/encoder/vp9_encodemv.h"
43 #include "vp9/encoder/vp9_ethread.h"
44 #include "vp9/encoder/vp9_extend.h"
45 #include "vp9/encoder/vp9_multi_thread.h"
46 #include "vp9/encoder/vp9_partition_models.h"
47 #include "vp9/encoder/vp9_pickmode.h"
48 #include "vp9/encoder/vp9_rd.h"
49 #include "vp9/encoder/vp9_rdopt.h"
50 #include "vp9/encoder/vp9_segmentation.h"
51 #include "vp9/encoder/vp9_tokenize.h"
52 
53 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
54                               int output_enabled, int mi_row, int mi_col,
55                               BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
56 
57 // This is used as a reference when computing the source variance for the
58 //  purpose of activity masking.
59 // Eventually this should be replaced by custom no-reference routines,
60 //  which will be faster.
61 static const uint8_t VP9_VAR_OFFS[64] = {
62   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
63   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
64   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
65   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
66   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
67 };
68 
69 #if CONFIG_VP9_HIGHBITDEPTH
70 static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
71   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
72   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
73   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
74   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
75   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
76 };
77 
78 static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
79   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
80   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
81   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
82   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
83   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
84   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
85   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
86   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
87 };
88 
89 static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
90   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
91   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
92   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
93   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
94   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
95   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
96   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
97   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
98   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
99   128 * 16
100 };
101 #endif  // CONFIG_VP9_HIGHBITDEPTH
102 
vp9_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)103 unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
104                                   BLOCK_SIZE bs) {
105   unsigned int sse;
106   const unsigned int var =
107       cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
108   return var;
109 }
110 
111 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)112 unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
113                                        BLOCK_SIZE bs, int bd) {
114   unsigned int var, sse;
115   switch (bd) {
116     case 10:
117       var =
118           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
119                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
120       break;
121     case 12:
122       var =
123           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
124                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
125       break;
126     case 8:
127     default:
128       var =
129           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
130                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
131       break;
132   }
133   return var;
134 }
135 #endif  // CONFIG_VP9_HIGHBITDEPTH
136 
vp9_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)137 unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
138                                            const struct buf_2d *ref,
139                                            BLOCK_SIZE bs) {
140   return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
141                             num_pels_log2_lookup[bs]);
142 }
143 
144 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)145 unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
146                                                 const struct buf_2d *ref,
147                                                 BLOCK_SIZE bs, int bd) {
148   return (unsigned int)ROUND64_POWER_OF_TWO(
149       (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
150       num_pels_log2_lookup[bs]);
151 }
152 #endif  // CONFIG_VP9_HIGHBITDEPTH
153 
get_sby_perpixel_diff_variance(VP9_COMP * cpi,const struct buf_2d * ref,int mi_row,int mi_col,BLOCK_SIZE bs)154 static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
155                                                    const struct buf_2d *ref,
156                                                    int mi_row, int mi_col,
157                                                    BLOCK_SIZE bs) {
158   unsigned int sse, var;
159   uint8_t *last_y;
160   const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
161 
162   assert(last != NULL);
163   last_y =
164       &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
165   var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
166   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
167 }
168 
get_rd_var_based_fixed_partition(VP9_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col)169 static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
170                                                    int mi_row, int mi_col) {
171   unsigned int var = get_sby_perpixel_diff_variance(
172       cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
173   if (var < 8)
174     return BLOCK_64X64;
175   else if (var < 128)
176     return BLOCK_32X32;
177   else if (var < 2048)
178     return BLOCK_16X16;
179   else
180     return BLOCK_8X8;
181 }
182 
set_segment_index(VP9_COMP * cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,int segment_index)183 static void set_segment_index(VP9_COMP *cpi, MACROBLOCK *const x, int mi_row,
184                               int mi_col, BLOCK_SIZE bsize, int segment_index) {
185   VP9_COMMON *const cm = &cpi->common;
186   const struct segmentation *const seg = &cm->seg;
187   MACROBLOCKD *const xd = &x->e_mbd;
188   MODE_INFO *mi = xd->mi[0];
189 
190   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
191   const uint8_t *const map =
192       seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
193 
194   // Initialize the segmentation index as 0.
195   mi->segment_id = 0;
196 
197   // Skip the rest if AQ mode is disabled.
198   if (!seg->enabled) return;
199 
200   switch (aq_mode) {
201     case CYCLIC_REFRESH_AQ:
202       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
203       break;
204     case VARIANCE_AQ:
205       if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
206           cpi->force_update_segmentation ||
207           (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
208         int min_energy;
209         int max_energy;
210         // Get sub block energy range
211         if (bsize >= BLOCK_32X32) {
212           vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
213                                    &max_energy);
214         } else {
215           min_energy = bsize <= BLOCK_16X16 ? x->mb_energy
216                                             : vp9_block_energy(cpi, x, bsize);
217         }
218         mi->segment_id = vp9_vaq_segment_id(min_energy);
219       } else {
220         mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
221       }
222       break;
223     case LOOKAHEAD_AQ:
224       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
225       break;
226     case EQUATOR360_AQ:
227       if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation)
228         mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
229       else
230         mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
231       break;
232     case PSNR_AQ: mi->segment_id = segment_index; break;
233     default:
234       // NO_AQ or PSNR_AQ
235       break;
236   }
237 
238   vp9_init_plane_quantizers(cpi, x);
239 }
240 
241 // Lighter version of set_offsets that only sets the mode info
242 // pointers.
set_mode_info_offsets(VP9_COMMON * const cm,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col)243 static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
244                                          MACROBLOCK *const x,
245                                          MACROBLOCKD *const xd, int mi_row,
246                                          int mi_col) {
247   const int idx_str = xd->mi_stride * mi_row + mi_col;
248   xd->mi = cm->mi_grid_visible + idx_str;
249   xd->mi[0] = cm->mi + idx_str;
250   x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
251 }
252 
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize)253 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
254                         MACROBLOCK *const x, int mi_row, int mi_col,
255                         BLOCK_SIZE bsize) {
256   VP9_COMMON *const cm = &cpi->common;
257   MACROBLOCKD *const xd = &x->e_mbd;
258   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
259   const int mi_height = num_8x8_blocks_high_lookup[bsize];
260   MvLimits *const mv_limits = &x->mv_limits;
261 
262   set_skip_context(xd, mi_row, mi_col);
263 
264   set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
265 
266   // Set up destination pointers.
267   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
268 
269   // Set up limit values for MV components.
270   // Mv beyond the range do not produce new/different prediction block.
271   mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
272   mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
273   mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
274   mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
275 
276   // Set up distance of MB to edge of frame in 1/8th pel units.
277   assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
278   set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
279                  cm->mi_cols);
280 
281   // Set up source buffers.
282   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
283 
284   // R/D setup.
285   x->rddiv = cpi->rd.RDDIV;
286   x->rdmult = cpi->rd.RDMULT;
287 
288   // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
289   xd->tile = *tile;
290 }
291 
duplicate_mode_info_in_sb(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)292 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
293                                       int mi_row, int mi_col,
294                                       BLOCK_SIZE bsize) {
295   const int block_width =
296       VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
297   const int block_height =
298       VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
299   const int mi_stride = xd->mi_stride;
300   MODE_INFO *const src_mi = xd->mi[0];
301   int i, j;
302 
303   for (j = 0; j < block_height; ++j)
304     for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
305 }
306 
set_block_size(VP9_COMP * const cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE bsize)307 static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
308                            MACROBLOCKD *const xd, int mi_row, int mi_col,
309                            BLOCK_SIZE bsize) {
310   if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
311     set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
312     xd->mi[0]->sb_type = bsize;
313   }
314 }
315 
316 typedef struct {
317   // This struct is used for computing variance in choose_partitioning(), where
318   // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
319   // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
320   // * 16 = 2^32).
321   uint32_t sum_square_error;
322   int32_t sum_error;
323   int log2_count;
324   int variance;
325 } var;
326 
327 typedef struct {
328   var none;
329   var horz[2];
330   var vert[2];
331 } partition_variance;
332 
333 typedef struct {
334   partition_variance part_variances;
335   var split[4];
336 } v4x4;
337 
338 typedef struct {
339   partition_variance part_variances;
340   v4x4 split[4];
341 } v8x8;
342 
343 typedef struct {
344   partition_variance part_variances;
345   v8x8 split[4];
346 } v16x16;
347 
348 typedef struct {
349   partition_variance part_variances;
350   v16x16 split[4];
351 } v32x32;
352 
353 typedef struct {
354   partition_variance part_variances;
355   v32x32 split[4];
356 } v64x64;
357 
358 typedef struct {
359   partition_variance *part_variances;
360   var *split[4];
361 } variance_node;
362 
363 typedef enum {
364   V16X16,
365   V32X32,
366   V64X64,
367 } TREE_LEVEL;
368 
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)369 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
370   int i;
371   node->part_variances = NULL;
372   switch (bsize) {
373     case BLOCK_64X64: {
374       v64x64 *vt = (v64x64 *)data;
375       node->part_variances = &vt->part_variances;
376       for (i = 0; i < 4; i++)
377         node->split[i] = &vt->split[i].part_variances.none;
378       break;
379     }
380     case BLOCK_32X32: {
381       v32x32 *vt = (v32x32 *)data;
382       node->part_variances = &vt->part_variances;
383       for (i = 0; i < 4; i++)
384         node->split[i] = &vt->split[i].part_variances.none;
385       break;
386     }
387     case BLOCK_16X16: {
388       v16x16 *vt = (v16x16 *)data;
389       node->part_variances = &vt->part_variances;
390       for (i = 0; i < 4; i++)
391         node->split[i] = &vt->split[i].part_variances.none;
392       break;
393     }
394     case BLOCK_8X8: {
395       v8x8 *vt = (v8x8 *)data;
396       node->part_variances = &vt->part_variances;
397       for (i = 0; i < 4; i++)
398         node->split[i] = &vt->split[i].part_variances.none;
399       break;
400     }
401     default: {
402       v4x4 *vt = (v4x4 *)data;
403       assert(bsize == BLOCK_4X4);
404       node->part_variances = &vt->part_variances;
405       for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
406       break;
407     }
408   }
409 }
410 
411 // Set variance values given sum square error, sum error, count.
fill_variance(uint32_t s2,int32_t s,int c,var * v)412 static void fill_variance(uint32_t s2, int32_t s, int c, var *v) {
413   v->sum_square_error = s2;
414   v->sum_error = s;
415   v->log2_count = c;
416 }
417 
get_variance(var * v)418 static void get_variance(var *v) {
419   v->variance =
420       (int)(256 * (v->sum_square_error -
421                    (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
422                               v->log2_count)) >>
423             v->log2_count);
424 }
425 
sum_2_variances(const var * a,const var * b,var * r)426 static void sum_2_variances(const var *a, const var *b, var *r) {
427   assert(a->log2_count == b->log2_count);
428   fill_variance(a->sum_square_error + b->sum_square_error,
429                 a->sum_error + b->sum_error, a->log2_count + 1, r);
430 }
431 
fill_variance_tree(void * data,BLOCK_SIZE bsize)432 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
433   variance_node node;
434   memset(&node, 0, sizeof(node));
435   tree_to_node(data, bsize, &node);
436   sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
437   sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
438   sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
439   sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
440   sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
441                   &node.part_variances->none);
442 }
443 
set_vt_partitioning(VP9_COMP * cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col,int64_t threshold,BLOCK_SIZE bsize_min,int force_split)444 static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
445                                MACROBLOCKD *const xd, void *data,
446                                BLOCK_SIZE bsize, int mi_row, int mi_col,
447                                int64_t threshold, BLOCK_SIZE bsize_min,
448                                int force_split) {
449   VP9_COMMON *const cm = &cpi->common;
450   variance_node vt;
451   const int block_width = num_8x8_blocks_wide_lookup[bsize];
452   const int block_height = num_8x8_blocks_high_lookup[bsize];
453 
454   assert(block_height == block_width);
455   tree_to_node(data, bsize, &vt);
456 
457   if (force_split == 1) return 0;
458 
459   // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
460   // variance is below threshold, otherwise split will be selected.
461   // No check for vert/horiz split as too few samples for variance.
462   if (bsize == bsize_min) {
463     // Variance already computed to set the force_split.
464     if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
465     if (mi_col + block_width / 2 < cm->mi_cols &&
466         mi_row + block_height / 2 < cm->mi_rows &&
467         vt.part_variances->none.variance < threshold) {
468       set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
469       return 1;
470     }
471     return 0;
472   } else if (bsize > bsize_min) {
473     // Variance already computed to set the force_split.
474     if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
475     // For key frame: take split for bsize above 32X32 or very high variance.
476     if (frame_is_intra_only(cm) &&
477         (bsize > BLOCK_32X32 ||
478          vt.part_variances->none.variance > (threshold << 4))) {
479       return 0;
480     }
481     // If variance is low, take the bsize (no split).
482     if (mi_col + block_width / 2 < cm->mi_cols &&
483         mi_row + block_height / 2 < cm->mi_rows &&
484         vt.part_variances->none.variance < threshold) {
485       set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
486       return 1;
487     }
488 
489     // Check vertical split.
490     if (mi_row + block_height / 2 < cm->mi_rows) {
491       BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
492       get_variance(&vt.part_variances->vert[0]);
493       get_variance(&vt.part_variances->vert[1]);
494       if (vt.part_variances->vert[0].variance < threshold &&
495           vt.part_variances->vert[1].variance < threshold &&
496           get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
497         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
498         set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
499         return 1;
500       }
501     }
502     // Check horizontal split.
503     if (mi_col + block_width / 2 < cm->mi_cols) {
504       BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
505       get_variance(&vt.part_variances->horz[0]);
506       get_variance(&vt.part_variances->horz[1]);
507       if (vt.part_variances->horz[0].variance < threshold &&
508           vt.part_variances->horz[1].variance < threshold &&
509           get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
510         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
511         set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
512         return 1;
513       }
514     }
515 
516     return 0;
517   }
518   return 0;
519 }
520 
scale_part_thresh_sumdiff(int64_t threshold_base,int speed,int width,int height,int content_state)521 static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
522                                          int width, int height,
523                                          int content_state) {
524   if (speed >= 8) {
525     if (width <= 640 && height <= 480)
526       return (5 * threshold_base) >> 2;
527     else if ((content_state == kLowSadLowSumdiff) ||
528              (content_state == kHighSadLowSumdiff) ||
529              (content_state == kLowVarHighSumdiff))
530       return (5 * threshold_base) >> 2;
531   } else if (speed == 7) {
532     if ((content_state == kLowSadLowSumdiff) ||
533         (content_state == kHighSadLowSumdiff) ||
534         (content_state == kLowVarHighSumdiff)) {
535       return (5 * threshold_base) >> 2;
536     }
537   }
538   return threshold_base;
539 }
540 
541 // Set the variance split thresholds for following the block sizes:
542 // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
543 // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
544 // currently only used on key frame.
set_vbp_thresholds(VP9_COMP * cpi,int64_t thresholds[],int q,int content_state)545 static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
546                                int content_state) {
547   VP9_COMMON *const cm = &cpi->common;
548   const int is_key_frame = frame_is_intra_only(cm);
549   const int threshold_multiplier = is_key_frame ? 20 : 1;
550   int64_t threshold_base =
551       (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
552 
553   if (is_key_frame) {
554     thresholds[0] = threshold_base;
555     thresholds[1] = threshold_base >> 2;
556     thresholds[2] = threshold_base >> 2;
557     thresholds[3] = threshold_base << 2;
558   } else {
559     // Increase base variance threshold based on estimated noise level.
560     if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
561       NOISE_LEVEL noise_level =
562           vp9_noise_estimate_extract_level(&cpi->noise_estimate);
563       if (noise_level == kHigh)
564         threshold_base = 3 * threshold_base;
565       else if (noise_level == kMedium)
566         threshold_base = threshold_base << 1;
567       else if (noise_level < kLow)
568         threshold_base = (7 * threshold_base) >> 3;
569     }
570 #if CONFIG_VP9_TEMPORAL_DENOISING
571     if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
572         cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
573       threshold_base =
574           vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
575                                 content_state, cpi->svc.temporal_layer_id);
576     else
577       threshold_base =
578           scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
579                                     cm->height, content_state);
580 #else
581     // Increase base variance threshold based on content_state/sum_diff level.
582     threshold_base = scale_part_thresh_sumdiff(
583         threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
584 #endif
585     thresholds[0] = threshold_base;
586     thresholds[2] = threshold_base << cpi->oxcf.speed;
587     if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
588       thresholds[2] = thresholds[2] << 1;
589     if (cm->width <= 352 && cm->height <= 288) {
590       thresholds[0] = threshold_base >> 3;
591       thresholds[1] = threshold_base >> 1;
592       thresholds[2] = threshold_base << 3;
593     } else if (cm->width < 1280 && cm->height < 720) {
594       thresholds[1] = (5 * threshold_base) >> 2;
595     } else if (cm->width < 1920 && cm->height < 1080) {
596       thresholds[1] = threshold_base << 1;
597     } else {
598       thresholds[1] = (5 * threshold_base) >> 1;
599     }
600     if (cpi->sf.disable_16x16part_nonkey) thresholds[2] = INT64_MAX;
601   }
602 }
603 
vp9_set_variance_partition_thresholds(VP9_COMP * cpi,int q,int content_state)604 void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
605                                            int content_state) {
606   VP9_COMMON *const cm = &cpi->common;
607   SPEED_FEATURES *const sf = &cpi->sf;
608   const int is_key_frame = frame_is_intra_only(cm);
609   if (sf->partition_search_type != VAR_BASED_PARTITION &&
610       sf->partition_search_type != REFERENCE_PARTITION) {
611     return;
612   } else {
613     set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
614     // The thresholds below are not changed locally.
615     if (is_key_frame) {
616       cpi->vbp_threshold_sad = 0;
617       cpi->vbp_threshold_copy = 0;
618       cpi->vbp_bsize_min = BLOCK_8X8;
619     } else {
620       if (cm->width <= 352 && cm->height <= 288)
621         cpi->vbp_threshold_sad = 10;
622       else
623         cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
624                                      ? (cpi->y_dequant[q][1] << 1)
625                                      : 1000;
626       cpi->vbp_bsize_min = BLOCK_16X16;
627       if (cm->width <= 352 && cm->height <= 288)
628         cpi->vbp_threshold_copy = 4000;
629       else if (cm->width <= 640 && cm->height <= 360)
630         cpi->vbp_threshold_copy = 8000;
631       else
632         cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
633                                       ? (cpi->y_dequant[q][1] << 3)
634                                       : 8000;
635       if (cpi->rc.high_source_sad ||
636           (cpi->use_svc && cpi->svc.high_source_sad_superframe)) {
637         cpi->vbp_threshold_sad = 0;
638         cpi->vbp_threshold_copy = 0;
639       }
640     }
641     cpi->vbp_threshold_minmax = 15 + (q >> 3);
642   }
643 }
644 
645 // Compute the minmax over the 8x8 subblocks.
compute_minmax_8x8(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,int highbd_flag,int pixels_wide,int pixels_high)646 static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
647                               int dp, int x16_idx, int y16_idx,
648 #if CONFIG_VP9_HIGHBITDEPTH
649                               int highbd_flag,
650 #endif
651                               int pixels_wide, int pixels_high) {
652   int k;
653   int minmax_max = 0;
654   int minmax_min = 255;
655   // Loop over the 4 8x8 subblocks.
656   for (k = 0; k < 4; k++) {
657     int x8_idx = x16_idx + ((k & 1) << 3);
658     int y8_idx = y16_idx + ((k >> 1) << 3);
659     int min = 0;
660     int max = 0;
661     if (x8_idx < pixels_wide && y8_idx < pixels_high) {
662 #if CONFIG_VP9_HIGHBITDEPTH
663       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
664         vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
665                               d + y8_idx * dp + x8_idx, dp, &min, &max);
666       } else {
667         vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
668                        dp, &min, &max);
669       }
670 #else
671       vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
672                      &min, &max);
673 #endif
674       if ((max - min) > minmax_max) minmax_max = (max - min);
675       if ((max - min) < minmax_min) minmax_min = (max - min);
676     }
677   }
678   return (minmax_max - minmax_min);
679 }
680 
fill_variance_4x4avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x8_idx,int y8_idx,v8x8 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)681 static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
682                                  int dp, int x8_idx, int y8_idx, v8x8 *vst,
683 #if CONFIG_VP9_HIGHBITDEPTH
684                                  int highbd_flag,
685 #endif
686                                  int pixels_wide, int pixels_high,
687                                  int is_key_frame) {
688   int k;
689   for (k = 0; k < 4; k++) {
690     int x4_idx = x8_idx + ((k & 1) << 2);
691     int y4_idx = y8_idx + ((k >> 1) << 2);
692     unsigned int sse = 0;
693     int sum = 0;
694     if (x4_idx < pixels_wide && y4_idx < pixels_high) {
695       int s_avg;
696       int d_avg = 128;
697 #if CONFIG_VP9_HIGHBITDEPTH
698       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
699         s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
700         if (!is_key_frame)
701           d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
702       } else {
703         s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
704         if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
705       }
706 #else
707       s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
708       if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
709 #endif
710       sum = s_avg - d_avg;
711       sse = sum * sum;
712     }
713     fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
714   }
715 }
716 
fill_variance_8x8avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,v16x16 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)717 static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
718                                  int dp, int x16_idx, int y16_idx, v16x16 *vst,
719 #if CONFIG_VP9_HIGHBITDEPTH
720                                  int highbd_flag,
721 #endif
722                                  int pixels_wide, int pixels_high,
723                                  int is_key_frame) {
724   int k;
725   for (k = 0; k < 4; k++) {
726     int x8_idx = x16_idx + ((k & 1) << 3);
727     int y8_idx = y16_idx + ((k >> 1) << 3);
728     unsigned int sse = 0;
729     int sum = 0;
730     if (x8_idx < pixels_wide && y8_idx < pixels_high) {
731       int s_avg;
732       int d_avg = 128;
733 #if CONFIG_VP9_HIGHBITDEPTH
734       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
735         s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
736         if (!is_key_frame)
737           d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
738       } else {
739         s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
740         if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
741       }
742 #else
743       s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
744       if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
745 #endif
746       sum = s_avg - d_avg;
747       sse = sum * sum;
748     }
749     fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
750   }
751 }
752 
753 // Check if most of the superblock is skin content, and if so, force split to
754 // 32x32, and set x->sb_is_skin for use in mode selection.
skin_sb_split(VP9_COMP * cpi,MACROBLOCK * x,const int low_res,int mi_row,int mi_col,int * force_split)755 static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res,
756                          int mi_row, int mi_col, int *force_split) {
757   VP9_COMMON *const cm = &cpi->common;
758 #if CONFIG_VP9_HIGHBITDEPTH
759   if (cm->use_highbitdepth) return 0;
760 #endif
761   // Avoid checking superblocks on/near boundary and avoid low resolutions.
762   // Note superblock may still pick 64X64 if y_sad is very small
763   // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
764   if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
765                    mi_row + 8 < cm->mi_rows)) {
766     int num_16x16_skin = 0;
767     int num_16x16_nonskin = 0;
768     uint8_t *ysignal = x->plane[0].src.buf;
769     uint8_t *usignal = x->plane[1].src.buf;
770     uint8_t *vsignal = x->plane[2].src.buf;
771     int sp = x->plane[0].src.stride;
772     int spuv = x->plane[1].src.stride;
773     const int block_index = mi_row * cm->mi_cols + mi_col;
774     const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
775     const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
776     const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
777     const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
778     // Loop through the 16x16 sub-blocks.
779     int i, j;
780     for (i = 0; i < ymis; i += 2) {
781       for (j = 0; j < xmis; j += 2) {
782         int bl_index = block_index + i * cm->mi_cols + j;
783         int is_skin = cpi->skin_map[bl_index];
784         num_16x16_skin += is_skin;
785         num_16x16_nonskin += (1 - is_skin);
786         if (num_16x16_nonskin > 3) {
787           // Exit loop if at least 4 of the 16x16 blocks are not skin.
788           i = ymis;
789           break;
790         }
791         ysignal += 16;
792         usignal += 8;
793         vsignal += 8;
794       }
795       ysignal += (sp << 4) - 64;
796       usignal += (spuv << 3) - 32;
797       vsignal += (spuv << 3) - 32;
798     }
799     if (num_16x16_skin > 12) {
800       *force_split = 1;
801       return 1;
802     }
803   }
804   return 0;
805 }
806 
set_low_temp_var_flag(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,v64x64 * vt,int64_t thresholds[],MV_REFERENCE_FRAME ref_frame_partition,int mi_col,int mi_row)807 static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
808                                   v64x64 *vt, int64_t thresholds[],
809                                   MV_REFERENCE_FRAME ref_frame_partition,
810                                   int mi_col, int mi_row) {
811   int i, j;
812   VP9_COMMON *const cm = &cpi->common;
813   const int mv_thr = cm->width > 640 ? 8 : 4;
814   // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
815   // int_pro mv is small. If the temporal variance is small set the flag
816   // variance_low for the block. The variance threshold can be adjusted, the
817   // higher the more aggressive.
818   if (ref_frame_partition == LAST_FRAME &&
819       (cpi->sf.short_circuit_low_temp_var == 1 ||
820        (xd->mi[0]->mv[0].as_mv.col < mv_thr &&
821         xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
822         xd->mi[0]->mv[0].as_mv.row < mv_thr &&
823         xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
824     if (xd->mi[0]->sb_type == BLOCK_64X64) {
825       if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
826         x->variance_low[0] = 1;
827     } else if (xd->mi[0]->sb_type == BLOCK_64X32) {
828       for (i = 0; i < 2; i++) {
829         if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
830           x->variance_low[i + 1] = 1;
831       }
832     } else if (xd->mi[0]->sb_type == BLOCK_32X64) {
833       for (i = 0; i < 2; i++) {
834         if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
835           x->variance_low[i + 3] = 1;
836       }
837     } else {
838       for (i = 0; i < 4; i++) {
839         const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
840         const int idx_str =
841             cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
842         MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
843 
844         if (cm->mi_cols <= mi_col + idx[i][1] ||
845             cm->mi_rows <= mi_row + idx[i][0])
846           continue;
847 
848         if ((*this_mi)->sb_type == BLOCK_32X32) {
849           int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
850                                      cpi->sf.short_circuit_low_temp_var == 3)
851                                         ? ((5 * thresholds[1]) >> 3)
852                                         : (thresholds[1] >> 1);
853           if (vt->split[i].part_variances.none.variance < threshold_32x32)
854             x->variance_low[i + 5] = 1;
855         } else if (cpi->sf.short_circuit_low_temp_var >= 2) {
856           // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
857           // inside.
858           if ((*this_mi)->sb_type == BLOCK_16X16 ||
859               (*this_mi)->sb_type == BLOCK_32X16 ||
860               (*this_mi)->sb_type == BLOCK_16X32) {
861             for (j = 0; j < 4; j++) {
862               if (vt->split[i].split[j].part_variances.none.variance <
863                   (thresholds[2] >> 8))
864                 x->variance_low[(i << 2) + j + 9] = 1;
865             }
866           }
867         }
868       }
869     }
870   }
871 }
872 
copy_partitioning_helper(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col)873 static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
874                                      MACROBLOCKD *xd, BLOCK_SIZE bsize,
875                                      int mi_row, int mi_col) {
876   VP9_COMMON *const cm = &cpi->common;
877   BLOCK_SIZE *prev_part = cpi->prev_partition;
878   int start_pos = mi_row * cm->mi_stride + mi_col;
879 
880   const int bsl = b_width_log2_lookup[bsize];
881   const int bs = (1 << bsl) >> 2;
882   BLOCK_SIZE subsize;
883   PARTITION_TYPE partition;
884 
885   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
886 
887   partition = partition_lookup[bsl][prev_part[start_pos]];
888   subsize = get_subsize(bsize, partition);
889 
890   if (subsize < BLOCK_8X8) {
891     set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
892   } else {
893     switch (partition) {
894       case PARTITION_NONE:
895         set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
896         break;
897       case PARTITION_HORZ:
898         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
899         set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
900         break;
901       case PARTITION_VERT:
902         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
903         set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
904         break;
905       default:
906         assert(partition == PARTITION_SPLIT);
907         copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
908         copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
909         copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
910         copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
911         break;
912     }
913   }
914 }
915 
copy_partitioning(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,int mi_row,int mi_col,int segment_id,int sb_offset)916 static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
917                              int mi_row, int mi_col, int segment_id,
918                              int sb_offset) {
919   int svc_copy_allowed = 1;
920   int frames_since_key_thresh = 1;
921   if (cpi->use_svc) {
922     // For SVC, don't allow copy if base spatial layer is key frame, or if
923     // frame is not a temporal enhancement layer frame.
924     int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
925                                  cpi->svc.number_temporal_layers);
926     const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
927     if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0;
928     frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
929   }
930   if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
931       !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
932       cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
933       cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
934     if (cpi->prev_partition != NULL) {
935       copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
936       cpi->copied_frame_cnt[sb_offset] += 1;
937       memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
938              sizeof(x->variance_low));
939       return 1;
940     }
941   }
942 
943   return 0;
944 }
945 
scale_partitioning_svc(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int mi_row_high,int mi_col_high)946 static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
947                                   BLOCK_SIZE bsize, int mi_row, int mi_col,
948                                   int mi_row_high, int mi_col_high) {
949   VP9_COMMON *const cm = &cpi->common;
950   SVC *const svc = &cpi->svc;
951   BLOCK_SIZE *prev_part = svc->prev_partition_svc;
952   // Variables with _high are for higher resolution.
953   int bsize_high = 0;
954   int subsize_high = 0;
955   const int bsl_high = b_width_log2_lookup[bsize];
956   const int bs_high = (1 << bsl_high) >> 2;
957   const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
958   const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
959 
960   const int row_boundary_block_scale_factor[BLOCK_SIZES] = {
961     13, 13, 13, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
962   };
963   const int col_boundary_block_scale_factor[BLOCK_SIZES] = {
964     13, 13, 13, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0
965   };
966   int start_pos;
967   BLOCK_SIZE bsize_low;
968   PARTITION_TYPE partition_high;
969 
970   if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
971   if (mi_row >= svc->mi_rows[svc->spatial_layer_id - 1] ||
972       mi_col >= svc->mi_cols[svc->spatial_layer_id - 1])
973     return 0;
974 
975   // Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
976   start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
977   bsize_low = prev_part[start_pos];
978   // The block size is too big for boundaries. Do variance based partitioning.
979   if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
980 
981   // For reference frames: return 1 (do variance-based partitioning) if the
982   // superblock is not low source sad and lower-resoln bsize is below 32x32.
983   if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
984       bsize_low < BLOCK_32X32)
985     return 1;
986 
987   // Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
988   if (bsize_low < BLOCK_32X32) {
989     bsize_high = bsize_low + 3;
990   } else if (bsize_low >= BLOCK_32X32) {
991     bsize_high = BLOCK_64X64;
992   }
993   // Scale up blocks on boundary.
994   if (!has_cols && has_rows) {
995     bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
996   } else if (has_cols && !has_rows) {
997     bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
998   } else if (!has_cols && !has_rows) {
999     bsize_high = bsize_low;
1000   }
1001 
1002   partition_high = partition_lookup[bsl_high][bsize_high];
1003   subsize_high = get_subsize(bsize, partition_high);
1004 
1005   if (subsize_high < BLOCK_8X8) {
1006     set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1007   } else {
1008     const int bsl = b_width_log2_lookup[bsize];
1009     const int bs = (1 << bsl) >> 2;
1010     switch (partition_high) {
1011       case PARTITION_NONE:
1012         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1013         break;
1014       case PARTITION_HORZ:
1015         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1016         if (subsize_high < BLOCK_64X64)
1017           set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
1018                          subsize_high);
1019         break;
1020       case PARTITION_VERT:
1021         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1022         if (subsize_high < BLOCK_64X64)
1023           set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
1024                          subsize_high);
1025         break;
1026       default:
1027         assert(partition_high == PARTITION_SPLIT);
1028         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
1029                                    mi_row_high, mi_col_high))
1030           return 1;
1031         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1032                                    mi_col, mi_row_high + bs_high, mi_col_high))
1033           return 1;
1034         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
1035                                    mi_col + (bs >> 1), mi_row_high,
1036                                    mi_col_high + bs_high))
1037           return 1;
1038         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1039                                    mi_col + (bs >> 1), mi_row_high + bs_high,
1040                                    mi_col_high + bs_high))
1041           return 1;
1042         break;
1043     }
1044   }
1045 
1046   return 0;
1047 }
1048 
update_partition_svc(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1049 static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
1050                                  int mi_col) {
1051   VP9_COMMON *const cm = &cpi->common;
1052   BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
1053   int start_pos = mi_row * cm->mi_stride + mi_col;
1054   const int bsl = b_width_log2_lookup[bsize];
1055   const int bs = (1 << bsl) >> 2;
1056   BLOCK_SIZE subsize;
1057   PARTITION_TYPE partition;
1058   const MODE_INFO *mi = NULL;
1059   int xx, yy;
1060 
1061   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1062 
1063   mi = cm->mi_grid_visible[start_pos];
1064   partition = partition_lookup[bsl][mi->sb_type];
1065   subsize = get_subsize(bsize, partition);
1066   if (subsize < BLOCK_8X8) {
1067     prev_part[start_pos] = bsize;
1068   } else {
1069     switch (partition) {
1070       case PARTITION_NONE:
1071         prev_part[start_pos] = bsize;
1072         if (bsize == BLOCK_64X64) {
1073           for (xx = 0; xx < 8; xx += 4)
1074             for (yy = 0; yy < 8; yy += 4) {
1075               if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
1076                 prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
1077             }
1078         }
1079         break;
1080       case PARTITION_HORZ:
1081         prev_part[start_pos] = subsize;
1082         if (mi_row + bs < cm->mi_rows)
1083           prev_part[start_pos + bs * cm->mi_stride] = subsize;
1084         break;
1085       case PARTITION_VERT:
1086         prev_part[start_pos] = subsize;
1087         if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1088         break;
1089       default:
1090         assert(partition == PARTITION_SPLIT);
1091         update_partition_svc(cpi, subsize, mi_row, mi_col);
1092         update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
1093         update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
1094         update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
1095         break;
1096     }
1097   }
1098 }
1099 
update_prev_partition_helper(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1100 static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize,
1101                                          int mi_row, int mi_col) {
1102   VP9_COMMON *const cm = &cpi->common;
1103   BLOCK_SIZE *prev_part = cpi->prev_partition;
1104   int start_pos = mi_row * cm->mi_stride + mi_col;
1105   const int bsl = b_width_log2_lookup[bsize];
1106   const int bs = (1 << bsl) >> 2;
1107   BLOCK_SIZE subsize;
1108   PARTITION_TYPE partition;
1109   const MODE_INFO *mi = NULL;
1110 
1111   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1112 
1113   mi = cm->mi_grid_visible[start_pos];
1114   partition = partition_lookup[bsl][mi->sb_type];
1115   subsize = get_subsize(bsize, partition);
1116   if (subsize < BLOCK_8X8) {
1117     prev_part[start_pos] = bsize;
1118   } else {
1119     switch (partition) {
1120       case PARTITION_NONE: prev_part[start_pos] = bsize; break;
1121       case PARTITION_HORZ:
1122         prev_part[start_pos] = subsize;
1123         if (mi_row + bs < cm->mi_rows)
1124           prev_part[start_pos + bs * cm->mi_stride] = subsize;
1125         break;
1126       case PARTITION_VERT:
1127         prev_part[start_pos] = subsize;
1128         if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1129         break;
1130       default:
1131         assert(partition == PARTITION_SPLIT);
1132         update_prev_partition_helper(cpi, subsize, mi_row, mi_col);
1133         update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col);
1134         update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs);
1135         update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs);
1136         break;
1137     }
1138   }
1139 }
1140 
update_prev_partition(VP9_COMP * cpi,MACROBLOCK * x,int segment_id,int mi_row,int mi_col,int sb_offset)1141 static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id,
1142                                   int mi_row, int mi_col, int sb_offset) {
1143   update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col);
1144   cpi->prev_segment_id[sb_offset] = segment_id;
1145   memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
1146          sizeof(x->variance_low));
1147   // Reset the counter for copy partitioning
1148   cpi->copied_frame_cnt[sb_offset] = 0;
1149 }
1150 
chroma_check(VP9_COMP * cpi,MACROBLOCK * x,int bsize,unsigned int y_sad,int is_key_frame)1151 static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
1152                          unsigned int y_sad, int is_key_frame) {
1153   int i;
1154   MACROBLOCKD *xd = &x->e_mbd;
1155 
1156   if (is_key_frame) return;
1157 
1158   // For speed >= 8, avoid the chroma check if y_sad is above threshold.
1159   if (cpi->oxcf.speed >= 8) {
1160     if (y_sad > cpi->vbp_thresholds[1] &&
1161         (!cpi->noise_estimate.enabled ||
1162          vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
1163       return;
1164   }
1165 
1166   for (i = 1; i <= 2; ++i) {
1167     unsigned int uv_sad = UINT_MAX;
1168     struct macroblock_plane *p = &x->plane[i];
1169     struct macroblockd_plane *pd = &xd->plane[i];
1170     const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
1171 
1172     if (bs != BLOCK_INVALID)
1173       uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
1174                                    pd->dst.stride);
1175 
1176     // TODO(marpan): Investigate if we should lower this threshold if
1177     // superblock is detected as skin.
1178     x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
1179   }
1180 }
1181 
avg_source_sad(VP9_COMP * cpi,MACROBLOCK * x,int shift,int sb_offset)1182 static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
1183                                int sb_offset) {
1184   unsigned int tmp_sse;
1185   uint64_t tmp_sad;
1186   unsigned int tmp_variance;
1187   const BLOCK_SIZE bsize = BLOCK_64X64;
1188   uint8_t *src_y = cpi->Source->y_buffer;
1189   int src_ystride = cpi->Source->y_stride;
1190   uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1191   int last_src_ystride = cpi->Last_Source->y_stride;
1192   uint64_t avg_source_sad_threshold = 10000;
1193   uint64_t avg_source_sad_threshold2 = 12000;
1194 #if CONFIG_VP9_HIGHBITDEPTH
1195   if (cpi->common.use_highbitdepth) return 0;
1196 #endif
1197   src_y += shift;
1198   last_src_y += shift;
1199   tmp_sad =
1200       cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
1201   tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
1202                                    last_src_ystride, &tmp_sse);
1203   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1204   if (tmp_sad < avg_source_sad_threshold)
1205     x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
1206                                                           : kLowSadHighSumdiff;
1207   else
1208     x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
1209                                                           : kHighSadHighSumdiff;
1210 
1211   // Detect large lighting change.
1212   if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
1213       cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
1214       (tmp_sse - tmp_variance) > 10000)
1215     x->content_state_sb = kLowVarHighSumdiff;
1216   else if (tmp_sad > (avg_source_sad_threshold << 1))
1217     x->content_state_sb = kVeryHighSad;
1218 
1219   if (cpi->content_state_sb_fd != NULL) {
1220     if (tmp_sad < avg_source_sad_threshold2) {
1221       // Cap the increment to 255.
1222       if (cpi->content_state_sb_fd[sb_offset] < 255)
1223         cpi->content_state_sb_fd[sb_offset]++;
1224     } else {
1225       cpi->content_state_sb_fd[sb_offset] = 0;
1226     }
1227   }
1228   if (tmp_sad == 0) x->zero_temp_sad_source = 1;
1229   return tmp_sad;
1230 }
1231 
1232 // This function chooses partitioning based on the variance between source and
1233 // reconstructed last, where variance is computed for down-sampled inputs.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)1234 static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1235                                MACROBLOCK *x, int mi_row, int mi_col) {
1236   VP9_COMMON *const cm = &cpi->common;
1237   MACROBLOCKD *xd = &x->e_mbd;
1238   int i, j, k, m;
1239   v64x64 vt;
1240   v16x16 *vt2 = NULL;
1241   int force_split[21];
1242   int avg_32x32;
1243   int max_var_32x32 = 0;
1244   int min_var_32x32 = INT_MAX;
1245   int var_32x32;
1246   int avg_16x16[4];
1247   int maxvar_16x16[4];
1248   int minvar_16x16[4];
1249   int64_t threshold_4x4avg;
1250   NOISE_LEVEL noise_level = kLow;
1251   int content_state = 0;
1252   uint8_t *s;
1253   const uint8_t *d;
1254   int sp;
1255   int dp;
1256   int compute_minmax_variance = 1;
1257   unsigned int y_sad = UINT_MAX;
1258   BLOCK_SIZE bsize = BLOCK_64X64;
1259   // Ref frame used in partitioning.
1260   MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
1261   int pixels_wide = 64, pixels_high = 64;
1262   int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
1263                             cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
1264   int scene_change_detected =
1265       cpi->rc.high_source_sad ||
1266       (cpi->use_svc && cpi->svc.high_source_sad_superframe);
1267 
1268   // For the variance computation under SVC mode, we treat the frame as key if
1269   // the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
1270   int is_key_frame =
1271       (frame_is_intra_only(cm) ||
1272        (is_one_pass_cbr_svc(cpi) &&
1273         cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
1274   // Always use 4x4 partition for key frame.
1275   const int use_4x4_partition = frame_is_intra_only(cm);
1276   const int low_res = (cm->width <= 352 && cm->height <= 288);
1277   int variance4x4downsample[16];
1278   int segment_id;
1279   int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
1280 
1281   // For SVC: check if LAST frame is NULL or if the resolution of LAST is
1282   // different than the current frame resolution, and if so, treat this frame
1283   // as a key frame, for the purpose of the superblock partitioning.
1284   // LAST == NULL can happen in some cases where enhancement spatial layers are
1285   // enabled dyanmically in the stream and the only reference is the spatial
1286   // reference (GOLDEN).
1287   if (cpi->use_svc) {
1288     const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, LAST_FRAME);
1289     if (ref == NULL || ref->y_crop_height != cm->height ||
1290         ref->y_crop_width != cm->width)
1291       is_key_frame = 1;
1292   }
1293 
1294   set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
1295   set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
1296   segment_id = xd->mi[0]->segment_id;
1297 
1298   if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
1299     compute_minmax_variance = 0;
1300 
1301   memset(x->variance_low, 0, sizeof(x->variance_low));
1302 
1303   if (cpi->sf.use_source_sad && !is_key_frame) {
1304     int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1305     content_state = x->content_state_sb;
1306     x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
1307                               content_state == kLowSadHighSumdiff)
1308                                  ? 1
1309                                  : 0;
1310     x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
1311     if (cpi->content_state_sb_fd != NULL)
1312       x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
1313 
1314     // For SVC on top spatial layer: use/scale the partition from
1315     // the lower spatial resolution if svc_use_lowres_part is enabled.
1316     if (cpi->sf.svc_use_lowres_part &&
1317         cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
1318         cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
1319       if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
1320                                   mi_col >> 1, mi_row, mi_col)) {
1321         if (cpi->sf.copy_partition_flag) {
1322           update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1323         }
1324         return 0;
1325       }
1326     }
1327     // If source_sad is low copy the partition without computing the y_sad.
1328     if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
1329         !scene_change_detected &&
1330         copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1331       x->sb_use_mv_part = 1;
1332       if (cpi->sf.svc_use_lowres_part &&
1333           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1334         update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1335       return 0;
1336     }
1337   }
1338 
1339   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
1340       cyclic_refresh_segment_id_boosted(segment_id)) {
1341     int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
1342     set_vbp_thresholds(cpi, thresholds, q, content_state);
1343   } else {
1344     set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
1345   }
1346 
1347   // For non keyframes, disable 4x4 average for low resolution when speed = 8
1348   threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
1349 
1350   if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
1351   if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
1352 
1353   s = x->plane[0].src.buf;
1354   sp = x->plane[0].src.stride;
1355 
1356   // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
1357   // 5-20 for the 16x16 blocks.
1358   force_split[0] = scene_change_detected;
1359 
1360   if (!is_key_frame) {
1361     // In the case of spatial/temporal scalable coding, the assumption here is
1362     // that the temporal reference frame will always be of type LAST_FRAME.
1363     // TODO(marpan): If that assumption is broken, we need to revisit this code.
1364     MODE_INFO *mi = xd->mi[0];
1365     YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1366 
1367     const YV12_BUFFER_CONFIG *yv12_g = NULL;
1368     unsigned int y_sad_g, y_sad_thr, y_sad_last;
1369     bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
1370             (mi_row + 4 < cm->mi_rows);
1371 
1372     assert(yv12 != NULL);
1373 
1374     if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) ||
1375         cpi->svc.use_gf_temporal_ref_current_layer) {
1376       // For now, GOLDEN will not be used for non-zero spatial layers, since
1377       // it may not be a temporal reference.
1378       yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1379     }
1380 
1381     // Only compute y_sad_g (sad for golden reference) for speed < 8.
1382     if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
1383         (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
1384       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1385                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1386       y_sad_g = cpi->fn_ptr[bsize].sdf(
1387           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1388           xd->plane[0].pre[0].stride);
1389     } else {
1390       y_sad_g = UINT_MAX;
1391     }
1392 
1393     if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
1394         cpi->rc.is_src_frame_alt_ref) {
1395       yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
1396       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1397                            &cm->frame_refs[ALTREF_FRAME - 1].sf);
1398       mi->ref_frame[0] = ALTREF_FRAME;
1399       y_sad_g = UINT_MAX;
1400     } else {
1401       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1402                            &cm->frame_refs[LAST_FRAME - 1].sf);
1403       mi->ref_frame[0] = LAST_FRAME;
1404     }
1405     mi->ref_frame[1] = NONE;
1406     mi->sb_type = BLOCK_64X64;
1407     mi->mv[0].as_int = 0;
1408     mi->interp_filter = BILINEAR;
1409 
1410     if (cpi->oxcf.speed >= 8 && !low_res &&
1411         x->content_state_sb != kVeryHighSad) {
1412       y_sad = cpi->fn_ptr[bsize].sdf(
1413           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1414           xd->plane[0].pre[0].stride);
1415     } else {
1416       const MV dummy_mv = { 0, 0 };
1417       y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
1418                                             &dummy_mv);
1419       x->sb_use_mv_part = 1;
1420       x->sb_mvcol_part = mi->mv[0].as_mv.col;
1421       x->sb_mvrow_part = mi->mv[0].as_mv.row;
1422       if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1423           cpi->svc.spatial_layer_id == 0 &&
1424           cpi->svc.high_num_blocks_with_motion && !x->zero_temp_sad_source &&
1425           cm->width > 640 && cm->height > 480) {
1426         // Disable split below 16x16 block size when scroll motion is detected.
1427         // TODO(marpan/jianj): Improve this condition: issue is that search
1428         // range is hard-coded/limited in vp9_int_pro_motion_estimation() so
1429         // scroll motion may not be detected here.
1430         if ((abs(x->sb_mvrow_part) >= 48 && abs(x->sb_mvcol_part) <= 8) ||
1431             y_sad < 100000) {
1432           compute_minmax_variance = 0;
1433           thresholds[2] = INT64_MAX;
1434         }
1435       }
1436     }
1437 
1438     y_sad_last = y_sad;
1439     // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
1440     // are close if short_circuit_low_temp_var is on.
1441     y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
1442     if (y_sad_g < y_sad_thr) {
1443       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1444                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1445       mi->ref_frame[0] = GOLDEN_FRAME;
1446       mi->mv[0].as_int = 0;
1447       y_sad = y_sad_g;
1448       ref_frame_partition = GOLDEN_FRAME;
1449     } else {
1450       x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
1451       ref_frame_partition = LAST_FRAME;
1452     }
1453 
1454     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
1455     vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
1456 
1457     if (cpi->use_skin_detection)
1458       x->sb_is_skin =
1459           skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split);
1460 
1461     d = xd->plane[0].dst.buf;
1462     dp = xd->plane[0].dst.stride;
1463 
1464     // If the y_sad is very small, take 64x64 as partition and exit.
1465     // Don't check on boosted segment for now, as 64x64 is suppressed there.
1466     if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
1467       const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
1468       const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
1469       if (mi_col + block_width / 2 < cm->mi_cols &&
1470           mi_row + block_height / 2 < cm->mi_rows) {
1471         set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
1472         x->variance_low[0] = 1;
1473         chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1474         if (cpi->sf.svc_use_lowres_part &&
1475             cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1476           update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1477         if (cpi->sf.copy_partition_flag) {
1478           update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1479         }
1480         return 0;
1481       }
1482     }
1483 
1484     // If the y_sad is small enough, copy the partition of the superblock in the
1485     // last frame to current frame only if the last frame is not a keyframe.
1486     // Stop the copy every cpi->max_copied_frame to refresh the partition.
1487     // TODO(jianj) : tune the threshold.
1488     if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
1489         copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1490       chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1491       if (cpi->sf.svc_use_lowres_part &&
1492           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1493         update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1494       return 0;
1495     }
1496   } else {
1497     d = VP9_VAR_OFFS;
1498     dp = 0;
1499 #if CONFIG_VP9_HIGHBITDEPTH
1500     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1501       switch (xd->bd) {
1502         case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
1503         case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
1504         case 8:
1505         default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
1506       }
1507     }
1508 #endif  // CONFIG_VP9_HIGHBITDEPTH
1509   }
1510 
1511   if (low_res && threshold_4x4avg < INT64_MAX)
1512     CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2)));
1513   // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
1514   // for splits.
1515   for (i = 0; i < 4; i++) {
1516     const int x32_idx = ((i & 1) << 5);
1517     const int y32_idx = ((i >> 1) << 5);
1518     const int i2 = i << 2;
1519     force_split[i + 1] = 0;
1520     avg_16x16[i] = 0;
1521     maxvar_16x16[i] = 0;
1522     minvar_16x16[i] = INT_MAX;
1523     for (j = 0; j < 4; j++) {
1524       const int x16_idx = x32_idx + ((j & 1) << 4);
1525       const int y16_idx = y32_idx + ((j >> 1) << 4);
1526       const int split_index = 5 + i2 + j;
1527       v16x16 *vst = &vt.split[i].split[j];
1528       force_split[split_index] = 0;
1529       variance4x4downsample[i2 + j] = 0;
1530       if (!is_key_frame) {
1531         fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
1532 #if CONFIG_VP9_HIGHBITDEPTH
1533                              xd->cur_buf->flags,
1534 #endif
1535                              pixels_wide, pixels_high, is_key_frame);
1536         fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
1537         get_variance(&vt.split[i].split[j].part_variances.none);
1538         avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
1539         if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
1540           minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1541         if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
1542           maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1543         if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
1544           // 16X16 variance is above threshold for split, so force split to 8x8
1545           // for this 16x16 block (this also forces splits for upper levels).
1546           force_split[split_index] = 1;
1547           force_split[i + 1] = 1;
1548           force_split[0] = 1;
1549         } else if (compute_minmax_variance &&
1550                    vt.split[i].split[j].part_variances.none.variance >
1551                        thresholds[1] &&
1552                    !cyclic_refresh_segment_id_boosted(segment_id)) {
1553           // We have some nominal amount of 16x16 variance (based on average),
1554           // compute the minmax over the 8x8 sub-blocks, and if above threshold,
1555           // force split to 8x8 block for this 16x16 block.
1556           int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
1557 #if CONFIG_VP9_HIGHBITDEPTH
1558                                           xd->cur_buf->flags,
1559 #endif
1560                                           pixels_wide, pixels_high);
1561           int thresh_minmax = (int)cpi->vbp_threshold_minmax;
1562           if (x->content_state_sb == kVeryHighSad)
1563             thresh_minmax = thresh_minmax << 1;
1564           if (minmax > thresh_minmax) {
1565             force_split[split_index] = 1;
1566             force_split[i + 1] = 1;
1567             force_split[0] = 1;
1568           }
1569         }
1570       }
1571       if (is_key_frame ||
1572           (low_res && vt.split[i].split[j].part_variances.none.variance >
1573                           threshold_4x4avg)) {
1574         force_split[split_index] = 0;
1575         // Go down to 4x4 down-sampling for variance.
1576         variance4x4downsample[i2 + j] = 1;
1577         for (k = 0; k < 4; k++) {
1578           int x8_idx = x16_idx + ((k & 1) << 3);
1579           int y8_idx = y16_idx + ((k >> 1) << 3);
1580           v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
1581           fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
1582 #if CONFIG_VP9_HIGHBITDEPTH
1583                                xd->cur_buf->flags,
1584 #endif
1585                                pixels_wide, pixels_high, is_key_frame);
1586         }
1587       }
1588     }
1589   }
1590   if (cpi->noise_estimate.enabled)
1591     noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
1592   // Fill the rest of the variance tree by summing split partition values.
1593   avg_32x32 = 0;
1594   for (i = 0; i < 4; i++) {
1595     const int i2 = i << 2;
1596     for (j = 0; j < 4; j++) {
1597       if (variance4x4downsample[i2 + j] == 1) {
1598         v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
1599         for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
1600         fill_variance_tree(vtemp, BLOCK_16X16);
1601         // If variance of this 16x16 block is above the threshold, force block
1602         // to split. This also forces a split on the upper levels.
1603         get_variance(&vtemp->part_variances.none);
1604         if (vtemp->part_variances.none.variance > thresholds[2]) {
1605           force_split[5 + i2 + j] = 1;
1606           force_split[i + 1] = 1;
1607           force_split[0] = 1;
1608         }
1609       }
1610     }
1611     fill_variance_tree(&vt.split[i], BLOCK_32X32);
1612     // If variance of this 32x32 block is above the threshold, or if its above
1613     // (some threshold of) the average variance over the sub-16x16 blocks, then
1614     // force this block to split. This also forces a split on the upper
1615     // (64x64) level.
1616     if (!force_split[i + 1]) {
1617       get_variance(&vt.split[i].part_variances.none);
1618       var_32x32 = vt.split[i].part_variances.none.variance;
1619       max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
1620       min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
1621       if (vt.split[i].part_variances.none.variance > thresholds[1] ||
1622           (!is_key_frame &&
1623            vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
1624            vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
1625         force_split[i + 1] = 1;
1626         force_split[0] = 1;
1627       } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
1628                  (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
1629                  maxvar_16x16[i] > thresholds[1]) {
1630         force_split[i + 1] = 1;
1631         force_split[0] = 1;
1632       }
1633       avg_32x32 += var_32x32;
1634     }
1635   }
1636   if (!force_split[0]) {
1637     fill_variance_tree(&vt, BLOCK_64X64);
1638     get_variance(&vt.part_variances.none);
1639     // If variance of this 64x64 block is above (some threshold of) the average
1640     // variance over the sub-32x32 blocks, then force this block to split.
1641     // Only checking this for noise level >= medium for now.
1642     if (!is_key_frame && noise_level >= kMedium &&
1643         vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
1644       force_split[0] = 1;
1645     // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
1646     // a 64x64 block is greater than threshold and the maximum 32x32 variance is
1647     // above a miniumum threshold, then force the split of a 64x64 block
1648     // Only check this for low noise.
1649     else if (!is_key_frame && noise_level < kMedium &&
1650              (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
1651              max_var_32x32 > thresholds[0] >> 1)
1652       force_split[0] = 1;
1653   }
1654 
1655   // Now go through the entire structure, splitting every block size until
1656   // we get to one that's got a variance lower than our threshold.
1657   if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
1658       !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
1659                            thresholds[0], BLOCK_16X16, force_split[0])) {
1660     for (i = 0; i < 4; ++i) {
1661       const int x32_idx = ((i & 1) << 2);
1662       const int y32_idx = ((i >> 1) << 2);
1663       const int i2 = i << 2;
1664       if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
1665                                (mi_row + y32_idx), (mi_col + x32_idx),
1666                                thresholds[1], BLOCK_16X16,
1667                                force_split[i + 1])) {
1668         for (j = 0; j < 4; ++j) {
1669           const int x16_idx = ((j & 1) << 1);
1670           const int y16_idx = ((j >> 1) << 1);
1671           // For inter frames: if variance4x4downsample[] == 1 for this 16x16
1672           // block, then the variance is based on 4x4 down-sampling, so use vt2
1673           // in set_vt_partioning(), otherwise use vt.
1674           v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
1675                               ? &vt2[i2 + j]
1676                               : &vt.split[i].split[j];
1677           if (!set_vt_partitioning(
1678                   cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
1679                   mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
1680                   force_split[5 + i2 + j])) {
1681             for (k = 0; k < 4; ++k) {
1682               const int x8_idx = (k & 1);
1683               const int y8_idx = (k >> 1);
1684               if (use_4x4_partition) {
1685                 if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
1686                                          BLOCK_8X8,
1687                                          mi_row + y32_idx + y16_idx + y8_idx,
1688                                          mi_col + x32_idx + x16_idx + x8_idx,
1689                                          thresholds[3], BLOCK_8X8, 0)) {
1690                   set_block_size(
1691                       cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1692                       (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
1693                 }
1694               } else {
1695                 set_block_size(
1696                     cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1697                     (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
1698               }
1699             }
1700           }
1701         }
1702       }
1703     }
1704   }
1705 
1706   if (!frame_is_intra_only(cm) && cpi->sf.copy_partition_flag) {
1707     update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1708   }
1709 
1710   if (!frame_is_intra_only(cm) && cpi->sf.svc_use_lowres_part &&
1711       cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1712     update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1713 
1714   if (cpi->sf.short_circuit_low_temp_var) {
1715     set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
1716                           mi_col, mi_row);
1717   }
1718 
1719   chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1720   if (vt2) vpx_free(vt2);
1721   return 0;
1722 }
1723 
update_state(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)1724 static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
1725                          int mi_row, int mi_col, BLOCK_SIZE bsize,
1726                          int output_enabled) {
1727   int i, x_idx, y;
1728   VP9_COMMON *const cm = &cpi->common;
1729   RD_COUNTS *const rdc = &td->rd_counts;
1730   MACROBLOCK *const x = &td->mb;
1731   MACROBLOCKD *const xd = &x->e_mbd;
1732   struct macroblock_plane *const p = x->plane;
1733   struct macroblockd_plane *const pd = xd->plane;
1734   MODE_INFO *mi = &ctx->mic;
1735   MODE_INFO *const xdmi = xd->mi[0];
1736   MODE_INFO *mi_addr = xd->mi[0];
1737   const struct segmentation *const seg = &cm->seg;
1738   const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
1739   const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
1740   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1741   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1742   MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
1743   int w, h;
1744 
1745   const int mis = cm->mi_stride;
1746   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
1747   const int mi_height = num_8x8_blocks_high_lookup[bsize];
1748   int max_plane;
1749 
1750   assert(mi->sb_type == bsize);
1751 
1752   *mi_addr = *mi;
1753   *x->mbmi_ext = ctx->mbmi_ext;
1754 
1755   // If segmentation in use
1756   if (seg->enabled) {
1757     // For in frame complexity AQ copy the segment id from the segment map.
1758     if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
1759       const uint8_t *const map =
1760           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1761       mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
1762     }
1763     // Else for cyclic refresh mode update the segment map, set the segment id
1764     // and then update the quantizer.
1765     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
1766       vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
1767                                         ctx->rate, ctx->dist, x->skip, p);
1768     }
1769   }
1770 
1771   max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
1772   for (i = 0; i < max_plane; ++i) {
1773     p[i].coeff = ctx->coeff_pbuf[i][1];
1774     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
1775     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
1776     p[i].eobs = ctx->eobs_pbuf[i][1];
1777   }
1778 
1779   for (i = max_plane; i < MAX_MB_PLANE; ++i) {
1780     p[i].coeff = ctx->coeff_pbuf[i][2];
1781     p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
1782     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
1783     p[i].eobs = ctx->eobs_pbuf[i][2];
1784   }
1785 
1786   // Restore the coding context of the MB to that that was in place
1787   // when the mode was picked for it
1788   for (y = 0; y < mi_height; y++)
1789     for (x_idx = 0; x_idx < mi_width; x_idx++)
1790       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
1791           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
1792         xd->mi[x_idx + y * mis] = mi_addr;
1793       }
1794 
1795   if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
1796 
1797   if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
1798     xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
1799     xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
1800   }
1801 
1802   x->skip = ctx->skip;
1803   memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
1804          sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
1805 
1806   if (!output_enabled) return;
1807 
1808 #if CONFIG_INTERNAL_STATS
1809   if (frame_is_intra_only(cm)) {
1810     static const int kf_mode_index[] = {
1811       THR_DC /*DC_PRED*/,          THR_V_PRED /*V_PRED*/,
1812       THR_H_PRED /*H_PRED*/,       THR_D45_PRED /*D45_PRED*/,
1813       THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
1814       THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
1815       THR_D63_PRED /*D63_PRED*/,   THR_TM /*TM_PRED*/,
1816     };
1817     ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
1818   } else {
1819     // Note how often each mode chosen as best
1820     ++cpi->mode_chosen_counts[ctx->best_mode_index];
1821   }
1822 #endif
1823   if (!frame_is_intra_only(cm)) {
1824     if (is_inter_block(xdmi)) {
1825       vp9_update_mv_count(td);
1826 
1827       if (cm->interp_filter == SWITCHABLE) {
1828         const int ctx = get_pred_context_switchable_interp(xd);
1829         ++td->counts->switchable_interp[ctx][xdmi->interp_filter];
1830       }
1831     }
1832 
1833     rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
1834     rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
1835     rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
1836 
1837     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
1838       rdc->filter_diff[i] += ctx->best_filter_diff[i];
1839   }
1840 
1841   for (h = 0; h < y_mis; ++h) {
1842     MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
1843     for (w = 0; w < x_mis; ++w) {
1844       MV_REF *const mv = frame_mv + w;
1845       mv->ref_frame[0] = mi->ref_frame[0];
1846       mv->ref_frame[1] = mi->ref_frame[1];
1847       mv->mv[0].as_int = mi->mv[0].as_int;
1848       mv->mv[1].as_int = mi->mv[1].as_int;
1849     }
1850   }
1851 }
1852 
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)1853 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
1854                           int mi_row, int mi_col) {
1855   uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
1856   const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
1857   int i;
1858 
1859   // Set current frame pointer.
1860   x->e_mbd.cur_buf = src;
1861 
1862   for (i = 0; i < MAX_MB_PLANE; i++)
1863     setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
1864                      NULL, x->e_mbd.plane[i].subsampling_x,
1865                      x->e_mbd.plane[i].subsampling_y);
1866 }
1867 
set_mode_info_seg_skip(MACROBLOCK * x,TX_MODE tx_mode,RD_COST * rd_cost,BLOCK_SIZE bsize)1868 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
1869                                    RD_COST *rd_cost, BLOCK_SIZE bsize) {
1870   MACROBLOCKD *const xd = &x->e_mbd;
1871   MODE_INFO *const mi = xd->mi[0];
1872   INTERP_FILTER filter_ref;
1873 
1874   filter_ref = get_pred_context_switchable_interp(xd);
1875   if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP;
1876 
1877   mi->sb_type = bsize;
1878   mi->mode = ZEROMV;
1879   mi->tx_size =
1880       VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
1881   mi->skip = 1;
1882   mi->uv_mode = DC_PRED;
1883   mi->ref_frame[0] = LAST_FRAME;
1884   mi->ref_frame[1] = NONE;
1885   mi->mv[0].as_int = 0;
1886   mi->interp_filter = filter_ref;
1887 
1888   xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
1889   x->skip = 1;
1890 
1891   vp9_rd_cost_init(rd_cost);
1892 }
1893 
set_segment_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,AQ_MODE aq_mode)1894 static void set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
1895                                int mi_row, int mi_col, BLOCK_SIZE bsize,
1896                                AQ_MODE aq_mode) {
1897   int segment_qindex;
1898   VP9_COMMON *const cm = &cpi->common;
1899   const uint8_t *const map =
1900       cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1901 
1902   vp9_init_plane_quantizers(cpi, x);
1903   vpx_clear_system_state();
1904   segment_qindex =
1905       vp9_get_qindex(&cm->seg, x->e_mbd.mi[0]->segment_id, cm->base_qindex);
1906 
1907   if (aq_mode == NO_AQ || aq_mode == PSNR_AQ) {
1908     if (cpi->sf.enable_tpl_model) x->rdmult = x->cb_rdmult;
1909     return;
1910   }
1911 
1912   if (aq_mode == CYCLIC_REFRESH_AQ) {
1913     // If segment is boosted, use rdmult for that segment.
1914     if (cyclic_refresh_segment_id_boosted(
1915             get_segment_id(cm, map, bsize, mi_row, mi_col)))
1916       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
1917     return;
1918   }
1919 
1920   x->rdmult = vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
1921 }
1922 
rd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int64_t best_rd)1923 static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
1924                              MACROBLOCK *const x, int mi_row, int mi_col,
1925                              RD_COST *rd_cost, BLOCK_SIZE bsize,
1926                              PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
1927   VP9_COMMON *const cm = &cpi->common;
1928   TileInfo *const tile_info = &tile_data->tile_info;
1929   MACROBLOCKD *const xd = &x->e_mbd;
1930   MODE_INFO *mi;
1931   struct macroblock_plane *const p = x->plane;
1932   struct macroblockd_plane *const pd = xd->plane;
1933   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
1934   int i, orig_rdmult;
1935 
1936   vpx_clear_system_state();
1937 
1938   // Use the lower precision, but faster, 32x32 fdct for mode selection.
1939   x->use_lp32x32fdct = 1;
1940 
1941   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
1942   mi = xd->mi[0];
1943   mi->sb_type = bsize;
1944 
1945   for (i = 0; i < MAX_MB_PLANE; ++i) {
1946     p[i].coeff = ctx->coeff_pbuf[i][0];
1947     p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
1948     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
1949     p[i].eobs = ctx->eobs_pbuf[i][0];
1950   }
1951   ctx->is_coded = 0;
1952   ctx->skippable = 0;
1953   ctx->pred_pixel_ready = 0;
1954   x->skip_recode = 0;
1955 
1956   // Set to zero to make sure we do not use the previous encoded frame stats
1957   mi->skip = 0;
1958 
1959 #if CONFIG_VP9_HIGHBITDEPTH
1960   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1961     x->source_variance = vp9_high_get_sby_perpixel_variance(
1962         cpi, &x->plane[0].src, bsize, xd->bd);
1963   } else {
1964     x->source_variance =
1965         vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
1966   }
1967 #else
1968   x->source_variance =
1969       vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
1970 #endif  // CONFIG_VP9_HIGHBITDEPTH
1971 
1972   // Save rdmult before it might be changed, so it can be restored later.
1973   orig_rdmult = x->rdmult;
1974 
1975   if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) {
1976     double logvar = vp9_log_block_var(cpi, x, bsize);
1977     // Check block complexity as part of descision on using pixel or transform
1978     // domain distortion in rd tests.
1979     x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
1980                          (logvar >= cpi->sf.tx_domain_thresh);
1981 
1982     // Check block complexity as part of descision on using quantized
1983     // coefficient optimisation inside the rd loop.
1984     x->block_qcoeff_opt =
1985         cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh);
1986   } else {
1987     x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
1988     x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt;
1989   }
1990 
1991   set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
1992   set_segment_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode);
1993 
1994   // Find best coding mode & reconstruct the MB so it is available
1995   // as a predictor for MBs that follow in the SB
1996   if (frame_is_intra_only(cm)) {
1997     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
1998   } else {
1999     if (bsize >= BLOCK_8X8) {
2000       if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
2001         vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
2002                                            ctx, best_rd);
2003       else
2004         vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2005                                   bsize, ctx, best_rd);
2006     } else {
2007       vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2008                                     bsize, ctx, best_rd);
2009     }
2010   }
2011 
2012   // Examine the resulting rate and for AQ mode 2 make a segment choice.
2013   if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
2014       (bsize >= BLOCK_16X16) &&
2015       (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
2016        (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
2017     vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
2018   }
2019 
2020   // TODO(jingning) The rate-distortion optimization flow needs to be
2021   // refactored to provide proper exit/return handle.
2022   if (rd_cost->rate == INT_MAX)
2023     rd_cost->rdcost = INT64_MAX;
2024   else
2025     rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
2026 
2027   x->rdmult = orig_rdmult;
2028 
2029   ctx->rate = rd_cost->rate;
2030   ctx->dist = rd_cost->dist;
2031 }
2032 
update_stats(VP9_COMMON * cm,ThreadData * td)2033 static void update_stats(VP9_COMMON *cm, ThreadData *td) {
2034   const MACROBLOCK *x = &td->mb;
2035   const MACROBLOCKD *const xd = &x->e_mbd;
2036   const MODE_INFO *const mi = xd->mi[0];
2037   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
2038   const BLOCK_SIZE bsize = mi->sb_type;
2039 
2040   if (!frame_is_intra_only(cm)) {
2041     FRAME_COUNTS *const counts = td->counts;
2042     const int inter_block = is_inter_block(mi);
2043     const int seg_ref_active =
2044         segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
2045     if (!seg_ref_active) {
2046       counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
2047       // If the segment reference feature is enabled we have only a single
2048       // reference frame allowed for the segment so exclude it from
2049       // the reference frame counts used to work out probabilities.
2050       if (inter_block) {
2051         const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
2052         if (cm->reference_mode == REFERENCE_MODE_SELECT)
2053           counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
2054                             [has_second_ref(mi)]++;
2055 
2056         if (has_second_ref(mi)) {
2057           const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
2058           const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
2059           const int bit = mi->ref_frame[!idx] == cm->comp_var_ref[1];
2060           counts->comp_ref[ctx][bit]++;
2061         } else {
2062           counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
2063                             [ref0 != LAST_FRAME]++;
2064           if (ref0 != LAST_FRAME)
2065             counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
2066                               [ref0 != GOLDEN_FRAME]++;
2067         }
2068       }
2069     }
2070     if (inter_block &&
2071         !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
2072       const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
2073       if (bsize >= BLOCK_8X8) {
2074         const PREDICTION_MODE mode = mi->mode;
2075         ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
2076       } else {
2077         const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
2078         const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
2079         int idx, idy;
2080         for (idy = 0; idy < 2; idy += num_4x4_h) {
2081           for (idx = 0; idx < 2; idx += num_4x4_w) {
2082             const int j = idy * 2 + idx;
2083             const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
2084             ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
2085           }
2086         }
2087       }
2088     }
2089   }
2090 }
2091 
restore_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2092 static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
2093                             ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2094                             ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2095                             PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2096                             BLOCK_SIZE bsize) {
2097   MACROBLOCKD *const xd = &x->e_mbd;
2098   int p;
2099   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2100   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2101   int mi_width = num_8x8_blocks_wide_lookup[bsize];
2102   int mi_height = num_8x8_blocks_high_lookup[bsize];
2103   for (p = 0; p < MAX_MB_PLANE; p++) {
2104     memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
2105            a + num_4x4_blocks_wide * p,
2106            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2107                xd->plane[p].subsampling_x);
2108     memcpy(xd->left_context[p] +
2109                ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2110            l + num_4x4_blocks_high * p,
2111            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2112                xd->plane[p].subsampling_y);
2113   }
2114   memcpy(xd->above_seg_context + mi_col, sa,
2115          sizeof(*xd->above_seg_context) * mi_width);
2116   memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
2117          sizeof(xd->left_seg_context[0]) * mi_height);
2118 }
2119 
save_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2120 static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
2121                          ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2122                          ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2123                          PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2124                          BLOCK_SIZE bsize) {
2125   const MACROBLOCKD *const xd = &x->e_mbd;
2126   int p;
2127   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2128   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2129   int mi_width = num_8x8_blocks_wide_lookup[bsize];
2130   int mi_height = num_8x8_blocks_high_lookup[bsize];
2131 
2132   // buffer the above/left context information of the block in search.
2133   for (p = 0; p < MAX_MB_PLANE; ++p) {
2134     memcpy(a + num_4x4_blocks_wide * p,
2135            xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
2136            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2137                xd->plane[p].subsampling_x);
2138     memcpy(l + num_4x4_blocks_high * p,
2139            xd->left_context[p] +
2140                ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2141            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2142                xd->plane[p].subsampling_y);
2143   }
2144   memcpy(sa, xd->above_seg_context + mi_col,
2145          sizeof(*xd->above_seg_context) * mi_width);
2146   memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
2147          sizeof(xd->left_seg_context[0]) * mi_height);
2148 }
2149 
encode_b(VP9_COMP * cpi,const TileInfo * const tile,ThreadData * td,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2150 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
2151                      TOKENEXTRA **tp, int mi_row, int mi_col,
2152                      int output_enabled, BLOCK_SIZE bsize,
2153                      PICK_MODE_CONTEXT *ctx) {
2154   MACROBLOCK *const x = &td->mb;
2155   set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2156 
2157   if (cpi->sf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ)
2158     x->rdmult = x->cb_rdmult;
2159 
2160   update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
2161   encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2162 
2163   if (output_enabled) {
2164     update_stats(&cpi->common, td);
2165 
2166     (*tp)->token = EOSB_TOKEN;
2167     (*tp)++;
2168   }
2169 }
2170 
encode_sb(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2171 static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
2172                       TOKENEXTRA **tp, int mi_row, int mi_col,
2173                       int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2174   VP9_COMMON *const cm = &cpi->common;
2175   MACROBLOCK *const x = &td->mb;
2176   MACROBLOCKD *const xd = &x->e_mbd;
2177 
2178   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2179   int ctx;
2180   PARTITION_TYPE partition;
2181   BLOCK_SIZE subsize = bsize;
2182 
2183   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2184 
2185   if (bsize >= BLOCK_8X8) {
2186     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2187     subsize = get_subsize(bsize, pc_tree->partitioning);
2188   } else {
2189     ctx = 0;
2190     subsize = BLOCK_4X4;
2191   }
2192 
2193   partition = partition_lookup[bsl][subsize];
2194   if (output_enabled && bsize != BLOCK_4X4)
2195     td->counts->partition[ctx][partition]++;
2196 
2197   switch (partition) {
2198     case PARTITION_NONE:
2199       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2200                &pc_tree->none);
2201       break;
2202     case PARTITION_VERT:
2203       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2204                &pc_tree->vertical[0]);
2205       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2206         encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
2207                  subsize, &pc_tree->vertical[1]);
2208       }
2209       break;
2210     case PARTITION_HORZ:
2211       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2212                &pc_tree->horizontal[0]);
2213       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2214         encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
2215                  subsize, &pc_tree->horizontal[1]);
2216       }
2217       break;
2218     default:
2219       assert(partition == PARTITION_SPLIT);
2220       if (bsize == BLOCK_8X8) {
2221         encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2222                  pc_tree->leaf_split[0]);
2223       } else {
2224         encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2225                   pc_tree->split[0]);
2226         encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2227                   subsize, pc_tree->split[1]);
2228         encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2229                   subsize, pc_tree->split[2]);
2230         encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
2231                   subsize, pc_tree->split[3]);
2232       }
2233       break;
2234   }
2235 
2236   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2237     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2238 }
2239 
2240 // Check to see if the given partition size is allowed for a specified number
2241 // of 8x8 block rows and columns remaining in the image.
2242 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)2243 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
2244                                       int cols_left, int *bh, int *bw) {
2245   if (rows_left <= 0 || cols_left <= 0) {
2246     return VPXMIN(bsize, BLOCK_8X8);
2247   } else {
2248     for (; bsize > 0; bsize -= 3) {
2249       *bh = num_8x8_blocks_high_lookup[bsize];
2250       *bw = num_8x8_blocks_wide_lookup[bsize];
2251       if ((*bh <= rows_left) && (*bw <= cols_left)) {
2252         break;
2253       }
2254     }
2255   }
2256   return bsize;
2257 }
2258 
set_partial_b64x64_partition(MODE_INFO * mi,int mis,int bh_in,int bw_in,int row8x8_remaining,int col8x8_remaining,BLOCK_SIZE bsize,MODE_INFO ** mi_8x8)2259 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
2260                                          int bw_in, int row8x8_remaining,
2261                                          int col8x8_remaining, BLOCK_SIZE bsize,
2262                                          MODE_INFO **mi_8x8) {
2263   int bh = bh_in;
2264   int r, c;
2265   for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
2266     int bw = bw_in;
2267     for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
2268       const int index = r * mis + c;
2269       mi_8x8[index] = mi + index;
2270       mi_8x8[index]->sb_type = find_partition_size(
2271           bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
2272     }
2273   }
2274 }
2275 
2276 // This function attempts to set all mode info entries in a given SB64
2277 // to the same block partition size.
2278 // However, at the bottom and right borders of the image the requested size
2279 // may not be allowed in which case this code attempts to choose the largest
2280 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)2281 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
2282                                    MODE_INFO **mi_8x8, int mi_row, int mi_col,
2283                                    BLOCK_SIZE bsize) {
2284   VP9_COMMON *const cm = &cpi->common;
2285   const int mis = cm->mi_stride;
2286   const int row8x8_remaining = tile->mi_row_end - mi_row;
2287   const int col8x8_remaining = tile->mi_col_end - mi_col;
2288   int block_row, block_col;
2289   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2290   int bh = num_8x8_blocks_high_lookup[bsize];
2291   int bw = num_8x8_blocks_wide_lookup[bsize];
2292 
2293   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2294 
2295   // Apply the requested partition size to the SB64 if it is all "in image"
2296   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2297       (row8x8_remaining >= MI_BLOCK_SIZE)) {
2298     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
2299       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
2300         int index = block_row * mis + block_col;
2301         mi_8x8[index] = mi_upper_left + index;
2302         mi_8x8[index]->sb_type = bsize;
2303       }
2304     }
2305   } else {
2306     // Else this is a partial SB64.
2307     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2308                                  col8x8_remaining, bsize, mi_8x8);
2309   }
2310 }
2311 
2312 static const struct {
2313   int row;
2314   int col;
2315 } coord_lookup[16] = {
2316   // 32x32 index = 0
2317   { 0, 0 },
2318   { 0, 2 },
2319   { 2, 0 },
2320   { 2, 2 },
2321   // 32x32 index = 1
2322   { 0, 4 },
2323   { 0, 6 },
2324   { 2, 4 },
2325   { 2, 6 },
2326   // 32x32 index = 2
2327   { 4, 0 },
2328   { 4, 2 },
2329   { 6, 0 },
2330   { 6, 2 },
2331   // 32x32 index = 3
2332   { 4, 4 },
2333   { 4, 6 },
2334   { 6, 4 },
2335   { 6, 6 },
2336 };
2337 
set_source_var_based_partition(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,MODE_INFO ** mi_8x8,int mi_row,int mi_col)2338 static void set_source_var_based_partition(VP9_COMP *cpi,
2339                                            const TileInfo *const tile,
2340                                            MACROBLOCK *const x,
2341                                            MODE_INFO **mi_8x8, int mi_row,
2342                                            int mi_col) {
2343   VP9_COMMON *const cm = &cpi->common;
2344   const int mis = cm->mi_stride;
2345   const int row8x8_remaining = tile->mi_row_end - mi_row;
2346   const int col8x8_remaining = tile->mi_col_end - mi_col;
2347   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2348 
2349   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
2350 
2351   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2352 
2353   // In-image SB64
2354   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2355       (row8x8_remaining >= MI_BLOCK_SIZE)) {
2356     int i, j;
2357     int index;
2358     diff d32[4];
2359     const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
2360     int is_larger_better = 0;
2361     int use32x32 = 0;
2362     unsigned int thr = cpi->source_var_thresh;
2363 
2364     memset(d32, 0, 4 * sizeof(diff));
2365 
2366     for (i = 0; i < 4; i++) {
2367       diff *d16[4];
2368 
2369       for (j = 0; j < 4; j++) {
2370         int b_mi_row = coord_lookup[i * 4 + j].row;
2371         int b_mi_col = coord_lookup[i * 4 + j].col;
2372         int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
2373 
2374         d16[j] = cpi->source_diff_var + offset + boffset;
2375 
2376         index = b_mi_row * mis + b_mi_col;
2377         mi_8x8[index] = mi_upper_left + index;
2378         mi_8x8[index]->sb_type = BLOCK_16X16;
2379 
2380         // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
2381         // size to further improve quality.
2382       }
2383 
2384       is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
2385                          (d16[2]->var < thr) && (d16[3]->var < thr);
2386 
2387       // Use 32x32 partition
2388       if (is_larger_better) {
2389         use32x32 += 1;
2390 
2391         for (j = 0; j < 4; j++) {
2392           d32[i].sse += d16[j]->sse;
2393           d32[i].sum += d16[j]->sum;
2394         }
2395 
2396         d32[i].var =
2397             (unsigned int)(d32[i].sse -
2398                            (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
2399                                           10));
2400 
2401         index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
2402         mi_8x8[index] = mi_upper_left + index;
2403         mi_8x8[index]->sb_type = BLOCK_32X32;
2404       }
2405     }
2406 
2407     if (use32x32 == 4) {
2408       thr <<= 1;
2409       is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
2410                          (d32[2].var < thr) && (d32[3].var < thr);
2411 
2412       // Use 64x64 partition
2413       if (is_larger_better) {
2414         mi_8x8[0] = mi_upper_left;
2415         mi_8x8[0]->sb_type = BLOCK_64X64;
2416       }
2417     }
2418   } else {  // partial in-image SB64
2419     int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
2420     int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
2421     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2422                                  col8x8_remaining, BLOCK_16X16, mi_8x8);
2423   }
2424 }
2425 
update_state_rt(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)2426 static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
2427                             PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
2428                             int bsize) {
2429   VP9_COMMON *const cm = &cpi->common;
2430   MACROBLOCK *const x = &td->mb;
2431   MACROBLOCKD *const xd = &x->e_mbd;
2432   MODE_INFO *const mi = xd->mi[0];
2433   struct macroblock_plane *const p = x->plane;
2434   const struct segmentation *const seg = &cm->seg;
2435   const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
2436   const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
2437   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
2438   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
2439 
2440   *(xd->mi[0]) = ctx->mic;
2441   *(x->mbmi_ext) = ctx->mbmi_ext;
2442 
2443   if (seg->enabled && cpi->oxcf.aq_mode != NO_AQ) {
2444     // For in frame complexity AQ or variance AQ, copy segment_id from
2445     // segmentation_map.
2446     if (cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) {
2447       const uint8_t *const map =
2448           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
2449       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
2450     } else {
2451       // Setting segmentation map for cyclic_refresh.
2452       vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
2453                                         ctx->rate, ctx->dist, x->skip, p);
2454     }
2455     vp9_init_plane_quantizers(cpi, x);
2456   }
2457 
2458   if (is_inter_block(mi)) {
2459     vp9_update_mv_count(td);
2460     if (cm->interp_filter == SWITCHABLE) {
2461       const int pred_ctx = get_pred_context_switchable_interp(xd);
2462       ++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
2463     }
2464 
2465     if (mi->sb_type < BLOCK_8X8) {
2466       mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
2467       mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
2468     }
2469   }
2470 
2471   if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
2472       (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
2473        cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
2474     MV_REF *const frame_mvs =
2475         cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
2476     int w, h;
2477 
2478     for (h = 0; h < y_mis; ++h) {
2479       MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
2480       for (w = 0; w < x_mis; ++w) {
2481         MV_REF *const mv = frame_mv + w;
2482         mv->ref_frame[0] = mi->ref_frame[0];
2483         mv->ref_frame[1] = mi->ref_frame[1];
2484         mv->mv[0].as_int = mi->mv[0].as_int;
2485         mv->mv[1].as_int = mi->mv[1].as_int;
2486       }
2487     }
2488   }
2489 
2490   x->skip = ctx->skip;
2491   x->skip_txfm[0] = (mi->segment_id || xd->lossless) ? 0 : ctx->skip_txfm[0];
2492 }
2493 
encode_b_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2494 static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
2495                         const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
2496                         int mi_col, int output_enabled, BLOCK_SIZE bsize,
2497                         PICK_MODE_CONTEXT *ctx) {
2498   MACROBLOCK *const x = &td->mb;
2499   set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2500   update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
2501 
2502   encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2503   update_stats(&cpi->common, td);
2504 
2505   (*tp)->token = EOSB_TOKEN;
2506   (*tp)++;
2507 }
2508 
encode_sb_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2509 static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
2510                          const TileInfo *const tile, TOKENEXTRA **tp,
2511                          int mi_row, int mi_col, int output_enabled,
2512                          BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2513   VP9_COMMON *const cm = &cpi->common;
2514   MACROBLOCK *const x = &td->mb;
2515   MACROBLOCKD *const xd = &x->e_mbd;
2516 
2517   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2518   int ctx;
2519   PARTITION_TYPE partition;
2520   BLOCK_SIZE subsize;
2521 
2522   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2523 
2524   if (bsize >= BLOCK_8X8) {
2525     const int idx_str = xd->mi_stride * mi_row + mi_col;
2526     MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
2527     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2528     subsize = mi_8x8[0]->sb_type;
2529   } else {
2530     ctx = 0;
2531     subsize = BLOCK_4X4;
2532   }
2533 
2534   partition = partition_lookup[bsl][subsize];
2535   if (output_enabled && bsize != BLOCK_4X4)
2536     td->counts->partition[ctx][partition]++;
2537 
2538   switch (partition) {
2539     case PARTITION_NONE:
2540       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2541                   &pc_tree->none);
2542       break;
2543     case PARTITION_VERT:
2544       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2545                   &pc_tree->vertical[0]);
2546       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2547         encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2548                     subsize, &pc_tree->vertical[1]);
2549       }
2550       break;
2551     case PARTITION_HORZ:
2552       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2553                   &pc_tree->horizontal[0]);
2554       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2555         encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2556                     subsize, &pc_tree->horizontal[1]);
2557       }
2558       break;
2559     default:
2560       assert(partition == PARTITION_SPLIT);
2561       subsize = get_subsize(bsize, PARTITION_SPLIT);
2562       encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2563                    pc_tree->split[0]);
2564       encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2565                    subsize, pc_tree->split[1]);
2566       encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2567                    subsize, pc_tree->split[2]);
2568       encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
2569                    output_enabled, subsize, pc_tree->split[3]);
2570       break;
2571   }
2572 
2573   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2574     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2575 }
2576 
rd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,PC_TREE * pc_tree)2577 static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
2578                              TileDataEnc *tile_data, MODE_INFO **mi_8x8,
2579                              TOKENEXTRA **tp, int mi_row, int mi_col,
2580                              BLOCK_SIZE bsize, int *rate, int64_t *dist,
2581                              int do_recon, PC_TREE *pc_tree) {
2582   VP9_COMMON *const cm = &cpi->common;
2583   TileInfo *const tile_info = &tile_data->tile_info;
2584   MACROBLOCK *const x = &td->mb;
2585   MACROBLOCKD *const xd = &x->e_mbd;
2586   const int mis = cm->mi_stride;
2587   const int bsl = b_width_log2_lookup[bsize];
2588   const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
2589   const int bss = (1 << bsl) / 4;
2590   int i, pl;
2591   PARTITION_TYPE partition = PARTITION_NONE;
2592   BLOCK_SIZE subsize;
2593   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2594   PARTITION_CONTEXT sl[8], sa[8];
2595   RD_COST last_part_rdc, none_rdc, chosen_rdc;
2596   BLOCK_SIZE sub_subsize = BLOCK_4X4;
2597   int splits_below = 0;
2598   BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
2599   int do_partition_search = 1;
2600   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2601 
2602   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2603 
2604   assert(num_4x4_blocks_wide_lookup[bsize] ==
2605          num_4x4_blocks_high_lookup[bsize]);
2606 
2607   vp9_rd_cost_reset(&last_part_rdc);
2608   vp9_rd_cost_reset(&none_rdc);
2609   vp9_rd_cost_reset(&chosen_rdc);
2610 
2611   partition = partition_lookup[bsl][bs_type];
2612   subsize = get_subsize(bsize, partition);
2613 
2614   pc_tree->partitioning = partition;
2615   save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2616 
2617   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
2618     set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
2619     x->mb_energy = vp9_block_energy(cpi, x, bsize);
2620   }
2621 
2622   if (do_partition_search &&
2623       cpi->sf.partition_search_type == SEARCH_PARTITION &&
2624       cpi->sf.adjust_partitioning_from_last_frame) {
2625     // Check if any of the sub blocks are further split.
2626     if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
2627       sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
2628       splits_below = 1;
2629       for (i = 0; i < 4; i++) {
2630         int jj = i >> 1, ii = i & 0x01;
2631         MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
2632         if (this_mi && this_mi->sb_type >= sub_subsize) {
2633           splits_below = 0;
2634         }
2635       }
2636     }
2637 
2638     // If partition is not none try none unless each of the 4 splits are split
2639     // even further..
2640     if (partition != PARTITION_NONE && !splits_below &&
2641         mi_row + (mi_step >> 1) < cm->mi_rows &&
2642         mi_col + (mi_step >> 1) < cm->mi_cols) {
2643       pc_tree->partitioning = PARTITION_NONE;
2644       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
2645                        INT64_MAX);
2646 
2647       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2648 
2649       if (none_rdc.rate < INT_MAX) {
2650         none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2651         none_rdc.rdcost =
2652             RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
2653       }
2654 
2655       restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2656       mi_8x8[0]->sb_type = bs_type;
2657       pc_tree->partitioning = partition;
2658     }
2659   }
2660 
2661   switch (partition) {
2662     case PARTITION_NONE:
2663       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
2664                        ctx, INT64_MAX);
2665       break;
2666     case PARTITION_HORZ:
2667       pc_tree->horizontal[0].skip_ref_frame_mask = 0;
2668       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2669                        subsize, &pc_tree->horizontal[0], INT64_MAX);
2670       if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2671           mi_row + (mi_step >> 1) < cm->mi_rows) {
2672         RD_COST tmp_rdc;
2673         PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
2674         vp9_rd_cost_init(&tmp_rdc);
2675         update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
2676         encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
2677         pc_tree->horizontal[1].skip_ref_frame_mask = 0;
2678         rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
2679                          &tmp_rdc, subsize, &pc_tree->horizontal[1], INT64_MAX);
2680         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2681           vp9_rd_cost_reset(&last_part_rdc);
2682           break;
2683         }
2684         last_part_rdc.rate += tmp_rdc.rate;
2685         last_part_rdc.dist += tmp_rdc.dist;
2686         last_part_rdc.rdcost += tmp_rdc.rdcost;
2687       }
2688       break;
2689     case PARTITION_VERT:
2690       pc_tree->vertical[0].skip_ref_frame_mask = 0;
2691       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2692                        subsize, &pc_tree->vertical[0], INT64_MAX);
2693       if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2694           mi_col + (mi_step >> 1) < cm->mi_cols) {
2695         RD_COST tmp_rdc;
2696         PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
2697         vp9_rd_cost_init(&tmp_rdc);
2698         update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
2699         encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
2700         pc_tree->vertical[bsize > BLOCK_8X8].skip_ref_frame_mask = 0;
2701         rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1),
2702                          &tmp_rdc, subsize,
2703                          &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX);
2704         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2705           vp9_rd_cost_reset(&last_part_rdc);
2706           break;
2707         }
2708         last_part_rdc.rate += tmp_rdc.rate;
2709         last_part_rdc.dist += tmp_rdc.dist;
2710         last_part_rdc.rdcost += tmp_rdc.rdcost;
2711       }
2712       break;
2713     default:
2714       assert(partition == PARTITION_SPLIT);
2715       if (bsize == BLOCK_8X8) {
2716         rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2717                          subsize, pc_tree->leaf_split[0], INT64_MAX);
2718         break;
2719       }
2720       last_part_rdc.rate = 0;
2721       last_part_rdc.dist = 0;
2722       last_part_rdc.rdcost = 0;
2723       for (i = 0; i < 4; i++) {
2724         int x_idx = (i & 1) * (mi_step >> 1);
2725         int y_idx = (i >> 1) * (mi_step >> 1);
2726         int jj = i >> 1, ii = i & 0x01;
2727         RD_COST tmp_rdc;
2728         if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2729           continue;
2730 
2731         vp9_rd_cost_init(&tmp_rdc);
2732         rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
2733                          tp, mi_row + y_idx, mi_col + x_idx, subsize,
2734                          &tmp_rdc.rate, &tmp_rdc.dist, i != 3,
2735                          pc_tree->split[i]);
2736         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2737           vp9_rd_cost_reset(&last_part_rdc);
2738           break;
2739         }
2740         last_part_rdc.rate += tmp_rdc.rate;
2741         last_part_rdc.dist += tmp_rdc.dist;
2742       }
2743       break;
2744   }
2745 
2746   pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2747   if (last_part_rdc.rate < INT_MAX) {
2748     last_part_rdc.rate += cpi->partition_cost[pl][partition];
2749     last_part_rdc.rdcost =
2750         RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
2751   }
2752 
2753   if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
2754       cpi->sf.partition_search_type == SEARCH_PARTITION &&
2755       partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
2756       (mi_row + mi_step < cm->mi_rows ||
2757        mi_row + (mi_step >> 1) == cm->mi_rows) &&
2758       (mi_col + mi_step < cm->mi_cols ||
2759        mi_col + (mi_step >> 1) == cm->mi_cols)) {
2760     BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
2761     chosen_rdc.rate = 0;
2762     chosen_rdc.dist = 0;
2763     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2764     pc_tree->partitioning = PARTITION_SPLIT;
2765 
2766     // Split partition.
2767     for (i = 0; i < 4; i++) {
2768       int x_idx = (i & 1) * (mi_step >> 1);
2769       int y_idx = (i >> 1) * (mi_step >> 1);
2770       RD_COST tmp_rdc;
2771       ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2772       PARTITION_CONTEXT sl[8], sa[8];
2773 
2774       if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2775         continue;
2776 
2777       save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2778       pc_tree->split[i]->partitioning = PARTITION_NONE;
2779       rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
2780                        &tmp_rdc, split_subsize, &pc_tree->split[i]->none,
2781                        INT64_MAX);
2782 
2783       restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2784 
2785       if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2786         vp9_rd_cost_reset(&chosen_rdc);
2787         break;
2788       }
2789 
2790       chosen_rdc.rate += tmp_rdc.rate;
2791       chosen_rdc.dist += tmp_rdc.dist;
2792 
2793       if (i != 3)
2794         encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
2795                   split_subsize, pc_tree->split[i]);
2796 
2797       pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
2798                                    split_subsize);
2799       chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2800     }
2801     pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2802     if (chosen_rdc.rate < INT_MAX) {
2803       chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2804       chosen_rdc.rdcost =
2805           RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
2806     }
2807   }
2808 
2809   // If last_part is better set the partitioning to that.
2810   if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
2811     mi_8x8[0]->sb_type = bsize;
2812     if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
2813     chosen_rdc = last_part_rdc;
2814   }
2815   // If none was better set the partitioning to that.
2816   if (none_rdc.rdcost < chosen_rdc.rdcost) {
2817     if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
2818     chosen_rdc = none_rdc;
2819   }
2820 
2821   restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2822 
2823   // We must have chosen a partitioning and encoding or we'll fail later on.
2824   // No other opportunities for success.
2825   if (bsize == BLOCK_64X64)
2826     assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
2827 
2828   if (do_recon) {
2829     int output_enabled = (bsize == BLOCK_64X64);
2830     encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
2831               pc_tree);
2832   }
2833 
2834   *rate = chosen_rdc.rate;
2835   *dist = chosen_rdc.dist;
2836 }
2837 
2838 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
2839   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,  BLOCK_4X4, BLOCK_4X4,
2840   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,  BLOCK_8X8, BLOCK_16X16,
2841   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
2842 };
2843 
2844 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
2845   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2846   BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
2847   BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
2848 };
2849 
2850 // Look at all the mode_info entries for blocks that are part of this
2851 // partition and find the min and max values for sb_type.
2852 // At the moment this is designed to work on a 64x64 SB but could be
2853 // adjusted to use a size parameter.
2854 //
2855 // The min and max are assumed to have been initialized prior to calling this
2856 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(MACROBLOCKD * xd,MODE_INFO ** mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size,int bs_hist[BLOCK_SIZES])2857 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
2858                                         BLOCK_SIZE *min_block_size,
2859                                         BLOCK_SIZE *max_block_size,
2860                                         int bs_hist[BLOCK_SIZES]) {
2861   int sb_width_in_blocks = MI_BLOCK_SIZE;
2862   int sb_height_in_blocks = MI_BLOCK_SIZE;
2863   int i, j;
2864   int index = 0;
2865 
2866   // Check the sb_type for each block that belongs to this region.
2867   for (i = 0; i < sb_height_in_blocks; ++i) {
2868     for (j = 0; j < sb_width_in_blocks; ++j) {
2869       MODE_INFO *mi = mi_8x8[index + j];
2870       BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
2871       bs_hist[sb_type]++;
2872       *min_block_size = VPXMIN(*min_block_size, sb_type);
2873       *max_block_size = VPXMAX(*max_block_size, sb_type);
2874     }
2875     index += xd->mi_stride;
2876   }
2877 }
2878 
2879 // Next square block size less or equal than current block size.
2880 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
2881   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,
2882   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2883   BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
2884 };
2885 
2886 // Look at neighboring blocks and set a min and max partition size based on
2887 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)2888 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
2889                                     MACROBLOCKD *const xd, int mi_row,
2890                                     int mi_col, BLOCK_SIZE *min_block_size,
2891                                     BLOCK_SIZE *max_block_size) {
2892   VP9_COMMON *const cm = &cpi->common;
2893   MODE_INFO **mi = xd->mi;
2894   const int left_in_image = !!xd->left_mi;
2895   const int above_in_image = !!xd->above_mi;
2896   const int row8x8_remaining = tile->mi_row_end - mi_row;
2897   const int col8x8_remaining = tile->mi_col_end - mi_col;
2898   int bh, bw;
2899   BLOCK_SIZE min_size = BLOCK_4X4;
2900   BLOCK_SIZE max_size = BLOCK_64X64;
2901   int bs_hist[BLOCK_SIZES] = { 0 };
2902 
2903   // Trap case where we do not have a prediction.
2904   if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
2905     // Default "min to max" and "max to min"
2906     min_size = BLOCK_64X64;
2907     max_size = BLOCK_4X4;
2908 
2909     // NOTE: each call to get_sb_partition_size_range() uses the previous
2910     // passed in values for min and max as a starting point.
2911     // Find the min and max partition used in previous frame at this location
2912     if (cm->frame_type != KEY_FRAME) {
2913       MODE_INFO **prev_mi =
2914           &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
2915       get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
2916     }
2917     // Find the min and max partition sizes used in the left SB64
2918     if (left_in_image) {
2919       MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
2920       get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
2921                                   bs_hist);
2922     }
2923     // Find the min and max partition sizes used in the above SB64.
2924     if (above_in_image) {
2925       MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
2926       get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
2927                                   bs_hist);
2928     }
2929 
2930     // Adjust observed min and max for "relaxed" auto partition case.
2931     if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
2932       min_size = min_partition_size[min_size];
2933       max_size = max_partition_size[max_size];
2934     }
2935   }
2936 
2937   // Check border cases where max and min from neighbors may not be legal.
2938   max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
2939                                  &bh, &bw);
2940   // Test for blocks at the edge of the active image.
2941   // This may be the actual edge of the image or where there are formatting
2942   // bars.
2943   if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
2944     min_size = BLOCK_4X4;
2945   } else {
2946     min_size =
2947         VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
2948   }
2949 
2950   // When use_square_partition_only is true, make sure at least one square
2951   // partition is allowed by selecting the next smaller square size as
2952   // *min_block_size.
2953   if (cpi->sf.use_square_partition_only &&
2954       next_square_size[max_size] < min_size) {
2955     min_size = next_square_size[max_size];
2956   }
2957 
2958   *min_block_size = min_size;
2959   *max_block_size = max_size;
2960 }
2961 
2962 // TODO(jingning) refactor functions setting partition search range
set_partition_range(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE * min_bs,BLOCK_SIZE * max_bs)2963 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
2964                                 int mi_col, BLOCK_SIZE bsize,
2965                                 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
2966   int mi_width = num_8x8_blocks_wide_lookup[bsize];
2967   int mi_height = num_8x8_blocks_high_lookup[bsize];
2968   int idx, idy;
2969 
2970   MODE_INFO *mi;
2971   const int idx_str = cm->mi_stride * mi_row + mi_col;
2972   MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
2973   BLOCK_SIZE bs, min_size, max_size;
2974 
2975   min_size = BLOCK_64X64;
2976   max_size = BLOCK_4X4;
2977 
2978   if (prev_mi) {
2979     for (idy = 0; idy < mi_height; ++idy) {
2980       for (idx = 0; idx < mi_width; ++idx) {
2981         mi = prev_mi[idy * cm->mi_stride + idx];
2982         bs = mi ? mi->sb_type : bsize;
2983         min_size = VPXMIN(min_size, bs);
2984         max_size = VPXMAX(max_size, bs);
2985       }
2986     }
2987   }
2988 
2989   if (xd->left_mi) {
2990     for (idy = 0; idy < mi_height; ++idy) {
2991       mi = xd->mi[idy * cm->mi_stride - 1];
2992       bs = mi ? mi->sb_type : bsize;
2993       min_size = VPXMIN(min_size, bs);
2994       max_size = VPXMAX(max_size, bs);
2995     }
2996   }
2997 
2998   if (xd->above_mi) {
2999     for (idx = 0; idx < mi_width; ++idx) {
3000       mi = xd->mi[idx - cm->mi_stride];
3001       bs = mi ? mi->sb_type : bsize;
3002       min_size = VPXMIN(min_size, bs);
3003       max_size = VPXMAX(max_size, bs);
3004     }
3005   }
3006 
3007   if (min_size == max_size) {
3008     min_size = min_partition_size[min_size];
3009     max_size = max_partition_size[max_size];
3010   }
3011 
3012   *min_bs = min_size;
3013   *max_bs = max_size;
3014 }
3015 
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3016 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3017   memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
3018 }
3019 
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3020 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3021   memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
3022 }
3023 
3024 #if CONFIG_FP_MB_STATS
3025 const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
3026                                                         1, 2, 2, 2, 4, 4 };
3027 const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
3028                                                         2, 1, 2, 4, 2, 4 };
3029 const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
3030   0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120
3031 };
3032 const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
3033   0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120
3034 };
3035 const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
3036   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6
3037 };
3038 
3039 typedef enum {
3040   MV_ZERO = 0,
3041   MV_LEFT = 1,
3042   MV_UP = 2,
3043   MV_RIGHT = 3,
3044   MV_DOWN = 4,
3045   MV_INVALID
3046 } MOTION_DIRECTION;
3047 
get_motion_direction_fp(uint8_t fp_byte)3048 static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
3049   if (fp_byte & FPMB_MOTION_ZERO_MASK) {
3050     return MV_ZERO;
3051   } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
3052     return MV_LEFT;
3053   } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
3054     return MV_RIGHT;
3055   } else if (fp_byte & FPMB_MOTION_UP_MASK) {
3056     return MV_UP;
3057   } else {
3058     return MV_DOWN;
3059   }
3060 }
3061 
get_motion_inconsistency(MOTION_DIRECTION this_mv,MOTION_DIRECTION that_mv)3062 static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
3063                                            MOTION_DIRECTION that_mv) {
3064   if (this_mv == that_mv) {
3065     return 0;
3066   } else {
3067     return abs(this_mv - that_mv) == 2 ? 2 : 1;
3068   }
3069 }
3070 #endif
3071 
3072 // Calculate prediction based on the given input features and neural net config.
3073 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
3074 // layer.
nn_predict(const float * features,const NN_CONFIG * nn_config,float * output)3075 static void nn_predict(const float *features, const NN_CONFIG *nn_config,
3076                        float *output) {
3077   int num_input_nodes = nn_config->num_inputs;
3078   int buf_index = 0;
3079   float buf[2][NN_MAX_NODES_PER_LAYER];
3080   const float *input_nodes = features;
3081 
3082   // Propagate hidden layers.
3083   const int num_layers = nn_config->num_hidden_layers;
3084   int layer, node, i;
3085   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
3086   for (layer = 0; layer < num_layers; ++layer) {
3087     const float *weights = nn_config->weights[layer];
3088     const float *bias = nn_config->bias[layer];
3089     float *output_nodes = buf[buf_index];
3090     const int num_output_nodes = nn_config->num_hidden_nodes[layer];
3091     assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
3092     for (node = 0; node < num_output_nodes; ++node) {
3093       float val = 0.0f;
3094       for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3095       val += bias[node];
3096       // ReLU as activation function.
3097       val = VPXMAX(val, 0.0f);
3098       output_nodes[node] = val;
3099       weights += num_input_nodes;
3100     }
3101     num_input_nodes = num_output_nodes;
3102     input_nodes = output_nodes;
3103     buf_index = 1 - buf_index;
3104   }
3105 
3106   // Final output layer.
3107   {
3108     const float *weights = nn_config->weights[num_layers];
3109     for (node = 0; node < nn_config->num_outputs; ++node) {
3110       const float *bias = nn_config->bias[num_layers];
3111       float val = 0.0f;
3112       for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3113       output[node] = val + bias[node];
3114       weights += num_input_nodes;
3115     }
3116   }
3117 }
3118 
3119 #define FEATURES 7
3120 // Machine-learning based partition search early termination.
3121 // Return 1 to skip split and rect partitions.
ml_pruning_partition(VP9_COMMON * const cm,MACROBLOCKD * const xd,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize)3122 static int ml_pruning_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
3123                                 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
3124                                 BLOCK_SIZE bsize) {
3125   const int mag_mv =
3126       abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
3127   const int left_in_image = !!xd->left_mi;
3128   const int above_in_image = !!xd->above_mi;
3129   MODE_INFO **prev_mi =
3130       &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
3131   int above_par = 0;  // above_partitioning
3132   int left_par = 0;   // left_partitioning
3133   int last_par = 0;   // last_partitioning
3134   int offset = 0;
3135   int i;
3136   BLOCK_SIZE context_size;
3137   const NN_CONFIG *nn_config = NULL;
3138   const float *mean, *sd, *linear_weights;
3139   float nn_score, linear_score;
3140   float features[FEATURES];
3141 
3142   assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
3143   vpx_clear_system_state();
3144 
3145   switch (bsize) {
3146     case BLOCK_64X64:
3147       offset = 0;
3148       nn_config = &vp9_partition_nnconfig_64x64;
3149       break;
3150     case BLOCK_32X32:
3151       offset = 8;
3152       nn_config = &vp9_partition_nnconfig_32x32;
3153       break;
3154     case BLOCK_16X16:
3155       offset = 16;
3156       nn_config = &vp9_partition_nnconfig_16x16;
3157       break;
3158     default: assert(0 && "Unexpected block size."); return 0;
3159   }
3160 
3161   if (above_in_image) {
3162     context_size = xd->above_mi->sb_type;
3163     if (context_size < bsize)
3164       above_par = 2;
3165     else if (context_size == bsize)
3166       above_par = 1;
3167   }
3168 
3169   if (left_in_image) {
3170     context_size = xd->left_mi->sb_type;
3171     if (context_size < bsize)
3172       left_par = 2;
3173     else if (context_size == bsize)
3174       left_par = 1;
3175   }
3176 
3177   if (prev_mi) {
3178     context_size = prev_mi[0]->sb_type;
3179     if (context_size < bsize)
3180       last_par = 2;
3181     else if (context_size == bsize)
3182       last_par = 1;
3183   }
3184 
3185   mean = &vp9_partition_feature_mean[offset];
3186   sd = &vp9_partition_feature_std[offset];
3187   features[0] = ((float)ctx->rate - mean[0]) / sd[0];
3188   features[1] = ((float)ctx->dist - mean[1]) / sd[1];
3189   features[2] = ((float)mag_mv / 2 - mean[2]) * sd[2];
3190   features[3] = ((float)(left_par + above_par) / 2 - mean[3]) * sd[3];
3191   features[4] = ((float)ctx->sum_y_eobs - mean[4]) / sd[4];
3192   features[5] = ((float)cm->base_qindex - mean[5]) * sd[5];
3193   features[6] = ((float)last_par - mean[6]) * sd[6];
3194 
3195   // Predict using linear model.
3196   linear_weights = &vp9_partition_linear_weights[offset];
3197   linear_score = linear_weights[FEATURES];
3198   for (i = 0; i < FEATURES; ++i)
3199     linear_score += linear_weights[i] * features[i];
3200   if (linear_score > 0.1f) return 0;
3201 
3202   // Predict using neural net model.
3203   nn_predict(features, nn_config, &nn_score);
3204 
3205   if (linear_score < -0.0f && nn_score < 0.1f) return 1;
3206   if (nn_score < -0.0f && linear_score < 0.1f) return 1;
3207   return 0;
3208 }
3209 #undef FEATURES
3210 
3211 #define FEATURES 4
3212 // ML-based partition search breakout.
ml_predict_breakout(VP9_COMP * const cpi,BLOCK_SIZE bsize,const MACROBLOCK * const x,const RD_COST * const rd_cost)3213 static int ml_predict_breakout(VP9_COMP *const cpi, BLOCK_SIZE bsize,
3214                                const MACROBLOCK *const x,
3215                                const RD_COST *const rd_cost) {
3216   DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 };
3217   const VP9_COMMON *const cm = &cpi->common;
3218   float features[FEATURES];
3219   const float *linear_weights = NULL;  // Linear model weights.
3220   float linear_score = 0.0f;
3221   const int qindex = cm->base_qindex;
3222   const int q_ctx = qindex >= 200 ? 0 : (qindex >= 150 ? 1 : 2);
3223   const int is_720p_or_larger = VPXMIN(cm->width, cm->height) >= 720;
3224   const int resolution_ctx = is_720p_or_larger ? 1 : 0;
3225 
3226   switch (bsize) {
3227     case BLOCK_64X64:
3228       linear_weights = vp9_partition_breakout_weights_64[resolution_ctx][q_ctx];
3229       break;
3230     case BLOCK_32X32:
3231       linear_weights = vp9_partition_breakout_weights_32[resolution_ctx][q_ctx];
3232       break;
3233     case BLOCK_16X16:
3234       linear_weights = vp9_partition_breakout_weights_16[resolution_ctx][q_ctx];
3235       break;
3236     case BLOCK_8X8:
3237       linear_weights = vp9_partition_breakout_weights_8[resolution_ctx][q_ctx];
3238       break;
3239     default: assert(0 && "Unexpected block size."); return 0;
3240   }
3241   if (!linear_weights) return 0;
3242 
3243   {  // Generate feature values.
3244 #if CONFIG_VP9_HIGHBITDEPTH
3245     const int ac_q =
3246         vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3247 #else
3248     const int ac_q = vp9_ac_quant(qindex, 0, cm->bit_depth);
3249 #endif  // CONFIG_VP9_HIGHBITDEPTH
3250     const int num_pels_log2 = num_pels_log2_lookup[bsize];
3251     int feature_index = 0;
3252     unsigned int var, sse;
3253     float rate_f, dist_f;
3254 
3255 #if CONFIG_VP9_HIGHBITDEPTH
3256     if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
3257       var =
3258           vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, x->e_mbd.bd);
3259     } else {
3260       var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3261                                   vp9_64_zeros, 0, &sse);
3262     }
3263 #else
3264     var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3265                                 vp9_64_zeros, 0, &sse);
3266 #endif
3267     var = var >> num_pels_log2;
3268 
3269     vpx_clear_system_state();
3270 
3271     rate_f = (float)VPXMIN(rd_cost->rate, INT_MAX);
3272     dist_f = (float)(VPXMIN(rd_cost->dist, INT_MAX) >> num_pels_log2);
3273     rate_f =
3274         ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
3275         rate_f;
3276 
3277     features[feature_index++] = rate_f;
3278     features[feature_index++] = dist_f;
3279     features[feature_index++] = (float)var;
3280     features[feature_index++] = (float)ac_q;
3281     assert(feature_index == FEATURES);
3282   }
3283 
3284   {  // Calculate the output score.
3285     int i;
3286     linear_score = linear_weights[FEATURES];
3287     for (i = 0; i < FEATURES; ++i)
3288       linear_score += linear_weights[i] * features[i];
3289   }
3290 
3291   return linear_score >= cpi->sf.ml_partition_search_breakout_thresh[q_ctx];
3292 }
3293 #undef FEATURES
3294 
3295 #define FEATURES 17
3296 #define LABELS 4
ml_prune_rect_partition(VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,const PC_TREE * const pc_tree,int * allow_horz,int * allow_vert,int64_t ref_rd,int mi_row,int mi_col)3297 static void ml_prune_rect_partition(VP9_COMP *const cpi, MACROBLOCK *const x,
3298                                     BLOCK_SIZE bsize,
3299                                     const PC_TREE *const pc_tree,
3300                                     int *allow_horz, int *allow_vert,
3301                                     int64_t ref_rd, int mi_row, int mi_col) {
3302   const NN_CONFIG *nn_config = NULL;
3303   float score[LABELS] = {
3304     0.0f,
3305   };
3306   int thresh = -1;
3307   int i;
3308 
3309   if (ref_rd <= 0 || ref_rd > 1000000000) return;
3310 
3311   switch (bsize) {
3312     case BLOCK_8X8: break;
3313     case BLOCK_16X16:
3314       nn_config = &vp9_rect_part_nnconfig_16;
3315       thresh = cpi->sf.ml_prune_rect_partition_threhold[1];
3316       break;
3317     case BLOCK_32X32:
3318       nn_config = &vp9_rect_part_nnconfig_32;
3319       thresh = cpi->sf.ml_prune_rect_partition_threhold[2];
3320       break;
3321     case BLOCK_64X64:
3322       nn_config = &vp9_rect_part_nnconfig_64;
3323       thresh = cpi->sf.ml_prune_rect_partition_threhold[3];
3324       break;
3325     default: assert(0 && "Unexpected block size."); return;
3326   }
3327   if (!nn_config || thresh < 0) return;
3328 
3329   // Feature extraction and model score calculation.
3330   {
3331     const int64_t none_rdcost = pc_tree->none.rdcost;
3332     const VP9_COMMON *const cm = &cpi->common;
3333 #if CONFIG_VP9_HIGHBITDEPTH
3334     const int dc_q =
3335         vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3336 #else
3337     const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3338 #endif  // CONFIG_VP9_HIGHBITDEPTH
3339     int feature_index = 0;
3340     unsigned int block_var = 0;
3341     unsigned int sub_block_var[4] = { 0 };
3342     float features[FEATURES];
3343 
3344     features[feature_index++] =
3345         (float)(pc_tree->partitioning == PARTITION_NONE);
3346     features[feature_index++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
3347 
3348     // Calculate source pixel variance.
3349     {
3350       struct buf_2d buf;
3351       const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
3352       const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3353       const MACROBLOCKD *const xd = &x->e_mbd;
3354       vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
3355 
3356       (void)xd;
3357 #if CONFIG_VP9_HIGHBITDEPTH
3358       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
3359         block_var = vp9_high_get_sby_perpixel_variance(cpi, &x->plane[0].src,
3360                                                        bsize, xd->bd);
3361       } else {
3362         block_var = vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
3363       }
3364 #else
3365       block_var = vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
3366 #endif  // CONFIG_VP9_HIGHBITDEPTH
3367 
3368       buf.stride = x->plane[0].src.stride;
3369       for (i = 0; i < 4; ++i) {
3370         const int x_idx = (i & 1) * bs / 2;
3371         const int y_idx = (i >> 1) * bs / 2;
3372         buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
3373 #if CONFIG_VP9_HIGHBITDEPTH
3374         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
3375           sub_block_var[i] =
3376               vp9_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd);
3377         } else {
3378           sub_block_var[i] = vp9_get_sby_perpixel_variance(cpi, &buf, subsize);
3379         }
3380 #else
3381         sub_block_var[i] = vp9_get_sby_perpixel_variance(cpi, &buf, subsize);
3382 #endif  // CONFIG_VP9_HIGHBITDEPTH
3383       }
3384     }
3385 
3386     features[feature_index++] = logf((float)block_var + 1.0f);
3387     features[feature_index++] = logf((float)ref_rd + 1.0f);
3388     features[feature_index++] = (none_rdcost > 0 && none_rdcost < 1000000000)
3389                                     ? (float)pc_tree->none.skippable
3390                                     : 0.0f;
3391 
3392     for (i = 0; i < 4; ++i) {
3393       const int64_t this_rd = pc_tree->split[i]->none.rdcost;
3394       const int rd_valid = this_rd > 0 && this_rd < 1000000000;
3395       // Ratio between sub-block RD and whole block RD.
3396       features[feature_index++] =
3397           rd_valid ? ((float)this_rd / (float)ref_rd) : 1.0f;
3398       // Sub-block skippable.
3399       features[feature_index++] =
3400           rd_valid ? ((float)pc_tree->split[i]->none.skippable) : 0.0f;
3401     }
3402 
3403     {
3404       const float denom = (float)(block_var + 1);
3405       const float low_b = 0.1f;
3406       const float high_b = 10.0f;
3407       for (i = 0; i < 4; ++i) {
3408         // Ratio between the quarter sub-block variance and the
3409         // whole-block variance.
3410         float var_ratio = (float)(sub_block_var[i] + 1) / denom;
3411         if (var_ratio < low_b) var_ratio = low_b;
3412         if (var_ratio > high_b) var_ratio = high_b;
3413         features[feature_index++] = var_ratio;
3414       }
3415     }
3416     assert(feature_index == FEATURES);
3417     nn_predict(features, nn_config, score);
3418   }
3419 
3420   // Make decisions based on the model score.
3421   {
3422     int max_score = -1000;
3423     int horz = 0, vert = 0;
3424     int int_score[LABELS];
3425     for (i = 0; i < LABELS; ++i) {
3426       int_score[i] = (int)(100 * score[i]);
3427       max_score = VPXMAX(int_score[i], max_score);
3428     }
3429     thresh = max_score - thresh;
3430     for (i = 0; i < LABELS; ++i) {
3431       if (int_score[i] >= thresh) {
3432         if ((i >> 0) & 1) horz = 1;
3433         if ((i >> 1) & 1) vert = 1;
3434       }
3435     }
3436     *allow_horz = *allow_horz && horz;
3437     *allow_vert = *allow_vert && vert;
3438   }
3439 }
3440 #undef FEATURES
3441 #undef LABELS
3442 
3443 // Use a neural net model to prune partition-none and partition-split search.
3444 // The model uses prediction residue variance and quantization step size as
3445 // input features.
3446 #define FEATURES 6
ml_predict_var_rd_paritioning(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,int * none,int * split)3447 static void ml_predict_var_rd_paritioning(VP9_COMP *cpi, MACROBLOCK *x,
3448                                           BLOCK_SIZE bsize, int mi_row,
3449                                           int mi_col, int *none, int *split) {
3450   VP9_COMMON *const cm = &cpi->common;
3451   MACROBLOCKD *xd = &x->e_mbd;
3452   MODE_INFO *mi = xd->mi[0];
3453   const NN_CONFIG *nn_config = NULL;
3454 #if CONFIG_VP9_HIGHBITDEPTH
3455   DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64 * 2]);
3456   uint8_t *const pred_buf = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
3457                                 ? (CONVERT_TO_BYTEPTR(pred_buffer))
3458                                 : pred_buffer;
3459 #else
3460   DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64]);
3461   uint8_t *const pred_buf = pred_buffer;
3462 #endif  // CONFIG_VP9_HIGHBITDEPTH
3463   const int speed = cpi->oxcf.speed;
3464   int i;
3465   float thresh = 0.0f;
3466 
3467   switch (bsize) {
3468     case BLOCK_64X64:
3469       nn_config = &vp9_var_rd_part_nnconfig_64;
3470       thresh = speed > 0 ? 3.5f : 3.0f;
3471       break;
3472     case BLOCK_32X32:
3473       nn_config = &vp9_var_rd_part_nnconfig_32;
3474       thresh = speed > 0 ? 3.5f : 3.0f;
3475       break;
3476     case BLOCK_16X16:
3477       nn_config = &vp9_var_rd_part_nnconfig_16;
3478       thresh = speed > 0 ? 3.5f : 4.0f;
3479       break;
3480     case BLOCK_8X8:
3481       nn_config = &vp9_var_rd_part_nnconfig_8;
3482       if (cm->width >= 720 && cm->height >= 720)
3483         thresh = speed > 0 ? 2.5f : 2.0f;
3484       else
3485         thresh = speed > 0 ? 3.5f : 2.0f;
3486       break;
3487     default: assert(0 && "Unexpected block size."); return;
3488   }
3489 
3490   if (!nn_config) return;
3491 
3492   mi->ref_frame[1] = NONE;
3493   mi->sb_type = bsize;
3494   // Do a simple single motion search to find a prediction for current block.
3495   // The variance of the residue will be used as input features.
3496   {
3497     const MV_REFERENCE_FRAME ref =
3498         cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
3499     YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref);
3500     MV ref_mv = { 0, 0 };
3501     MV ref_mv_full = { 0, 0 };
3502     const int step_param = 1;
3503     const MvLimits tmp_mv_limits = x->mv_limits;
3504     const SEARCH_METHODS search_method = NSTEP;
3505     const int sadpb = x->sadperbit16;
3506     MV best_mv = { 0, 0 };
3507     int cost_list[5];
3508 
3509     assert(yv12 != NULL);
3510     if (!yv12) return;
3511     vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
3512                          &cm->frame_refs[ref - 1].sf);
3513     mi->ref_frame[0] = ref;
3514     vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
3515     vp9_full_pixel_search(cpi, x, bsize, &ref_mv_full, step_param,
3516                           search_method, sadpb, cond_cost_list(cpi, cost_list),
3517                           &ref_mv, &best_mv, 0, 0);
3518     best_mv.row *= 8;
3519     best_mv.col *= 8;
3520     x->mv_limits = tmp_mv_limits;
3521     mi->mv[0].as_mv = best_mv;
3522 
3523     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
3524     xd->plane[0].dst.buf = pred_buf;
3525     xd->plane[0].dst.stride = 64;
3526     vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
3527   }
3528 
3529   vpx_clear_system_state();
3530 
3531   {
3532     float features[FEATURES] = { 0.0f };
3533 #if CONFIG_VP9_HIGHBITDEPTH
3534     const int dc_q =
3535         vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (xd->bd - 8);
3536 #else
3537     const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3538 #endif  // CONFIG_VP9_HIGHBITDEPTH
3539     int feature_idx = 0;
3540     float score;
3541 
3542     // Generate model input features.
3543     features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
3544     vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
3545     // Get the variance of the residue as input features.
3546     {
3547       const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3548       const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
3549       const uint8_t *pred = pred_buf;
3550       const uint8_t *src = x->plane[0].src.buf;
3551       const int src_stride = x->plane[0].src.stride;
3552       const int pred_stride = 64;
3553       unsigned int sse;
3554       // Variance of whole block.
3555       const unsigned int var =
3556           cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
3557       const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
3558 
3559       features[feature_idx++] = logf((float)var + 1.0f);
3560       for (i = 0; i < 4; ++i) {
3561         const int x_idx = (i & 1) * bs / 2;
3562         const int y_idx = (i >> 1) * bs / 2;
3563         const int src_offset = y_idx * src_stride + x_idx;
3564         const int pred_offset = y_idx * pred_stride + x_idx;
3565         // Variance of quarter block.
3566         const unsigned int sub_var =
3567             cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
3568                                     pred + pred_offset, pred_stride, &sse);
3569         const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
3570         features[feature_idx++] = var_ratio;
3571       }
3572     }
3573     assert(feature_idx == FEATURES);
3574 
3575     // Feed the features into the model to get the confidence score.
3576     nn_predict(features, nn_config, &score);
3577 
3578     // Higher score means that the model has higher confidence that the split
3579     // partition is better than the non-split partition. So if the score is
3580     // high enough, we skip the none-split partition search; if the score is
3581     // low enough, we skip the split partition search.
3582     if (score > thresh) *none = 0;
3583     if (score < -thresh) *split = 0;
3584   }
3585 }
3586 #undef FEATURES
3587 #undef LABELS
3588 
get_rdmult_delta(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)3589 static int get_rdmult_delta(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3590                             int mi_col, int orig_rdmult) {
3591   const int gf_group_index = cpi->twopass.gf_group.index;
3592   TplDepFrame *tpl_frame = &cpi->tpl_stats[gf_group_index];
3593   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
3594   int tpl_stride = tpl_frame->stride;
3595   int64_t intra_cost = 0;
3596   int64_t mc_dep_cost = 0;
3597   int mi_wide = num_8x8_blocks_wide_lookup[bsize];
3598   int mi_high = num_8x8_blocks_high_lookup[bsize];
3599   int row, col;
3600 
3601   int dr = 0;
3602   int count = 0;
3603   double r0, rk, beta;
3604 
3605   if (tpl_frame->is_valid == 0) return orig_rdmult;
3606 
3607   if (cpi->twopass.gf_group.layer_depth[gf_group_index] > 1) return orig_rdmult;
3608 
3609   if (gf_group_index >= MAX_ARF_GOP_SIZE) return orig_rdmult;
3610 
3611   for (row = mi_row; row < mi_row + mi_high; ++row) {
3612     for (col = mi_col; col < mi_col + mi_wide; ++col) {
3613       TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
3614 
3615       if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue;
3616 
3617       intra_cost += this_stats->intra_cost;
3618       mc_dep_cost += this_stats->mc_dep_cost;
3619 
3620       ++count;
3621     }
3622   }
3623 
3624   vpx_clear_system_state();
3625 
3626   r0 = cpi->rd.r0;
3627   rk = (double)intra_cost / mc_dep_cost;
3628   beta = r0 / rk;
3629   dr = vp9_get_adaptive_rdmult(cpi, beta);
3630 
3631   dr = VPXMIN(dr, orig_rdmult * 3 / 2);
3632   dr = VPXMAX(dr, orig_rdmult * 1 / 2);
3633 
3634   dr = VPXMAX(1, dr);
3635 
3636   return dr;
3637 }
3638 
3639 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
3640 // unlikely to be selected depending on previous rate-distortion optimization
3641 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,int64_t best_rd,PC_TREE * pc_tree)3642 static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
3643                               TileDataEnc *tile_data, TOKENEXTRA **tp,
3644                               int mi_row, int mi_col, BLOCK_SIZE bsize,
3645                               RD_COST *rd_cost, int64_t best_rd,
3646                               PC_TREE *pc_tree) {
3647   VP9_COMMON *const cm = &cpi->common;
3648   TileInfo *const tile_info = &tile_data->tile_info;
3649   MACROBLOCK *const x = &td->mb;
3650   MACROBLOCKD *const xd = &x->e_mbd;
3651   const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
3652   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
3653   PARTITION_CONTEXT sl[8], sa[8];
3654   TOKENEXTRA *tp_orig = *tp;
3655   PICK_MODE_CONTEXT *const ctx = &pc_tree->none;
3656   int i;
3657   const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
3658   BLOCK_SIZE subsize;
3659   RD_COST this_rdc, sum_rdc, best_rdc;
3660   int do_split = bsize >= BLOCK_8X8;
3661   int do_rect = 1;
3662   INTERP_FILTER pred_interp_filter;
3663 
3664   // Override skipping rectangular partition operations for edge blocks
3665   const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
3666   const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
3667   const int xss = x->e_mbd.plane[1].subsampling_x;
3668   const int yss = x->e_mbd.plane[1].subsampling_y;
3669 
3670   BLOCK_SIZE min_size = x->min_partition_size;
3671   BLOCK_SIZE max_size = x->max_partition_size;
3672 
3673 #if CONFIG_FP_MB_STATS
3674   unsigned int src_diff_var = UINT_MAX;
3675   int none_complexity = 0;
3676 #endif
3677 
3678   int partition_none_allowed = !force_horz_split && !force_vert_split;
3679   int partition_horz_allowed =
3680       !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
3681   int partition_vert_allowed =
3682       !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
3683 
3684   int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
3685   int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
3686   int must_split = 0;
3687   int partition_mul = cpi->sf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ
3688                           ? x->cb_rdmult
3689                           : cpi->rd.RDMULT;
3690   // Ref frames picked in the [i_th] quarter subblock during square partition
3691   // RD search. It may be used to prune ref frame selection of rect partitions.
3692   uint8_t ref_frames_used[4] = { 0, 0, 0, 0 };
3693 
3694   (void)*tp_orig;
3695 
3696   assert(num_8x8_blocks_wide_lookup[bsize] ==
3697          num_8x8_blocks_high_lookup[bsize]);
3698 
3699   dist_breakout_thr >>=
3700       8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
3701 
3702   rate_breakout_thr *= num_pels_log2_lookup[bsize];
3703 
3704   vp9_rd_cost_init(&this_rdc);
3705   vp9_rd_cost_init(&sum_rdc);
3706   vp9_rd_cost_reset(&best_rdc);
3707   best_rdc.rdcost = best_rd;
3708 
3709   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
3710 
3711   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
3712       cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
3713     x->mb_energy = vp9_block_energy(cpi, x, bsize);
3714 
3715   if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
3716     int cb_partition_search_ctrl =
3717         ((pc_tree->index == 0 || pc_tree->index == 3) +
3718          get_chessboard_index(cm->current_video_frame)) &
3719         0x1;
3720 
3721     if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
3722       set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
3723   }
3724 
3725   // Get sub block energy range
3726   if (bsize >= BLOCK_16X16) {
3727     int min_energy, max_energy;
3728     vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
3729                              &max_energy);
3730     must_split = (min_energy < -3) && (max_energy - min_energy > 2);
3731   }
3732 
3733   // Determine partition types in search according to the speed features.
3734   // The threshold set here has to be of square block size.
3735   if (cpi->sf.auto_min_max_partition_size) {
3736     partition_none_allowed &= (bsize <= max_size);
3737     partition_horz_allowed &=
3738         ((bsize <= max_size && bsize > min_size) || force_horz_split);
3739     partition_vert_allowed &=
3740         ((bsize <= max_size && bsize > min_size) || force_vert_split);
3741     do_split &= bsize > min_size;
3742   }
3743 
3744   if (cpi->sf.use_square_partition_only &&
3745       (bsize > cpi->sf.use_square_only_thresh_high ||
3746        bsize < cpi->sf.use_square_only_thresh_low)) {
3747     if (cpi->use_svc) {
3748       if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
3749         partition_horz_allowed &= force_horz_split;
3750       if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
3751         partition_vert_allowed &= force_vert_split;
3752     } else {
3753       partition_horz_allowed &= force_horz_split;
3754       partition_vert_allowed &= force_vert_split;
3755     }
3756   }
3757 
3758   save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
3759 
3760 #if CONFIG_FP_MB_STATS
3761   if (cpi->use_fp_mb_stats) {
3762     set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
3763     src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
3764                                                   mi_col, bsize);
3765   }
3766 #endif
3767 
3768 #if CONFIG_FP_MB_STATS
3769   // Decide whether we shall split directly and skip searching NONE by using
3770   // the first pass block statistics
3771   if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
3772       partition_none_allowed && src_diff_var > 4 &&
3773       cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
3774     int mb_row = mi_row >> 1;
3775     int mb_col = mi_col >> 1;
3776     int mb_row_end =
3777         VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
3778     int mb_col_end =
3779         VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
3780     int r, c;
3781 
3782     // compute a complexity measure, basically measure inconsistency of motion
3783     // vectors obtained from the first pass in the current block
3784     for (r = mb_row; r < mb_row_end; r++) {
3785       for (c = mb_col; c < mb_col_end; c++) {
3786         const int mb_index = r * cm->mb_cols + c;
3787 
3788         MOTION_DIRECTION this_mv;
3789         MOTION_DIRECTION right_mv;
3790         MOTION_DIRECTION bottom_mv;
3791 
3792         this_mv =
3793             get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
3794 
3795         // to its right
3796         if (c != mb_col_end - 1) {
3797           right_mv = get_motion_direction_fp(
3798               cpi->twopass.this_frame_mb_stats[mb_index + 1]);
3799           none_complexity += get_motion_inconsistency(this_mv, right_mv);
3800         }
3801 
3802         // to its bottom
3803         if (r != mb_row_end - 1) {
3804           bottom_mv = get_motion_direction_fp(
3805               cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
3806           none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
3807         }
3808 
3809         // do not count its left and top neighbors to avoid double counting
3810       }
3811     }
3812 
3813     if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
3814       partition_none_allowed = 0;
3815     }
3816   }
3817 #endif
3818 
3819   pc_tree->partitioning = PARTITION_NONE;
3820 
3821   if (cpi->sf.ml_var_partition_pruning) {
3822     const int do_ml_var_partition_pruning =
3823         !frame_is_intra_only(cm) && partition_none_allowed && do_split &&
3824         mi_row + num_8x8_blocks_high_lookup[bsize] <= cm->mi_rows &&
3825         mi_col + num_8x8_blocks_wide_lookup[bsize] <= cm->mi_cols;
3826     if (do_ml_var_partition_pruning) {
3827       ml_predict_var_rd_paritioning(cpi, x, bsize, mi_row, mi_col,
3828                                     &partition_none_allowed, &do_split);
3829     }
3830   }
3831 
3832   // PARTITION_NONE
3833   if (partition_none_allowed) {
3834     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
3835                      best_rdc.rdcost);
3836     ctx->rdcost = this_rdc.rdcost;
3837     if (this_rdc.rate != INT_MAX) {
3838       if (cpi->sf.prune_ref_frame_for_rect_partitions) {
3839         const int ref1 = ctx->mic.ref_frame[0];
3840         const int ref2 = ctx->mic.ref_frame[1];
3841         for (i = 0; i < 4; ++i) {
3842           ref_frames_used[i] |= (1 << ref1);
3843           if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
3844         }
3845       }
3846       if (bsize >= BLOCK_8X8) {
3847         this_rdc.rdcost += RDCOST(partition_mul, x->rddiv,
3848                                   cpi->partition_cost[pl][PARTITION_NONE], 0);
3849         this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
3850       }
3851 
3852       if (this_rdc.rdcost < best_rdc.rdcost) {
3853         MODE_INFO *mi = xd->mi[0];
3854 
3855         best_rdc = this_rdc;
3856         if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
3857 
3858         if (cpi->sf.ml_partition_search_early_termination) {
3859           // Currently, the machine-learning based partition search early
3860           // termination is only used while bsize is 16x16, 32x32 or 64x64,
3861           // VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
3862           if (!x->e_mbd.lossless &&
3863               !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
3864               ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
3865             if (ml_pruning_partition(cm, xd, ctx, mi_row, mi_col, bsize)) {
3866               do_split = 0;
3867               do_rect = 0;
3868             }
3869           }
3870         }
3871 
3872         if ((do_split || do_rect) && !x->e_mbd.lossless && ctx->skippable) {
3873           const int use_ml_based_breakout =
3874               cpi->sf.use_ml_partition_search_breakout &&
3875               cm->base_qindex >= 100;
3876           if (use_ml_based_breakout) {
3877             if (ml_predict_breakout(cpi, bsize, x, &this_rdc)) {
3878               do_split = 0;
3879               do_rect = 0;
3880             }
3881           } else {
3882             if (!cpi->sf.ml_partition_search_early_termination) {
3883               if ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
3884                   (best_rdc.dist < dist_breakout_thr &&
3885                    best_rdc.rate < rate_breakout_thr)) {
3886                 do_split = 0;
3887                 do_rect = 0;
3888               }
3889             }
3890           }
3891         }
3892 
3893 #if CONFIG_FP_MB_STATS
3894         // Check if every 16x16 first pass block statistics has zero
3895         // motion and the corresponding first pass residue is small enough.
3896         // If that is the case, check the difference variance between the
3897         // current frame and the last frame. If the variance is small enough,
3898         // stop further splitting in RD optimization
3899         if (cpi->use_fp_mb_stats && do_split != 0 &&
3900             cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
3901           int mb_row = mi_row >> 1;
3902           int mb_col = mi_col >> 1;
3903           int mb_row_end =
3904               VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
3905           int mb_col_end =
3906               VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
3907           int r, c;
3908 
3909           int skip = 1;
3910           for (r = mb_row; r < mb_row_end; r++) {
3911             for (c = mb_col; c < mb_col_end; c++) {
3912               const int mb_index = r * cm->mb_cols + c;
3913               if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
3914                     FPMB_MOTION_ZERO_MASK) ||
3915                   !(cpi->twopass.this_frame_mb_stats[mb_index] &
3916                     FPMB_ERROR_SMALL_MASK)) {
3917                 skip = 0;
3918                 break;
3919               }
3920             }
3921             if (skip == 0) {
3922               break;
3923             }
3924           }
3925 
3926           if (skip) {
3927             if (src_diff_var == UINT_MAX) {
3928               set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
3929               src_diff_var = get_sby_perpixel_diff_variance(
3930                   cpi, &x->plane[0].src, mi_row, mi_col, bsize);
3931             }
3932             if (src_diff_var < 8) {
3933               do_split = 0;
3934               do_rect = 0;
3935             }
3936           }
3937         }
3938 #endif
3939       }
3940     }
3941     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
3942   } else {
3943     vp9_zero(ctx->pred_mv);
3944     ctx->mic.interp_filter = EIGHTTAP;
3945   }
3946 
3947   // store estimated motion vector
3948   store_pred_mv(x, ctx);
3949 
3950   // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
3951   // intra block and used for context purposes.
3952   if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
3953     pred_interp_filter = EIGHTTAP;
3954   } else {
3955     pred_interp_filter = ctx->mic.interp_filter;
3956   }
3957 
3958   // PARTITION_SPLIT
3959   // TODO(jingning): use the motion vectors given by the above search as
3960   // the starting point of motion search in the following partition type check.
3961   pc_tree->split[0]->none.rdcost = 0;
3962   pc_tree->split[1]->none.rdcost = 0;
3963   pc_tree->split[2]->none.rdcost = 0;
3964   pc_tree->split[3]->none.rdcost = 0;
3965   if (do_split || must_split) {
3966     subsize = get_subsize(bsize, PARTITION_SPLIT);
3967     load_pred_mv(x, ctx);
3968     if (bsize == BLOCK_8X8) {
3969       i = 4;
3970       if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
3971         pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter;
3972       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
3973                        pc_tree->leaf_split[0], best_rdc.rdcost);
3974       if (sum_rdc.rate == INT_MAX) {
3975         sum_rdc.rdcost = INT64_MAX;
3976       } else {
3977         if (cpi->sf.prune_ref_frame_for_rect_partitions) {
3978           const int ref1 = pc_tree->leaf_split[0]->mic.ref_frame[0];
3979           const int ref2 = pc_tree->leaf_split[0]->mic.ref_frame[1];
3980           for (i = 0; i < 4; ++i) {
3981             ref_frames_used[i] |= (1 << ref1);
3982             if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
3983           }
3984         }
3985       }
3986     } else {
3987       for (i = 0; (i < 4) && ((sum_rdc.rdcost < best_rdc.rdcost) || must_split);
3988            ++i) {
3989         const int x_idx = (i & 1) * mi_step;
3990         const int y_idx = (i >> 1) * mi_step;
3991 
3992         if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
3993           continue;
3994 
3995         pc_tree->split[i]->index = i;
3996         if (cpi->sf.prune_ref_frame_for_rect_partitions)
3997           pc_tree->split[i]->none.rate = INT_MAX;
3998         rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
3999                           mi_col + x_idx, subsize, &this_rdc,
4000                           // A must split test here increases the number of sub
4001                           // partitions but hurts metrics results quite a bit,
4002                           // so this extra test is commented out pending
4003                           // further tests on whether it adds much in terms of
4004                           // visual quality.
4005                           // (must_split) ? best_rdc.rdcost
4006                           //              : best_rdc.rdcost - sum_rdc.rdcost,
4007                           best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
4008 
4009         if (this_rdc.rate == INT_MAX) {
4010           sum_rdc.rdcost = INT64_MAX;
4011           break;
4012         } else {
4013           if (cpi->sf.prune_ref_frame_for_rect_partitions &&
4014               pc_tree->split[i]->none.rate != INT_MAX) {
4015             const int ref1 = pc_tree->split[i]->none.mic.ref_frame[0];
4016             const int ref2 = pc_tree->split[i]->none.mic.ref_frame[1];
4017             ref_frames_used[i] |= (1 << ref1);
4018             if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4019           }
4020           sum_rdc.rate += this_rdc.rate;
4021           sum_rdc.dist += this_rdc.dist;
4022           sum_rdc.rdcost += this_rdc.rdcost;
4023         }
4024       }
4025     }
4026 
4027     if (((sum_rdc.rdcost < best_rdc.rdcost) || must_split) && i == 4) {
4028       sum_rdc.rdcost += RDCOST(partition_mul, x->rddiv,
4029                                cpi->partition_cost[pl][PARTITION_SPLIT], 0);
4030       sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4031 
4032       if ((sum_rdc.rdcost < best_rdc.rdcost) ||
4033           (must_split && (sum_rdc.dist < best_rdc.dist))) {
4034         best_rdc = sum_rdc;
4035         pc_tree->partitioning = PARTITION_SPLIT;
4036 
4037         // Rate and distortion based partition search termination clause.
4038         if (!cpi->sf.ml_partition_search_early_termination &&
4039             !x->e_mbd.lossless &&
4040             ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4041              (best_rdc.dist < dist_breakout_thr &&
4042               best_rdc.rate < rate_breakout_thr))) {
4043           do_rect = 0;
4044         }
4045       }
4046     } else {
4047       // skip rectangular partition test when larger block size
4048       // gives better rd cost
4049       if (cpi->sf.less_rectangular_check &&
4050           (bsize > cpi->sf.use_square_only_thresh_high ||
4051            best_rdc.dist < dist_breakout_thr))
4052         do_rect &= !partition_none_allowed;
4053     }
4054     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4055   }
4056 
4057   pc_tree->horizontal[0].skip_ref_frame_mask = 0;
4058   pc_tree->horizontal[1].skip_ref_frame_mask = 0;
4059   pc_tree->vertical[0].skip_ref_frame_mask = 0;
4060   pc_tree->vertical[1].skip_ref_frame_mask = 0;
4061   if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4062     uint8_t used_frames;
4063     used_frames = ref_frames_used[0] | ref_frames_used[1];
4064     if (used_frames) pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames;
4065     used_frames = ref_frames_used[2] | ref_frames_used[3];
4066     if (used_frames) pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames;
4067     used_frames = ref_frames_used[0] | ref_frames_used[2];
4068     if (used_frames) pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames;
4069     used_frames = ref_frames_used[1] | ref_frames_used[3];
4070     if (used_frames) pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames;
4071   }
4072 
4073   {
4074     const int do_ml_rect_partition_pruning =
4075         !frame_is_intra_only(cm) && !force_horz_split && !force_vert_split &&
4076         (partition_horz_allowed || partition_vert_allowed) && bsize > BLOCK_8X8;
4077     if (do_ml_rect_partition_pruning) {
4078       ml_prune_rect_partition(cpi, x, bsize, pc_tree, &partition_horz_allowed,
4079                               &partition_vert_allowed, best_rdc.rdcost, mi_row,
4080                               mi_col);
4081     }
4082   }
4083 
4084   // PARTITION_HORZ
4085   if (partition_horz_allowed &&
4086       (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
4087     const int part_mode_rate = cpi->partition_cost[pl][PARTITION_HORZ];
4088     const int64_t part_mode_rdcost =
4089         RDCOST(partition_mul, x->rddiv, part_mode_rate, 0);
4090     subsize = get_subsize(bsize, PARTITION_HORZ);
4091     load_pred_mv(x, ctx);
4092     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4093         partition_none_allowed)
4094       pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
4095     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4096                      &pc_tree->horizontal[0],
4097                      best_rdc.rdcost - part_mode_rdcost);
4098     if (sum_rdc.rdcost < INT64_MAX) {
4099       sum_rdc.rdcost += part_mode_rdcost;
4100       sum_rdc.rate += part_mode_rate;
4101     }
4102 
4103     if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
4104         bsize > BLOCK_8X8) {
4105       PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
4106       update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
4107       encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
4108       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4109           partition_none_allowed)
4110         pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
4111       rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
4112                        subsize, &pc_tree->horizontal[1],
4113                        best_rdc.rdcost - sum_rdc.rdcost);
4114       if (this_rdc.rate == INT_MAX) {
4115         sum_rdc.rdcost = INT64_MAX;
4116       } else {
4117         sum_rdc.rate += this_rdc.rate;
4118         sum_rdc.dist += this_rdc.dist;
4119         sum_rdc.rdcost += this_rdc.rdcost;
4120       }
4121     }
4122 
4123     if (sum_rdc.rdcost < best_rdc.rdcost) {
4124       best_rdc = sum_rdc;
4125       pc_tree->partitioning = PARTITION_HORZ;
4126 
4127       if (cpi->sf.less_rectangular_check &&
4128           bsize > cpi->sf.use_square_only_thresh_high)
4129         do_rect = 0;
4130     }
4131     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4132   }
4133 
4134   // PARTITION_VERT
4135   if (partition_vert_allowed &&
4136       (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
4137     const int part_mode_rate = cpi->partition_cost[pl][PARTITION_VERT];
4138     const int64_t part_mode_rdcost =
4139         RDCOST(partition_mul, x->rddiv, part_mode_rate, 0);
4140     subsize = get_subsize(bsize, PARTITION_VERT);
4141     load_pred_mv(x, ctx);
4142     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4143         partition_none_allowed)
4144       pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
4145     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4146                      &pc_tree->vertical[0], best_rdc.rdcost - part_mode_rdcost);
4147     if (sum_rdc.rdcost < INT64_MAX) {
4148       sum_rdc.rdcost += part_mode_rdcost;
4149       sum_rdc.rate += part_mode_rate;
4150     }
4151 
4152     if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
4153         bsize > BLOCK_8X8) {
4154       update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
4155       encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
4156                         &pc_tree->vertical[0]);
4157       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4158           partition_none_allowed)
4159         pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
4160       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
4161                        subsize, &pc_tree->vertical[1],
4162                        best_rdc.rdcost - sum_rdc.rdcost);
4163       if (this_rdc.rate == INT_MAX) {
4164         sum_rdc.rdcost = INT64_MAX;
4165       } else {
4166         sum_rdc.rate += this_rdc.rate;
4167         sum_rdc.dist += this_rdc.dist;
4168         sum_rdc.rdcost += this_rdc.rdcost;
4169       }
4170     }
4171 
4172     if (sum_rdc.rdcost < best_rdc.rdcost) {
4173       best_rdc = sum_rdc;
4174       pc_tree->partitioning = PARTITION_VERT;
4175     }
4176     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4177   }
4178 
4179   // TODO(jbb): This code added so that we avoid static analysis
4180   // warning related to the fact that best_rd isn't used after this
4181   // point.  This code should be refactored so that the duplicate
4182   // checks occur in some sub function and thus are used...
4183   (void)best_rd;
4184   *rd_cost = best_rdc;
4185 
4186   if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
4187       pc_tree->index != 3) {
4188     int output_enabled = (bsize == BLOCK_64X64);
4189     encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
4190               pc_tree);
4191   }
4192 
4193   if (bsize == BLOCK_64X64) {
4194     assert(tp_orig < *tp);
4195     assert(best_rdc.rate < INT_MAX);
4196     assert(best_rdc.dist < INT64_MAX);
4197   } else {
4198     assert(tp_orig == *tp);
4199   }
4200 }
4201 
encode_rd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)4202 static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
4203                              TileDataEnc *tile_data, int mi_row,
4204                              TOKENEXTRA **tp) {
4205   VP9_COMMON *const cm = &cpi->common;
4206   TileInfo *const tile_info = &tile_data->tile_info;
4207   MACROBLOCK *const x = &td->mb;
4208   MACROBLOCKD *const xd = &x->e_mbd;
4209   SPEED_FEATURES *const sf = &cpi->sf;
4210   const int mi_col_start = tile_info->mi_col_start;
4211   const int mi_col_end = tile_info->mi_col_end;
4212   int mi_col;
4213   const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
4214   const int num_sb_cols =
4215       get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
4216   int sb_col_in_tile;
4217 
4218   // Initialize the left context for the new SB row
4219   memset(&xd->left_context, 0, sizeof(xd->left_context));
4220   memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
4221 
4222   // Code each SB in the row
4223   for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
4224        mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
4225     const struct segmentation *const seg = &cm->seg;
4226     int dummy_rate;
4227     int64_t dummy_dist;
4228     RD_COST dummy_rdc;
4229     int i;
4230     int seg_skip = 0;
4231 
4232     const int idx_str = cm->mi_stride * mi_row + mi_col;
4233     MODE_INFO **mi = cm->mi_grid_visible + idx_str;
4234 
4235     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
4236                                    sb_col_in_tile);
4237 
4238     if (sf->adaptive_pred_interp_filter) {
4239       for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
4240 
4241       for (i = 0; i < 64; ++i) {
4242         td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
4243         td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
4244         td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
4245         td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
4246       }
4247     }
4248 
4249     for (i = 0; i < MAX_REF_FRAMES; ++i) {
4250       x->pred_mv[i].row = INT16_MAX;
4251       x->pred_mv[i].col = INT16_MAX;
4252     }
4253     td->pc_root->index = 0;
4254 
4255     if (seg->enabled) {
4256       const uint8_t *const map =
4257           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
4258       int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
4259       seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
4260     }
4261 
4262     x->source_variance = UINT_MAX;
4263     if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
4264       const BLOCK_SIZE bsize =
4265           seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
4266       set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4267       set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
4268       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4269                        &dummy_rate, &dummy_dist, 1, td->pc_root);
4270     } else if (cpi->partition_search_skippable_frame) {
4271       BLOCK_SIZE bsize;
4272       set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4273       bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
4274       set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
4275       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4276                        &dummy_rate, &dummy_dist, 1, td->pc_root);
4277     } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
4278                cm->frame_type != KEY_FRAME) {
4279       choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
4280       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4281                        &dummy_rate, &dummy_dist, 1, td->pc_root);
4282     } else {
4283       int orig_rdmult = cpi->rd.RDMULT;
4284       x->cb_rdmult = orig_rdmult;
4285       if (cpi->twopass.gf_group.index > 0 && cpi->sf.enable_tpl_model) {
4286         int dr =
4287             get_rdmult_delta(cpi, BLOCK_64X64, mi_row, mi_col, orig_rdmult);
4288         x->cb_rdmult = dr;
4289       }
4290 
4291       // If required set upper and lower partition size limits
4292       if (sf->auto_min_max_partition_size) {
4293         set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4294         rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
4295                                 &x->min_partition_size, &x->max_partition_size);
4296       }
4297       td->pc_root->none.rdcost = 0;
4298       rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
4299                         &dummy_rdc, INT64_MAX, td->pc_root);
4300     }
4301     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
4302                                     sb_col_in_tile, num_sb_cols);
4303   }
4304 }
4305 
init_encode_frame_mb_context(VP9_COMP * cpi)4306 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
4307   MACROBLOCK *const x = &cpi->td.mb;
4308   VP9_COMMON *const cm = &cpi->common;
4309   MACROBLOCKD *const xd = &x->e_mbd;
4310   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
4311 
4312   // Copy data over into macro block data structures.
4313   vp9_setup_src_planes(x, cpi->Source, 0, 0);
4314 
4315   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
4316 
4317   // Note: this memset assumes above_context[0], [1] and [2]
4318   // are allocated as part of the same buffer.
4319   memset(xd->above_context[0], 0,
4320          sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
4321   memset(xd->above_seg_context, 0,
4322          sizeof(*xd->above_seg_context) * aligned_mi_cols);
4323 }
4324 
check_dual_ref_flags(VP9_COMP * cpi)4325 static int check_dual_ref_flags(VP9_COMP *cpi) {
4326   const int ref_flags = cpi->ref_frame_flags;
4327 
4328   if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
4329     return 0;
4330   } else {
4331     return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
4332             !!(ref_flags & VP9_ALT_FLAG)) >= 2;
4333   }
4334 }
4335 
reset_skip_tx_size(VP9_COMMON * cm,TX_SIZE max_tx_size)4336 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
4337   int mi_row, mi_col;
4338   const int mis = cm->mi_stride;
4339   MODE_INFO **mi_ptr = cm->mi_grid_visible;
4340 
4341   for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
4342     for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
4343       if (mi_ptr[mi_col]->tx_size > max_tx_size)
4344         mi_ptr[mi_col]->tx_size = max_tx_size;
4345     }
4346   }
4347 }
4348 
get_frame_type(const VP9_COMP * cpi)4349 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
4350   if (frame_is_intra_only(&cpi->common))
4351     return INTRA_FRAME;
4352   else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
4353     return ALTREF_FRAME;
4354   else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
4355     return GOLDEN_FRAME;
4356   else
4357     return LAST_FRAME;
4358 }
4359 
select_tx_mode(const VP9_COMP * cpi,MACROBLOCKD * const xd)4360 static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
4361   if (xd->lossless) return ONLY_4X4;
4362   if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
4363     return ALLOW_16X16;
4364   if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
4365     return ALLOW_32X32;
4366   else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
4367            cpi->sf.tx_size_search_method == USE_TX_8X8)
4368     return TX_MODE_SELECT;
4369   else
4370     return cpi->common.tx_mode;
4371 }
4372 
hybrid_intra_mode_search(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4373 static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
4374                                      RD_COST *rd_cost, BLOCK_SIZE bsize,
4375                                      PICK_MODE_CONTEXT *ctx) {
4376   if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
4377     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4378   else
4379     vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4380 }
4381 
hybrid_search_svc_baseiskey(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4382 static void hybrid_search_svc_baseiskey(VP9_COMP *cpi, MACROBLOCK *const x,
4383                                         RD_COST *rd_cost, BLOCK_SIZE bsize,
4384                                         PICK_MODE_CONTEXT *ctx,
4385                                         TileDataEnc *tile_data, int mi_row,
4386                                         int mi_col) {
4387   if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4388     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4389   } else {
4390     if (cpi->svc.disable_inter_layer_pred == INTER_LAYER_PRED_OFF)
4391       vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4392     else if (bsize >= BLOCK_8X8)
4393       vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4394                           ctx);
4395     else
4396       vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4397   }
4398 }
4399 
hybrid_search_scene_change(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4400 static void hybrid_search_scene_change(VP9_COMP *cpi, MACROBLOCK *const x,
4401                                        RD_COST *rd_cost, BLOCK_SIZE bsize,
4402                                        PICK_MODE_CONTEXT *ctx,
4403                                        TileDataEnc *tile_data, int mi_row,
4404                                        int mi_col) {
4405   if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4406     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4407   } else {
4408     vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
4409   }
4410 }
4411 
nonrd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4412 static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
4413                                 MACROBLOCK *const x, int mi_row, int mi_col,
4414                                 RD_COST *rd_cost, BLOCK_SIZE bsize,
4415                                 PICK_MODE_CONTEXT *ctx) {
4416   VP9_COMMON *const cm = &cpi->common;
4417   TileInfo *const tile_info = &tile_data->tile_info;
4418   MACROBLOCKD *const xd = &x->e_mbd;
4419   MODE_INFO *mi;
4420   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
4421   BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8);  // processing unit block size
4422   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
4423   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
4424   int plane;
4425 
4426   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4427 
4428   set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
4429 
4430   mi = xd->mi[0];
4431   mi->sb_type = bsize;
4432 
4433   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4434     struct macroblockd_plane *pd = &xd->plane[plane];
4435     memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
4436            (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4437     memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
4438            (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4439   }
4440 
4441   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
4442     if (cyclic_refresh_segment_id_boosted(mi->segment_id))
4443       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
4444 
4445   if (frame_is_intra_only(cm))
4446     hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
4447   else if (cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
4448     hybrid_search_svc_baseiskey(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4449                                 mi_col);
4450   else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
4451     set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
4452   else if (bsize >= BLOCK_8X8) {
4453     if (cpi->rc.hybrid_intra_scene_change)
4454       hybrid_search_scene_change(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4455                                  mi_col);
4456     else
4457       vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4458                           ctx);
4459   } else {
4460     vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4461   }
4462 
4463   duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4464 
4465   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4466     struct macroblockd_plane *pd = &xd->plane[plane];
4467     memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
4468            (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4469     memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
4470            (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4471   }
4472 
4473   if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
4474 
4475   ctx->rate = rd_cost->rate;
4476   ctx->dist = rd_cost->dist;
4477 }
4478 
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,PC_TREE * pc_tree)4479 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
4480                               int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
4481   MACROBLOCKD *xd = &x->e_mbd;
4482   int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
4483   PARTITION_TYPE partition = pc_tree->partitioning;
4484   BLOCK_SIZE subsize = get_subsize(bsize, partition);
4485 
4486   assert(bsize >= BLOCK_8X8);
4487 
4488   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
4489 
4490   switch (partition) {
4491     case PARTITION_NONE:
4492       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4493       *(xd->mi[0]) = pc_tree->none.mic;
4494       *(x->mbmi_ext) = pc_tree->none.mbmi_ext;
4495       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4496       break;
4497     case PARTITION_VERT:
4498       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4499       *(xd->mi[0]) = pc_tree->vertical[0].mic;
4500       *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
4501       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4502 
4503       if (mi_col + hbs < cm->mi_cols) {
4504         set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
4505         *(xd->mi[0]) = pc_tree->vertical[1].mic;
4506         *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
4507         duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
4508       }
4509       break;
4510     case PARTITION_HORZ:
4511       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4512       *(xd->mi[0]) = pc_tree->horizontal[0].mic;
4513       *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
4514       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4515       if (mi_row + hbs < cm->mi_rows) {
4516         set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
4517         *(xd->mi[0]) = pc_tree->horizontal[1].mic;
4518         *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
4519         duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
4520       }
4521       break;
4522     case PARTITION_SPLIT: {
4523       fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
4524       fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
4525                         pc_tree->split[1]);
4526       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
4527                         pc_tree->split[2]);
4528       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
4529                         pc_tree->split[3]);
4530       break;
4531     }
4532     default: break;
4533   }
4534 }
4535 
4536 // Reset the prediction pixel ready flag recursively.
pred_pixel_ready_reset(PC_TREE * pc_tree,BLOCK_SIZE bsize)4537 static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
4538   pc_tree->none.pred_pixel_ready = 0;
4539   pc_tree->horizontal[0].pred_pixel_ready = 0;
4540   pc_tree->horizontal[1].pred_pixel_ready = 0;
4541   pc_tree->vertical[0].pred_pixel_ready = 0;
4542   pc_tree->vertical[1].pred_pixel_ready = 0;
4543 
4544   if (bsize > BLOCK_8X8) {
4545     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4546     int i;
4547     for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize);
4548   }
4549 }
4550 
4551 #if CONFIG_ML_VAR_PARTITION
4552 #define FEATURES 6
4553 #define LABELS 2
ml_predict_var_paritioning(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col)4554 static int ml_predict_var_paritioning(VP9_COMP *cpi, MACROBLOCK *x,
4555                                       BLOCK_SIZE bsize, int mi_row,
4556                                       int mi_col) {
4557   VP9_COMMON *const cm = &cpi->common;
4558   const NN_CONFIG *nn_config = NULL;
4559 
4560   switch (bsize) {
4561     case BLOCK_64X64: nn_config = &vp9_var_part_nnconfig_64; break;
4562     case BLOCK_32X32: nn_config = &vp9_var_part_nnconfig_32; break;
4563     case BLOCK_16X16: nn_config = &vp9_var_part_nnconfig_16; break;
4564     case BLOCK_8X8: break;
4565     default: assert(0 && "Unexpected block size."); return -1;
4566   }
4567 
4568   if (!nn_config) return -1;
4569 
4570   vpx_clear_system_state();
4571 
4572   {
4573     const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
4574     float features[FEATURES] = { 0.0f };
4575     const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
4576     int feature_idx = 0;
4577     float score[LABELS];
4578 
4579     features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
4580     vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
4581     {
4582       const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
4583       const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4584       const int sb_offset_row = 8 * (mi_row & 7);
4585       const int sb_offset_col = 8 * (mi_col & 7);
4586       const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
4587       const uint8_t *src = x->plane[0].src.buf;
4588       const int src_stride = x->plane[0].src.stride;
4589       const int pred_stride = 64;
4590       unsigned int sse;
4591       int i;
4592       // Variance of whole block.
4593       const unsigned int var =
4594           cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
4595       const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
4596 
4597       features[feature_idx++] = logf((float)var + 1.0f);
4598       for (i = 0; i < 4; ++i) {
4599         const int x_idx = (i & 1) * bs / 2;
4600         const int y_idx = (i >> 1) * bs / 2;
4601         const int src_offset = y_idx * src_stride + x_idx;
4602         const int pred_offset = y_idx * pred_stride + x_idx;
4603         // Variance of quarter block.
4604         const unsigned int sub_var =
4605             cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
4606                                     pred + pred_offset, pred_stride, &sse);
4607         const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
4608         features[feature_idx++] = var_ratio;
4609       }
4610     }
4611 
4612     assert(feature_idx == FEATURES);
4613     nn_predict(features, nn_config, score);
4614     if (score[0] > thresh) return PARTITION_SPLIT;
4615     if (score[0] < -thresh) return PARTITION_NONE;
4616     return -1;
4617   }
4618 }
4619 #undef FEATURES
4620 #undef LABELS
4621 #endif  // CONFIG_ML_VAR_PARTITION
4622 
nonrd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,int do_recon,int64_t best_rd,PC_TREE * pc_tree)4623 static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
4624                                  TileDataEnc *tile_data, TOKENEXTRA **tp,
4625                                  int mi_row, int mi_col, BLOCK_SIZE bsize,
4626                                  RD_COST *rd_cost, int do_recon,
4627                                  int64_t best_rd, PC_TREE *pc_tree) {
4628   const SPEED_FEATURES *const sf = &cpi->sf;
4629   VP9_COMMON *const cm = &cpi->common;
4630   TileInfo *const tile_info = &tile_data->tile_info;
4631   MACROBLOCK *const x = &td->mb;
4632   MACROBLOCKD *const xd = &x->e_mbd;
4633   const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
4634   TOKENEXTRA *tp_orig = *tp;
4635   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
4636   int i;
4637   BLOCK_SIZE subsize = bsize;
4638   RD_COST this_rdc, sum_rdc, best_rdc;
4639   int do_split = bsize >= BLOCK_8X8;
4640   int do_rect = 1;
4641   // Override skipping rectangular partition operations for edge blocks
4642   const int force_horz_split = (mi_row + ms >= cm->mi_rows);
4643   const int force_vert_split = (mi_col + ms >= cm->mi_cols);
4644   const int xss = x->e_mbd.plane[1].subsampling_x;
4645   const int yss = x->e_mbd.plane[1].subsampling_y;
4646 
4647   int partition_none_allowed = !force_horz_split && !force_vert_split;
4648   int partition_horz_allowed =
4649       !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
4650   int partition_vert_allowed =
4651       !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
4652 #if CONFIG_ML_VAR_PARTITION
4653   const int use_ml_based_partitioning =
4654       sf->partition_search_type == ML_BASED_PARTITION;
4655 #endif  // CONFIG_ML_VAR_PARTITION
4656 
4657   (void)*tp_orig;
4658 
4659   // Avoid checking for rectangular partitions for speed >= 6.
4660   if (cpi->oxcf.speed >= 6) do_rect = 0;
4661 
4662   assert(num_8x8_blocks_wide_lookup[bsize] ==
4663          num_8x8_blocks_high_lookup[bsize]);
4664 
4665   vp9_rd_cost_init(&sum_rdc);
4666   vp9_rd_cost_reset(&best_rdc);
4667   best_rdc.rdcost = best_rd;
4668 
4669   // Determine partition types in search according to the speed features.
4670   // The threshold set here has to be of square block size.
4671   if (sf->auto_min_max_partition_size) {
4672     partition_none_allowed &=
4673         (bsize <= x->max_partition_size && bsize >= x->min_partition_size);
4674     partition_horz_allowed &=
4675         ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4676          force_horz_split);
4677     partition_vert_allowed &=
4678         ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4679          force_vert_split);
4680     do_split &= bsize > x->min_partition_size;
4681   }
4682   if (sf->use_square_partition_only) {
4683     partition_horz_allowed &= force_horz_split;
4684     partition_vert_allowed &= force_vert_split;
4685   }
4686 
4687 #if CONFIG_ML_VAR_PARTITION
4688   if (use_ml_based_partitioning) {
4689     if (partition_none_allowed || do_split) do_rect = 0;
4690     if (partition_none_allowed && do_split) {
4691       const int ml_predicted_partition =
4692           ml_predict_var_paritioning(cpi, x, bsize, mi_row, mi_col);
4693       if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
4694       if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
4695     }
4696   }
4697 #endif  // CONFIG_ML_VAR_PARTITION
4698 
4699   if (!partition_none_allowed && !do_split) do_rect = 1;
4700 
4701   ctx->pred_pixel_ready =
4702       !(partition_vert_allowed || partition_horz_allowed || do_split);
4703 
4704   // PARTITION_NONE
4705   if (partition_none_allowed) {
4706     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
4707                         ctx);
4708     ctx->mic = *xd->mi[0];
4709     ctx->mbmi_ext = *x->mbmi_ext;
4710     ctx->skip_txfm[0] = x->skip_txfm[0];
4711     ctx->skip = x->skip;
4712 
4713     if (this_rdc.rate != INT_MAX) {
4714       const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4715       this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
4716       this_rdc.rdcost =
4717           RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
4718       if (this_rdc.rdcost < best_rdc.rdcost) {
4719         best_rdc = this_rdc;
4720         if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
4721 
4722 #if CONFIG_ML_VAR_PARTITION
4723         if (!use_ml_based_partitioning)
4724 #endif  // CONFIG_ML_VAR_PARTITION
4725         {
4726           int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
4727           int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
4728           dist_breakout_thr >>=
4729               8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
4730           rate_breakout_thr *= num_pels_log2_lookup[bsize];
4731           if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
4732               this_rdc.dist < dist_breakout_thr) {
4733             do_split = 0;
4734             do_rect = 0;
4735           }
4736         }
4737       }
4738     }
4739   }
4740 
4741   // store estimated motion vector
4742   store_pred_mv(x, ctx);
4743 
4744   // PARTITION_SPLIT
4745   if (do_split) {
4746     int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4747     sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4748     sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
4749     subsize = get_subsize(bsize, PARTITION_SPLIT);
4750     for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
4751       const int x_idx = (i & 1) * ms;
4752       const int y_idx = (i >> 1) * ms;
4753 
4754       if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
4755         continue;
4756       load_pred_mv(x, ctx);
4757       nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
4758                            mi_col + x_idx, subsize, &this_rdc, 0,
4759                            best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
4760 
4761       if (this_rdc.rate == INT_MAX) {
4762         vp9_rd_cost_reset(&sum_rdc);
4763       } else {
4764         sum_rdc.rate += this_rdc.rate;
4765         sum_rdc.dist += this_rdc.dist;
4766         sum_rdc.rdcost += this_rdc.rdcost;
4767       }
4768     }
4769 
4770     if (sum_rdc.rdcost < best_rdc.rdcost) {
4771       best_rdc = sum_rdc;
4772       pc_tree->partitioning = PARTITION_SPLIT;
4773     } else {
4774       // skip rectangular partition test when larger block size
4775       // gives better rd cost
4776       if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
4777     }
4778   }
4779 
4780   // PARTITION_HORZ
4781   if (partition_horz_allowed && do_rect) {
4782     subsize = get_subsize(bsize, PARTITION_HORZ);
4783     load_pred_mv(x, ctx);
4784     pc_tree->horizontal[0].pred_pixel_ready = 1;
4785     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4786                         &pc_tree->horizontal[0]);
4787 
4788     pc_tree->horizontal[0].mic = *xd->mi[0];
4789     pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
4790     pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
4791     pc_tree->horizontal[0].skip = x->skip;
4792 
4793     if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
4794       load_pred_mv(x, ctx);
4795       pc_tree->horizontal[1].pred_pixel_ready = 1;
4796       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
4797                           subsize, &pc_tree->horizontal[1]);
4798 
4799       pc_tree->horizontal[1].mic = *xd->mi[0];
4800       pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
4801       pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
4802       pc_tree->horizontal[1].skip = x->skip;
4803 
4804       if (this_rdc.rate == INT_MAX) {
4805         vp9_rd_cost_reset(&sum_rdc);
4806       } else {
4807         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4808         this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
4809         sum_rdc.rate += this_rdc.rate;
4810         sum_rdc.dist += this_rdc.dist;
4811         sum_rdc.rdcost =
4812             RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
4813       }
4814     }
4815 
4816     if (sum_rdc.rdcost < best_rdc.rdcost) {
4817       best_rdc = sum_rdc;
4818       pc_tree->partitioning = PARTITION_HORZ;
4819     } else {
4820       pred_pixel_ready_reset(pc_tree, bsize);
4821     }
4822   }
4823 
4824   // PARTITION_VERT
4825   if (partition_vert_allowed && do_rect) {
4826     subsize = get_subsize(bsize, PARTITION_VERT);
4827     load_pred_mv(x, ctx);
4828     pc_tree->vertical[0].pred_pixel_ready = 1;
4829     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4830                         &pc_tree->vertical[0]);
4831     pc_tree->vertical[0].mic = *xd->mi[0];
4832     pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
4833     pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
4834     pc_tree->vertical[0].skip = x->skip;
4835 
4836     if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
4837       load_pred_mv(x, ctx);
4838       pc_tree->vertical[1].pred_pixel_ready = 1;
4839       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc,
4840                           subsize, &pc_tree->vertical[1]);
4841       pc_tree->vertical[1].mic = *xd->mi[0];
4842       pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
4843       pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
4844       pc_tree->vertical[1].skip = x->skip;
4845 
4846       if (this_rdc.rate == INT_MAX) {
4847         vp9_rd_cost_reset(&sum_rdc);
4848       } else {
4849         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4850         sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
4851         sum_rdc.rate += this_rdc.rate;
4852         sum_rdc.dist += this_rdc.dist;
4853         sum_rdc.rdcost =
4854             RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
4855       }
4856     }
4857 
4858     if (sum_rdc.rdcost < best_rdc.rdcost) {
4859       best_rdc = sum_rdc;
4860       pc_tree->partitioning = PARTITION_VERT;
4861     } else {
4862       pred_pixel_ready_reset(pc_tree, bsize);
4863     }
4864   }
4865 
4866   *rd_cost = best_rdc;
4867 
4868   if (best_rdc.rate == INT_MAX) {
4869     vp9_rd_cost_reset(rd_cost);
4870     return;
4871   }
4872 
4873   // update mode info array
4874   fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
4875 
4876   if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
4877     int output_enabled = (bsize == BLOCK_64X64);
4878     encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
4879                  pc_tree);
4880   }
4881 
4882   if (bsize == BLOCK_64X64 && do_recon) {
4883     assert(tp_orig < *tp);
4884     assert(best_rdc.rate < INT_MAX);
4885     assert(best_rdc.dist < INT64_MAX);
4886   } else {
4887     assert(tp_orig == *tp);
4888   }
4889 }
4890 
nonrd_select_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * rd_cost,PC_TREE * pc_tree)4891 static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td,
4892                                    TileDataEnc *tile_data, MODE_INFO **mi,
4893                                    TOKENEXTRA **tp, int mi_row, int mi_col,
4894                                    BLOCK_SIZE bsize, int output_enabled,
4895                                    RD_COST *rd_cost, PC_TREE *pc_tree) {
4896   VP9_COMMON *const cm = &cpi->common;
4897   TileInfo *const tile_info = &tile_data->tile_info;
4898   MACROBLOCK *const x = &td->mb;
4899   MACROBLOCKD *const xd = &x->e_mbd;
4900   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
4901   const int mis = cm->mi_stride;
4902   PARTITION_TYPE partition;
4903   BLOCK_SIZE subsize;
4904   RD_COST this_rdc;
4905   BLOCK_SIZE subsize_ref =
4906       (cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16;
4907 
4908   vp9_rd_cost_reset(&this_rdc);
4909   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
4910 
4911   subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
4912   partition = partition_lookup[bsl][subsize];
4913 
4914   if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
4915     x->max_partition_size = BLOCK_32X32;
4916     x->min_partition_size = BLOCK_16X16;
4917     nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
4918                          0, INT64_MAX, pc_tree);
4919   } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
4920              subsize >= subsize_ref) {
4921     x->max_partition_size = BLOCK_32X32;
4922     x->min_partition_size = BLOCK_8X8;
4923     nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
4924                          0, INT64_MAX, pc_tree);
4925   } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
4926     x->max_partition_size = BLOCK_16X16;
4927     x->min_partition_size = BLOCK_8X8;
4928     nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
4929                          0, INT64_MAX, pc_tree);
4930   } else {
4931     switch (partition) {
4932       case PARTITION_NONE:
4933         pc_tree->none.pred_pixel_ready = 1;
4934         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
4935                             &pc_tree->none);
4936         pc_tree->none.mic = *xd->mi[0];
4937         pc_tree->none.mbmi_ext = *x->mbmi_ext;
4938         pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
4939         pc_tree->none.skip = x->skip;
4940         break;
4941       case PARTITION_VERT:
4942         pc_tree->vertical[0].pred_pixel_ready = 1;
4943         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
4944                             &pc_tree->vertical[0]);
4945         pc_tree->vertical[0].mic = *xd->mi[0];
4946         pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
4947         pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
4948         pc_tree->vertical[0].skip = x->skip;
4949         if (mi_col + hbs < cm->mi_cols) {
4950           pc_tree->vertical[1].pred_pixel_ready = 1;
4951           nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
4952                               &this_rdc, subsize, &pc_tree->vertical[1]);
4953           pc_tree->vertical[1].mic = *xd->mi[0];
4954           pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
4955           pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
4956           pc_tree->vertical[1].skip = x->skip;
4957           if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
4958               rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
4959             rd_cost->rate += this_rdc.rate;
4960             rd_cost->dist += this_rdc.dist;
4961           }
4962         }
4963         break;
4964       case PARTITION_HORZ:
4965         pc_tree->horizontal[0].pred_pixel_ready = 1;
4966         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
4967                             &pc_tree->horizontal[0]);
4968         pc_tree->horizontal[0].mic = *xd->mi[0];
4969         pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
4970         pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
4971         pc_tree->horizontal[0].skip = x->skip;
4972         if (mi_row + hbs < cm->mi_rows) {
4973           pc_tree->horizontal[1].pred_pixel_ready = 1;
4974           nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
4975                               &this_rdc, subsize, &pc_tree->horizontal[1]);
4976           pc_tree->horizontal[1].mic = *xd->mi[0];
4977           pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
4978           pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
4979           pc_tree->horizontal[1].skip = x->skip;
4980           if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
4981               rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
4982             rd_cost->rate += this_rdc.rate;
4983             rd_cost->dist += this_rdc.dist;
4984           }
4985         }
4986         break;
4987       default:
4988         assert(partition == PARTITION_SPLIT);
4989         subsize = get_subsize(bsize, PARTITION_SPLIT);
4990         nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
4991                                subsize, output_enabled, rd_cost,
4992                                pc_tree->split[0]);
4993         nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
4994                                mi_col + hbs, subsize, output_enabled, &this_rdc,
4995                                pc_tree->split[1]);
4996         if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
4997             rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
4998           rd_cost->rate += this_rdc.rate;
4999           rd_cost->dist += this_rdc.dist;
5000         }
5001         nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5002                                mi_row + hbs, mi_col, subsize, output_enabled,
5003                                &this_rdc, pc_tree->split[2]);
5004         if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5005             rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5006           rd_cost->rate += this_rdc.rate;
5007           rd_cost->dist += this_rdc.dist;
5008         }
5009         nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5010                                mi_row + hbs, mi_col + hbs, subsize,
5011                                output_enabled, &this_rdc, pc_tree->split[3]);
5012         if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5013             rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5014           rd_cost->rate += this_rdc.rate;
5015           rd_cost->dist += this_rdc.dist;
5016         }
5017         break;
5018     }
5019   }
5020 
5021   if (bsize == BLOCK_64X64 && output_enabled)
5022     encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
5023 }
5024 
nonrd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * dummy_cost,PC_TREE * pc_tree)5025 static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td,
5026                                 TileDataEnc *tile_data, MODE_INFO **mi,
5027                                 TOKENEXTRA **tp, int mi_row, int mi_col,
5028                                 BLOCK_SIZE bsize, int output_enabled,
5029                                 RD_COST *dummy_cost, PC_TREE *pc_tree) {
5030   VP9_COMMON *const cm = &cpi->common;
5031   TileInfo *tile_info = &tile_data->tile_info;
5032   MACROBLOCK *const x = &td->mb;
5033   MACROBLOCKD *const xd = &x->e_mbd;
5034   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5035   const int mis = cm->mi_stride;
5036   PARTITION_TYPE partition;
5037   BLOCK_SIZE subsize;
5038 
5039   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5040 
5041   subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5042   partition = partition_lookup[bsl][subsize];
5043 
5044   if (output_enabled && bsize != BLOCK_4X4) {
5045     int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
5046     td->counts->partition[ctx][partition]++;
5047   }
5048 
5049   switch (partition) {
5050     case PARTITION_NONE:
5051       pc_tree->none.pred_pixel_ready = 1;
5052       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5053                           subsize, &pc_tree->none);
5054       pc_tree->none.mic = *xd->mi[0];
5055       pc_tree->none.mbmi_ext = *x->mbmi_ext;
5056       pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5057       pc_tree->none.skip = x->skip;
5058       encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5059                   subsize, &pc_tree->none);
5060       break;
5061     case PARTITION_VERT:
5062       pc_tree->vertical[0].pred_pixel_ready = 1;
5063       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5064                           subsize, &pc_tree->vertical[0]);
5065       pc_tree->vertical[0].mic = *xd->mi[0];
5066       pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5067       pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5068       pc_tree->vertical[0].skip = x->skip;
5069       encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5070                   subsize, &pc_tree->vertical[0]);
5071       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
5072         pc_tree->vertical[1].pred_pixel_ready = 1;
5073         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost,
5074                             subsize, &pc_tree->vertical[1]);
5075         pc_tree->vertical[1].mic = *xd->mi[0];
5076         pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5077         pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5078         pc_tree->vertical[1].skip = x->skip;
5079         encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
5080                     output_enabled, subsize, &pc_tree->vertical[1]);
5081       }
5082       break;
5083     case PARTITION_HORZ:
5084       pc_tree->horizontal[0].pred_pixel_ready = 1;
5085       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5086                           subsize, &pc_tree->horizontal[0]);
5087       pc_tree->horizontal[0].mic = *xd->mi[0];
5088       pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5089       pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5090       pc_tree->horizontal[0].skip = x->skip;
5091       encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5092                   subsize, &pc_tree->horizontal[0]);
5093 
5094       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
5095         pc_tree->horizontal[1].pred_pixel_ready = 1;
5096         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost,
5097                             subsize, &pc_tree->horizontal[1]);
5098         pc_tree->horizontal[1].mic = *xd->mi[0];
5099         pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5100         pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5101         pc_tree->horizontal[1].skip = x->skip;
5102         encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
5103                     output_enabled, subsize, &pc_tree->horizontal[1]);
5104       }
5105       break;
5106     default:
5107       assert(partition == PARTITION_SPLIT);
5108       subsize = get_subsize(bsize, PARTITION_SPLIT);
5109       if (bsize == BLOCK_8X8) {
5110         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5111                             subsize, pc_tree->leaf_split[0]);
5112         encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5113                     subsize, pc_tree->leaf_split[0]);
5114       } else {
5115         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize,
5116                             output_enabled, dummy_cost, pc_tree->split[0]);
5117         nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5118                             mi_col + hbs, subsize, output_enabled, dummy_cost,
5119                             pc_tree->split[1]);
5120         nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5121                             mi_row + hbs, mi_col, subsize, output_enabled,
5122                             dummy_cost, pc_tree->split[2]);
5123         nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5124                             mi_row + hbs, mi_col + hbs, subsize, output_enabled,
5125                             dummy_cost, pc_tree->split[3]);
5126       }
5127       break;
5128   }
5129 
5130   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
5131     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
5132 }
5133 
5134 #if CONFIG_ML_VAR_PARTITION
5135 // Get a prediction(stored in x->est_pred) for the whole 64x64 superblock.
get_estimated_pred(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)5136 static void get_estimated_pred(VP9_COMP *cpi, const TileInfo *const tile,
5137                                MACROBLOCK *x, int mi_row, int mi_col) {
5138   VP9_COMMON *const cm = &cpi->common;
5139   const int is_key_frame = frame_is_intra_only(cm);
5140 
5141   set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
5142 
5143   if (!is_key_frame) {
5144     MACROBLOCKD *xd = &x->e_mbd;
5145     MODE_INFO *mi = xd->mi[0];
5146     YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
5147     const YV12_BUFFER_CONFIG *yv12_g = NULL;
5148     const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
5149                              (mi_row + 4 < cm->mi_rows);
5150     int pixels_wide = 64, pixels_high = 64;
5151     unsigned int y_sad_g, y_sad_thr;
5152     unsigned int y_sad = UINT_MAX;
5153 
5154     assert(yv12 != NULL);
5155 
5156     if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
5157     if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
5158 
5159     if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) ||
5160         cpi->svc.use_gf_temporal_ref_current_layer) {
5161       // For now, GOLDEN will not be used for non-zero spatial layers, since
5162       // it may not be a temporal reference.
5163       yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
5164     }
5165 
5166     // Only compute y_sad_g (sad for golden reference) for speed < 8.
5167     if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
5168         (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
5169       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5170                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5171       y_sad_g = cpi->fn_ptr[bsize].sdf(
5172           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
5173           xd->plane[0].pre[0].stride);
5174     } else {
5175       y_sad_g = UINT_MAX;
5176     }
5177 
5178     if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
5179         cpi->rc.is_src_frame_alt_ref) {
5180       yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
5181       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5182                            &cm->frame_refs[ALTREF_FRAME - 1].sf);
5183       mi->ref_frame[0] = ALTREF_FRAME;
5184       y_sad_g = UINT_MAX;
5185     } else {
5186       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5187                            &cm->frame_refs[LAST_FRAME - 1].sf);
5188       mi->ref_frame[0] = LAST_FRAME;
5189     }
5190     mi->ref_frame[1] = NONE;
5191     mi->sb_type = BLOCK_64X64;
5192     mi->mv[0].as_int = 0;
5193     mi->interp_filter = BILINEAR;
5194 
5195     {
5196       const MV dummy_mv = { 0, 0 };
5197       y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
5198                                             &dummy_mv);
5199       x->sb_use_mv_part = 1;
5200       x->sb_mvcol_part = mi->mv[0].as_mv.col;
5201       x->sb_mvrow_part = mi->mv[0].as_mv.row;
5202     }
5203 
5204     // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
5205     // are close if short_circuit_low_temp_var is on.
5206     y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
5207     if (y_sad_g < y_sad_thr) {
5208       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5209                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5210       mi->ref_frame[0] = GOLDEN_FRAME;
5211       mi->mv[0].as_int = 0;
5212       y_sad = y_sad_g;
5213     } else {
5214       x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
5215     }
5216 
5217     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
5218     xd->plane[0].dst.buf = x->est_pred;
5219     xd->plane[0].dst.stride = 64;
5220     vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
5221   } else {
5222 #if CONFIG_VP9_HIGHBITDEPTH
5223     switch (xd->bd) {
5224       case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
5225       case 10:
5226         memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
5227         break;
5228       case 12:
5229         memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
5230         break;
5231     }
5232 #else
5233     memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
5234 #endif  // CONFIG_VP9_HIGHBITDEPTH
5235   }
5236 }
5237 #endif  // CONFIG_ML_VAR_PARTITION
5238 
encode_nonrd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)5239 static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td,
5240                                 TileDataEnc *tile_data, int mi_row,
5241                                 TOKENEXTRA **tp) {
5242   SPEED_FEATURES *const sf = &cpi->sf;
5243   VP9_COMMON *const cm = &cpi->common;
5244   TileInfo *const tile_info = &tile_data->tile_info;
5245   MACROBLOCK *const x = &td->mb;
5246   MACROBLOCKD *const xd = &x->e_mbd;
5247   const int mi_col_start = tile_info->mi_col_start;
5248   const int mi_col_end = tile_info->mi_col_end;
5249   int mi_col;
5250   const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
5251   const int num_sb_cols =
5252       get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
5253   int sb_col_in_tile;
5254 
5255   // Initialize the left context for the new SB row
5256   memset(&xd->left_context, 0, sizeof(xd->left_context));
5257   memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
5258 
5259   // Code each SB in the row
5260   for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
5261        mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) {
5262     const struct segmentation *const seg = &cm->seg;
5263     RD_COST dummy_rdc;
5264     const int idx_str = cm->mi_stride * mi_row + mi_col;
5265     MODE_INFO **mi = cm->mi_grid_visible + idx_str;
5266     PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
5267     BLOCK_SIZE bsize = BLOCK_64X64;
5268     int seg_skip = 0;
5269     int i;
5270 
5271     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
5272                                    sb_col_in_tile);
5273 
5274     if (cpi->use_skin_detection) {
5275       vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col);
5276     }
5277 
5278     x->source_variance = UINT_MAX;
5279     for (i = 0; i < MAX_REF_FRAMES; ++i) {
5280       x->pred_mv[i].row = INT16_MAX;
5281       x->pred_mv[i].col = INT16_MAX;
5282     }
5283     vp9_rd_cost_init(&dummy_rdc);
5284     x->color_sensitivity[0] = 0;
5285     x->color_sensitivity[1] = 0;
5286     x->sb_is_skin = 0;
5287     x->skip_low_source_sad = 0;
5288     x->lowvar_highsumdiff = 0;
5289     x->content_state_sb = 0;
5290     x->zero_temp_sad_source = 0;
5291     x->sb_use_mv_part = 0;
5292     x->sb_mvcol_part = 0;
5293     x->sb_mvrow_part = 0;
5294     x->sb_pickmode_part = 0;
5295     x->arf_frame_usage = 0;
5296     x->lastgolden_frame_usage = 0;
5297 
5298     if (seg->enabled) {
5299       const uint8_t *const map =
5300           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
5301       int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
5302       seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
5303       if (seg_skip) {
5304         partition_search_type = FIXED_PARTITION;
5305       }
5306     }
5307 
5308     if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
5309       int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3);
5310       int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5311       int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2);
5312       if (sf->adapt_partition_source_sad &&
5313           (cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref &&
5314            source_sad > sf->adapt_partition_thresh &&
5315            (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)))
5316         partition_search_type = REFERENCE_PARTITION;
5317     }
5318 
5319     // Set the partition type of the 64X64 block
5320     switch (partition_search_type) {
5321       case VAR_BASED_PARTITION:
5322         // TODO(jingning, marpan): The mode decision and encoding process
5323         // support both intra and inter sub8x8 block coding for RTC mode.
5324         // Tune the thresholds accordingly to use sub8x8 block coding for
5325         // coding performance improvement.
5326         choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5327         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5328                             BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5329         break;
5330 #if CONFIG_ML_VAR_PARTITION
5331       case ML_BASED_PARTITION:
5332         get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
5333         x->max_partition_size = BLOCK_64X64;
5334         x->min_partition_size = BLOCK_8X8;
5335         x->sb_pickmode_part = 1;
5336         nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5337                              BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5338                              td->pc_root);
5339         break;
5340 #endif  // CONFIG_ML_VAR_PARTITION
5341       case SOURCE_VAR_BASED_PARTITION:
5342         set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
5343         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5344                             BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5345         break;
5346       case FIXED_PARTITION:
5347         if (!seg_skip) bsize = sf->always_this_block_size;
5348         set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
5349         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5350                             BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5351         break;
5352       default:
5353         assert(partition_search_type == REFERENCE_PARTITION);
5354         x->sb_pickmode_part = 1;
5355         set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
5356         // Use nonrd_pick_partition on scene-cut for VBR mode.
5357         // nonrd_pick_partition does not support 4x4 partition, so avoid it
5358         // on key frame for now.
5359         if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad &&
5360              cpi->oxcf.speed < 6 && !frame_is_intra_only(cm) &&
5361              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
5362           // Use lower max_partition_size for low resoultions.
5363           if (cm->width <= 352 && cm->height <= 288)
5364             x->max_partition_size = BLOCK_32X32;
5365           else
5366             x->max_partition_size = BLOCK_64X64;
5367           x->min_partition_size = BLOCK_8X8;
5368           nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5369                                BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5370                                td->pc_root);
5371         } else {
5372           choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5373           // TODO(marpan): Seems like nonrd_select_partition does not support
5374           // 4x4 partition. Since 4x4 is used on key frame, use this switch
5375           // for now.
5376           if (frame_is_intra_only(cm))
5377             nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5378                                 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5379           else
5380             nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5381                                    BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5382         }
5383 
5384         break;
5385     }
5386 
5387     // Update ref_frame usage for inter frame if this group is ARF group.
5388     if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame &&
5389         !cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group &&
5390         cpi->sf.use_altref_onepass) {
5391       int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5392       if (cpi->count_arf_frame_usage != NULL)
5393         cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage;
5394       if (cpi->count_lastgolden_frame_usage != NULL)
5395         cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage;
5396     }
5397 
5398     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
5399                                     sb_col_in_tile, num_sb_cols);
5400   }
5401 }
5402 // end RTC play code
5403 
variance(const diff * const d)5404 static INLINE uint32_t variance(const diff *const d) {
5405   return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8);
5406 }
5407 
5408 #if CONFIG_VP9_HIGHBITDEPTH
variance_highbd(diff * const d)5409 static INLINE uint32_t variance_highbd(diff *const d) {
5410   const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8);
5411   return (var >= 0) ? (uint32_t)var : 0;
5412 }
5413 #endif  // CONFIG_VP9_HIGHBITDEPTH
5414 
set_var_thresh_from_histogram(VP9_COMP * cpi)5415 static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
5416   const SPEED_FEATURES *const sf = &cpi->sf;
5417   const VP9_COMMON *const cm = &cpi->common;
5418 
5419   const uint8_t *src = cpi->Source->y_buffer;
5420   const uint8_t *last_src = cpi->Last_Source->y_buffer;
5421   const int src_stride = cpi->Source->y_stride;
5422   const int last_stride = cpi->Last_Source->y_stride;
5423 
5424   // Pick cutoff threshold
5425   const int cutoff = (VPXMIN(cm->width, cm->height) >= 720)
5426                          ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100)
5427                          : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
5428   DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
5429   diff *var16 = cpi->source_diff_var;
5430 
5431   int sum = 0;
5432   int i, j;
5433 
5434   memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
5435 
5436   for (i = 0; i < cm->mb_rows; i++) {
5437     for (j = 0; j < cm->mb_cols; j++) {
5438 #if CONFIG_VP9_HIGHBITDEPTH
5439       if (cm->use_highbitdepth) {
5440         switch (cm->bit_depth) {
5441           case VPX_BITS_8:
5442             vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
5443                                      &var16->sse, &var16->sum);
5444             var16->var = variance(var16);
5445             break;
5446           case VPX_BITS_10:
5447             vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
5448                                       &var16->sse, &var16->sum);
5449             var16->var = variance_highbd(var16);
5450             break;
5451           default:
5452             assert(cm->bit_depth == VPX_BITS_12);
5453             vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
5454                                       &var16->sse, &var16->sum);
5455             var16->var = variance_highbd(var16);
5456             break;
5457         }
5458       } else {
5459         vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5460                         &var16->sum);
5461         var16->var = variance(var16);
5462       }
5463 #else
5464       vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5465                       &var16->sum);
5466       var16->var = variance(var16);
5467 #endif  // CONFIG_VP9_HIGHBITDEPTH
5468 
5469       if (var16->var >= VAR_HIST_MAX_BG_VAR)
5470         hist[VAR_HIST_BINS - 1]++;
5471       else
5472         hist[var16->var / VAR_HIST_FACTOR]++;
5473 
5474       src += 16;
5475       last_src += 16;
5476       var16++;
5477     }
5478 
5479     src = src - cm->mb_cols * 16 + 16 * src_stride;
5480     last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
5481   }
5482 
5483   cpi->source_var_thresh = 0;
5484 
5485   if (hist[VAR_HIST_BINS - 1] < cutoff) {
5486     for (i = 0; i < VAR_HIST_BINS - 1; i++) {
5487       sum += hist[i];
5488 
5489       if (sum > cutoff) {
5490         cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
5491         return 0;
5492       }
5493     }
5494   }
5495 
5496   return sf->search_type_check_frequency;
5497 }
5498 
source_var_based_partition_search_method(VP9_COMP * cpi)5499 static void source_var_based_partition_search_method(VP9_COMP *cpi) {
5500   VP9_COMMON *const cm = &cpi->common;
5501   SPEED_FEATURES *const sf = &cpi->sf;
5502 
5503   if (cm->frame_type == KEY_FRAME) {
5504     // For key frame, use SEARCH_PARTITION.
5505     sf->partition_search_type = SEARCH_PARTITION;
5506   } else if (cm->intra_only) {
5507     sf->partition_search_type = FIXED_PARTITION;
5508   } else {
5509     if (cm->last_width != cm->width || cm->last_height != cm->height) {
5510       if (cpi->source_diff_var) vpx_free(cpi->source_diff_var);
5511 
5512       CHECK_MEM_ERROR(cm, cpi->source_diff_var,
5513                       vpx_calloc(cm->MBs, sizeof(diff)));
5514     }
5515 
5516     if (!cpi->frames_till_next_var_check)
5517       cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
5518 
5519     if (cpi->frames_till_next_var_check > 0) {
5520       sf->partition_search_type = FIXED_PARTITION;
5521       cpi->frames_till_next_var_check--;
5522     }
5523   }
5524 }
5525 
get_skip_encode_frame(const VP9_COMMON * cm,ThreadData * const td)5526 static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
5527   unsigned int intra_count = 0, inter_count = 0;
5528   int j;
5529 
5530   for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
5531     intra_count += td->counts->intra_inter[j][0];
5532     inter_count += td->counts->intra_inter[j][1];
5533   }
5534 
5535   return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME &&
5536          cm->show_frame;
5537 }
5538 
vp9_init_tile_data(VP9_COMP * cpi)5539 void vp9_init_tile_data(VP9_COMP *cpi) {
5540   VP9_COMMON *const cm = &cpi->common;
5541   const int tile_cols = 1 << cm->log2_tile_cols;
5542   const int tile_rows = 1 << cm->log2_tile_rows;
5543   int tile_col, tile_row;
5544   TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
5545   TOKENLIST *tplist = cpi->tplist[0][0];
5546   int tile_tok = 0;
5547   int tplist_count = 0;
5548 
5549   if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
5550     if (cpi->tile_data != NULL) vpx_free(cpi->tile_data);
5551     CHECK_MEM_ERROR(
5552         cm, cpi->tile_data,
5553         vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
5554     cpi->allocated_tiles = tile_cols * tile_rows;
5555 
5556     for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5557       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5558         TileDataEnc *tile_data =
5559             &cpi->tile_data[tile_row * tile_cols + tile_col];
5560         int i, j;
5561         for (i = 0; i < BLOCK_SIZES; ++i) {
5562           for (j = 0; j < MAX_MODES; ++j) {
5563             tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT;
5564 #if CONFIG_CONSISTENT_RECODE
5565             tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT;
5566 #endif
5567             tile_data->mode_map[i][j] = j;
5568           }
5569         }
5570 #if CONFIG_MULTITHREAD
5571         tile_data->row_base_thresh_freq_fact = NULL;
5572 #endif
5573       }
5574   }
5575 
5576   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
5577     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5578       TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5579       TileInfo *tile_info = &this_tile->tile_info;
5580       if (cpi->sf.adaptive_rd_thresh_row_mt &&
5581           this_tile->row_base_thresh_freq_fact == NULL)
5582         vp9_row_mt_alloc_rd_thresh(cpi, this_tile);
5583       vp9_tile_init(tile_info, cm, tile_row, tile_col);
5584 
5585       cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
5586       pre_tok = cpi->tile_tok[tile_row][tile_col];
5587       tile_tok = allocated_tokens(*tile_info);
5588 
5589       cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
5590       tplist = cpi->tplist[tile_row][tile_col];
5591       tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
5592     }
5593   }
5594 }
5595 
vp9_encode_sb_row(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col,int mi_row)5596 void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row,
5597                        int tile_col, int mi_row) {
5598   VP9_COMMON *const cm = &cpi->common;
5599   const int tile_cols = 1 << cm->log2_tile_cols;
5600   TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5601   const TileInfo *const tile_info = &this_tile->tile_info;
5602   TOKENEXTRA *tok = NULL;
5603   int tile_sb_row;
5604   int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
5605 
5606   tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >>
5607                 MI_BLOCK_SIZE_LOG2;
5608   get_start_tok(cpi, tile_row, tile_col, mi_row, &tok);
5609   cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok;
5610 
5611   if (cpi->sf.use_nonrd_pick_mode)
5612     encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
5613   else
5614     encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
5615 
5616   cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok;
5617   cpi->tplist[tile_row][tile_col][tile_sb_row].count =
5618       (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop -
5619                      cpi->tplist[tile_row][tile_col][tile_sb_row].start);
5620   assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <=
5621          get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols));
5622 
5623   (void)tile_mb_cols;
5624 }
5625 
vp9_encode_tile(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col)5626 void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row,
5627                      int tile_col) {
5628   VP9_COMMON *const cm = &cpi->common;
5629   const int tile_cols = 1 << cm->log2_tile_cols;
5630   TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5631   const TileInfo *const tile_info = &this_tile->tile_info;
5632   const int mi_row_start = tile_info->mi_row_start;
5633   const int mi_row_end = tile_info->mi_row_end;
5634   int mi_row;
5635 
5636   for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE)
5637     vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
5638 }
5639 
encode_tiles(VP9_COMP * cpi)5640 static void encode_tiles(VP9_COMP *cpi) {
5641   VP9_COMMON *const cm = &cpi->common;
5642   const int tile_cols = 1 << cm->log2_tile_cols;
5643   const int tile_rows = 1 << cm->log2_tile_rows;
5644   int tile_col, tile_row;
5645 
5646   vp9_init_tile_data(cpi);
5647 
5648   for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5649     for (tile_col = 0; tile_col < tile_cols; ++tile_col)
5650       vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
5651 }
5652 
5653 #if CONFIG_FP_MB_STATS
input_fpmb_stats(FIRSTPASS_MB_STATS * firstpass_mb_stats,VP9_COMMON * cm,uint8_t ** this_frame_mb_stats)5654 static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
5655                             VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
5656   uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
5657                          cm->current_video_frame * cm->MBs * sizeof(uint8_t);
5658 
5659   if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
5660 
5661   *this_frame_mb_stats = mb_stats_in;
5662 
5663   return 1;
5664 }
5665 #endif
5666 
encode_frame_internal(VP9_COMP * cpi)5667 static void encode_frame_internal(VP9_COMP *cpi) {
5668   SPEED_FEATURES *const sf = &cpi->sf;
5669   ThreadData *const td = &cpi->td;
5670   MACROBLOCK *const x = &td->mb;
5671   VP9_COMMON *const cm = &cpi->common;
5672   MACROBLOCKD *const xd = &x->e_mbd;
5673   const int gf_group_index = cpi->twopass.gf_group.index;
5674 
5675   xd->mi = cm->mi_grid_visible;
5676   xd->mi[0] = cm->mi;
5677   vp9_zero(*td->counts);
5678   vp9_zero(cpi->td.rd_counts);
5679 
5680   xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
5681                  cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
5682 
5683 #if CONFIG_VP9_HIGHBITDEPTH
5684   if (cm->use_highbitdepth)
5685     x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
5686   else
5687     x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
5688   x->highbd_inv_txfm_add =
5689       xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
5690 #else
5691   x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
5692 #endif  // CONFIG_VP9_HIGHBITDEPTH
5693   x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
5694 #if CONFIG_CONSISTENT_RECODE
5695   x->optimize = sf->optimize_coefficients == 1 && cpi->oxcf.pass != 1;
5696 #endif
5697   if (xd->lossless) x->optimize = 0;
5698   x->sharpness = cpi->oxcf.sharpness;
5699   x->adjust_rdmult_by_segment = (cpi->oxcf.aq_mode == VARIANCE_AQ);
5700 
5701   cm->tx_mode = select_tx_mode(cpi, xd);
5702 
5703   vp9_frame_init_quantizer(cpi);
5704 
5705   vp9_initialize_rd_consts(cpi);
5706   vp9_initialize_me_consts(cpi, x, cm->base_qindex);
5707   init_encode_frame_mb_context(cpi);
5708   cm->use_prev_frame_mvs =
5709       !cm->error_resilient_mode && cm->width == cm->last_width &&
5710       cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
5711   // Special case: set prev_mi to NULL when the previous mode info
5712   // context cannot be used.
5713   cm->prev_mi =
5714       cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
5715 
5716   x->quant_fp = cpi->sf.use_quant_fp;
5717   vp9_zero(x->skip_txfm);
5718   if (sf->use_nonrd_pick_mode) {
5719     // Initialize internal buffer pointers for rtc coding, where non-RD
5720     // mode decision is used and hence no buffer pointer swap needed.
5721     int i;
5722     struct macroblock_plane *const p = x->plane;
5723     struct macroblockd_plane *const pd = xd->plane;
5724     PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
5725 
5726     for (i = 0; i < MAX_MB_PLANE; ++i) {
5727       p[i].coeff = ctx->coeff_pbuf[i][0];
5728       p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
5729       pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
5730       p[i].eobs = ctx->eobs_pbuf[i][0];
5731     }
5732     vp9_zero(x->zcoeff_blk);
5733 
5734     if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 &&
5735         !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) &&
5736         !cpi->use_svc)
5737       cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
5738 
5739     if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
5740       source_var_based_partition_search_method(cpi);
5741   } else if (gf_group_index && gf_group_index < MAX_ARF_GOP_SIZE &&
5742              cpi->sf.enable_tpl_model) {
5743     TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
5744     TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
5745 
5746     int tpl_stride = tpl_frame->stride;
5747     int64_t intra_cost_base = 0;
5748     int64_t mc_dep_cost_base = 0;
5749     int row, col;
5750 
5751     for (row = 0; row < cm->mi_rows && tpl_frame->is_valid; ++row) {
5752       for (col = 0; col < cm->mi_cols; ++col) {
5753         TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
5754         intra_cost_base += this_stats->intra_cost;
5755         mc_dep_cost_base += this_stats->mc_dep_cost;
5756       }
5757     }
5758 
5759     vpx_clear_system_state();
5760 
5761     if (tpl_frame->is_valid)
5762       cpi->rd.r0 = (double)intra_cost_base / mc_dep_cost_base;
5763   }
5764 
5765   {
5766     struct vpx_usec_timer emr_timer;
5767     vpx_usec_timer_start(&emr_timer);
5768 
5769 #if CONFIG_FP_MB_STATS
5770     if (cpi->use_fp_mb_stats) {
5771       input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
5772                        &cpi->twopass.this_frame_mb_stats);
5773     }
5774 #endif
5775 
5776     if (!cpi->row_mt) {
5777       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
5778       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
5779       // If allowed, encoding tiles in parallel with one thread handling one
5780       // tile when row based multi-threading is disabled.
5781       if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
5782         vp9_encode_tiles_mt(cpi);
5783       else
5784         encode_tiles(cpi);
5785     } else {
5786       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
5787       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
5788       vp9_encode_tiles_row_mt(cpi);
5789     }
5790 
5791     vpx_usec_timer_mark(&emr_timer);
5792     cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
5793   }
5794 
5795   sf->skip_encode_frame =
5796       sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0;
5797 
5798 #if 0
5799   // Keep record of the total distortion this time around for future use
5800   cpi->last_frame_distortion = cpi->frame_distortion;
5801 #endif
5802 }
5803 
get_interp_filter(const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS],int is_alt_ref)5804 static INTERP_FILTER get_interp_filter(
5805     const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
5806   if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
5807       threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
5808       threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
5809     return EIGHTTAP_SMOOTH;
5810   } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
5811              threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
5812     return EIGHTTAP_SHARP;
5813   } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
5814     return EIGHTTAP;
5815   } else {
5816     return SWITCHABLE;
5817   }
5818 }
5819 
compute_frame_aq_offset(struct VP9_COMP * cpi)5820 static int compute_frame_aq_offset(struct VP9_COMP *cpi) {
5821   VP9_COMMON *const cm = &cpi->common;
5822   MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
5823   struct segmentation *const seg = &cm->seg;
5824 
5825   int mi_row, mi_col;
5826   int sum_delta = 0;
5827   int map_index = 0;
5828   int qdelta_index;
5829   int segment_id;
5830 
5831   for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
5832     MODE_INFO **mi_8x8 = mi_8x8_ptr;
5833     for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) {
5834       segment_id = mi_8x8[0]->segment_id;
5835       qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q);
5836       sum_delta += qdelta_index;
5837       map_index++;
5838     }
5839     mi_8x8_ptr += cm->mi_stride;
5840   }
5841 
5842   return sum_delta / (cm->mi_rows * cm->mi_cols);
5843 }
5844 
5845 #if CONFIG_CONSISTENT_RECODE
restore_encode_params(VP9_COMP * cpi)5846 static void restore_encode_params(VP9_COMP *cpi) {
5847   VP9_COMMON *const cm = &cpi->common;
5848   const int tile_cols = 1 << cm->log2_tile_cols;
5849   const int tile_rows = 1 << cm->log2_tile_rows;
5850   int tile_col, tile_row;
5851   int i, j;
5852   RD_OPT *rd_opt = &cpi->rd;
5853   for (i = 0; i < MAX_REF_FRAMES; i++) {
5854     for (j = 0; j < REFERENCE_MODES; j++)
5855       rd_opt->prediction_type_threshes[i][j] =
5856           rd_opt->prediction_type_threshes_prev[i][j];
5857 
5858     for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++)
5859       rd_opt->filter_threshes[i][j] = rd_opt->filter_threshes_prev[i][j];
5860   }
5861 
5862   if (cpi->tile_data != NULL) {
5863     for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5864       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5865         TileDataEnc *tile_data =
5866             &cpi->tile_data[tile_row * tile_cols + tile_col];
5867         for (i = 0; i < BLOCK_SIZES; ++i) {
5868           for (j = 0; j < MAX_MODES; ++j) {
5869             tile_data->thresh_freq_fact[i][j] =
5870                 tile_data->thresh_freq_fact_prev[i][j];
5871           }
5872         }
5873       }
5874   }
5875 
5876   cm->interp_filter = cpi->sf.default_interp_filter;
5877 }
5878 #endif
5879 
vp9_encode_frame(VP9_COMP * cpi)5880 void vp9_encode_frame(VP9_COMP *cpi) {
5881   VP9_COMMON *const cm = &cpi->common;
5882 
5883 #if CONFIG_CONSISTENT_RECODE
5884   restore_encode_params(cpi);
5885 #endif
5886 
5887   // In the longer term the encoder should be generalized to match the
5888   // decoder such that we allow compound where one of the 3 buffers has a
5889   // different sign bias and that buffer is then the fixed ref. However, this
5890   // requires further work in the rd loop. For now the only supported encoder
5891   // side behavior is where the ALT ref buffer has opposite sign bias to
5892   // the other two.
5893   if (!frame_is_intra_only(cm)) {
5894     if (vp9_compound_reference_allowed(cm)) {
5895       cpi->allow_comp_inter_inter = 1;
5896       vp9_setup_compound_reference_mode(cm);
5897     } else {
5898       cpi->allow_comp_inter_inter = 0;
5899     }
5900   }
5901 
5902   if (cpi->sf.frame_parameter_update) {
5903     int i;
5904     RD_OPT *const rd_opt = &cpi->rd;
5905     FRAME_COUNTS *counts = cpi->td.counts;
5906     RD_COUNTS *const rdc = &cpi->td.rd_counts;
5907 
5908     // This code does a single RD pass over the whole frame assuming
5909     // either compound, single or hybrid prediction as per whatever has
5910     // worked best for that type of frame in the past.
5911     // It also predicts whether another coding mode would have worked
5912     // better than this coding mode. If that is the case, it remembers
5913     // that for subsequent frames.
5914     // It also does the same analysis for transform size selection.
5915     const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
5916     int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
5917     int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
5918     const int is_alt_ref = frame_type == ALTREF_FRAME;
5919 
5920     /* prediction (compound, single or hybrid) mode selection */
5921     if (is_alt_ref || !cpi->allow_comp_inter_inter)
5922       cm->reference_mode = SINGLE_REFERENCE;
5923     else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
5924              mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
5925              check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
5926       cm->reference_mode = COMPOUND_REFERENCE;
5927     else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
5928       cm->reference_mode = SINGLE_REFERENCE;
5929     else
5930       cm->reference_mode = REFERENCE_MODE_SELECT;
5931 
5932     if (cm->interp_filter == SWITCHABLE)
5933       cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
5934 
5935     encode_frame_internal(cpi);
5936 
5937     for (i = 0; i < REFERENCE_MODES; ++i)
5938       mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
5939 
5940     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
5941       filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
5942 
5943     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
5944       int single_count_zero = 0;
5945       int comp_count_zero = 0;
5946 
5947       for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
5948         single_count_zero += counts->comp_inter[i][0];
5949         comp_count_zero += counts->comp_inter[i][1];
5950       }
5951 
5952       if (comp_count_zero == 0) {
5953         cm->reference_mode = SINGLE_REFERENCE;
5954         vp9_zero(counts->comp_inter);
5955       } else if (single_count_zero == 0) {
5956         cm->reference_mode = COMPOUND_REFERENCE;
5957         vp9_zero(counts->comp_inter);
5958       }
5959     }
5960 
5961     if (cm->tx_mode == TX_MODE_SELECT) {
5962       int count4x4 = 0;
5963       int count8x8_lp = 0, count8x8_8x8p = 0;
5964       int count16x16_16x16p = 0, count16x16_lp = 0;
5965       int count32x32 = 0;
5966 
5967       for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
5968         count4x4 += counts->tx.p32x32[i][TX_4X4];
5969         count4x4 += counts->tx.p16x16[i][TX_4X4];
5970         count4x4 += counts->tx.p8x8[i][TX_4X4];
5971 
5972         count8x8_lp += counts->tx.p32x32[i][TX_8X8];
5973         count8x8_lp += counts->tx.p16x16[i][TX_8X8];
5974         count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
5975 
5976         count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
5977         count16x16_lp += counts->tx.p32x32[i][TX_16X16];
5978         count32x32 += counts->tx.p32x32[i][TX_32X32];
5979       }
5980       if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
5981           count32x32 == 0) {
5982         cm->tx_mode = ALLOW_8X8;
5983         reset_skip_tx_size(cm, TX_8X8);
5984       } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
5985                  count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
5986         cm->tx_mode = ONLY_4X4;
5987         reset_skip_tx_size(cm, TX_4X4);
5988       } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
5989         cm->tx_mode = ALLOW_32X32;
5990       } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
5991         cm->tx_mode = ALLOW_16X16;
5992         reset_skip_tx_size(cm, TX_16X16);
5993       }
5994     }
5995   } else {
5996     FRAME_COUNTS *counts = cpi->td.counts;
5997     cm->reference_mode = SINGLE_REFERENCE;
5998     if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode &&
5999         cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
6000         cm->frame_type != KEY_FRAME)
6001       cm->reference_mode = REFERENCE_MODE_SELECT;
6002 
6003     encode_frame_internal(cpi);
6004 
6005     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6006       int single_count_zero = 0;
6007       int comp_count_zero = 0;
6008       int i;
6009       for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6010         single_count_zero += counts->comp_inter[i][0];
6011         comp_count_zero += counts->comp_inter[i][1];
6012       }
6013       if (comp_count_zero == 0) {
6014         cm->reference_mode = SINGLE_REFERENCE;
6015         vp9_zero(counts->comp_inter);
6016       } else if (single_count_zero == 0) {
6017         cm->reference_mode = COMPOUND_REFERENCE;
6018         vp9_zero(counts->comp_inter);
6019       }
6020     }
6021   }
6022 
6023   // If segmented AQ is enabled compute the average AQ weighting.
6024   if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) &&
6025       (cm->seg.update_map || cm->seg.update_data)) {
6026     cm->seg.aq_av_offset = compute_frame_aq_offset(cpi);
6027   }
6028 }
6029 
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)6030 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
6031   const PREDICTION_MODE y_mode = mi->mode;
6032   const PREDICTION_MODE uv_mode = mi->uv_mode;
6033   const BLOCK_SIZE bsize = mi->sb_type;
6034 
6035   if (bsize < BLOCK_8X8) {
6036     int idx, idy;
6037     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
6038     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
6039     for (idy = 0; idy < 2; idy += num_4x4_h)
6040       for (idx = 0; idx < 2; idx += num_4x4_w)
6041         ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
6042   } else {
6043     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
6044   }
6045 
6046   ++counts->uv_mode[y_mode][uv_mode];
6047 }
6048 
update_zeromv_cnt(VP9_COMP * const cpi,const MODE_INFO * const mi,int mi_row,int mi_col,BLOCK_SIZE bsize)6049 static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi,
6050                               int mi_row, int mi_col, BLOCK_SIZE bsize) {
6051   const VP9_COMMON *const cm = &cpi->common;
6052   MV mv = mi->mv[0].as_mv;
6053   const int bw = num_8x8_blocks_wide_lookup[bsize];
6054   const int bh = num_8x8_blocks_high_lookup[bsize];
6055   const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
6056   const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
6057   const int block_index = mi_row * cm->mi_cols + mi_col;
6058   int x, y;
6059   for (y = 0; y < ymis; y++)
6060     for (x = 0; x < xmis; x++) {
6061       int map_offset = block_index + y * cm->mi_cols + x;
6062       if (mi->ref_frame[0] == LAST_FRAME && is_inter_block(mi) &&
6063           mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
6064         if (abs(mv.row) < 8 && abs(mv.col) < 8) {
6065           if (cpi->consec_zero_mv[map_offset] < 255)
6066             cpi->consec_zero_mv[map_offset]++;
6067         } else {
6068           cpi->consec_zero_mv[map_offset] = 0;
6069         }
6070       }
6071     }
6072 }
6073 
encode_superblock(VP9_COMP * cpi,ThreadData * td,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)6074 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
6075                               int output_enabled, int mi_row, int mi_col,
6076                               BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
6077   VP9_COMMON *const cm = &cpi->common;
6078   MACROBLOCK *const x = &td->mb;
6079   MACROBLOCKD *const xd = &x->e_mbd;
6080   MODE_INFO *mi = xd->mi[0];
6081   const int seg_skip =
6082       segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP);
6083   x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
6084                    cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
6085                    cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
6086                    cpi->sf.allow_skip_recode;
6087 
6088   if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
6089     memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
6090 
6091   x->skip_optimize = ctx->is_coded;
6092   ctx->is_coded = 1;
6093   x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
6094   x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
6095                     x->q_index < QIDX_SKIP_THRESH);
6096 
6097   if (x->skip_encode) return;
6098 
6099   if (!is_inter_block(mi)) {
6100     int plane;
6101 #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6102     if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
6103         (xd->above_mi == NULL || xd->left_mi == NULL) &&
6104         need_top_left[mi->uv_mode])
6105       assert(0);
6106 #endif  // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6107     mi->skip = 1;
6108     for (plane = 0; plane < MAX_MB_PLANE; ++plane)
6109       vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1);
6110     if (output_enabled) sum_intra_stats(td->counts, mi);
6111     vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6112                     VPXMAX(bsize, BLOCK_8X8));
6113   } else {
6114     int ref;
6115     const int is_compound = has_second_ref(mi);
6116     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
6117     for (ref = 0; ref < 1 + is_compound; ++ref) {
6118       YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]);
6119       assert(cfg != NULL);
6120       vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
6121                            &xd->block_refs[ref]->sf);
6122     }
6123     if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
6124       vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
6125                                      VPXMAX(bsize, BLOCK_8X8));
6126 
6127     vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
6128                                     VPXMAX(bsize, BLOCK_8X8));
6129 
6130     vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
6131     vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6132                     VPXMAX(bsize, BLOCK_8X8));
6133   }
6134 
6135   if (seg_skip) {
6136     assert(mi->skip);
6137   }
6138 
6139   if (output_enabled) {
6140     if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 &&
6141         !(is_inter_block(mi) && mi->skip)) {
6142       ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
6143                       &td->counts->tx)[mi->tx_size];
6144     } else {
6145       // The new intra coding scheme requires no change of transform size
6146       if (is_inter_block(mi)) {
6147         mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
6148                              max_txsize_lookup[bsize]);
6149       } else {
6150         mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
6151       }
6152     }
6153 
6154     ++td->counts->tx.tx_totals[mi->tx_size];
6155     ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
6156     if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
6157       vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
6158     if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 &&
6159         (!cpi->use_svc ||
6160          (cpi->use_svc &&
6161           !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
6162           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
6163       update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize);
6164   }
6165 }
6166